51 Commits

Author SHA1 Message Date
Alexander Engelsberger
5ce326ce62 feat: CLCC register torchmetrics added 2021-10-15 15:18:02 +02:00
Alexander Engelsberger
d1985571b3 feat: Improve 2D visualization with Voronoi Cells 2021-10-15 13:01:01 +02:00
Alexander Engelsberger
967953442b feat: Add basic GLVQ with new architecture 2021-10-14 15:49:12 +02:00
Alexander Engelsberger
d4448f2bc9 chore(pre-commit): Update plugin versions and rerun all files 2021-10-13 10:54:53 +02:00
Alexander Engelsberger
a8829945f5 chore: Move mixins into seperate file 2021-10-11 16:05:12 +02:00
Alexander Engelsberger
a8336ee213 chore: Remove relative imports 2021-10-11 15:45:43 +02:00
Alexander Engelsberger
6ffd27d12a chore: Remove PytorchLightning CLI related code
Could be moved in a seperate plugin.
2021-10-11 15:16:12 +02:00
Alexander Engelsberger
859e2cae69 docs(dependencies): Add missing ipykernel dependency for docs 2021-10-11 15:11:53 +02:00
Alexander Engelsberger
d7ea89d47e feat: add simple test step 2021-09-10 19:19:51 +02:00
Jensun Ravichandran
fa928afe2c feat(vis): 2D EV projection for GMLVQ 2021-09-01 10:49:57 +02:00
Alexander Engelsberger
7d4a041df2 build: bump version 0.2.0 → 0.3.0 2021-08-30 20:50:03 +02:00
Alexander Engelsberger
04c51c00c6 ci: seperate build step 2021-08-30 20:44:16 +02:00
Alexander Engelsberger
62185b38cf chore: Update prototorch dependency 2021-08-30 20:32:47 +02:00
Alexander Engelsberger
7b93cd4ad5 feat(compatibility): Python3.6 compatibility 2021-08-30 20:32:40 +02:00
Alexander Engelsberger
d7834e2cc0 fix: All examples should work on CPU and GPU now 2021-08-05 11:20:02 +02:00
Alexander Engelsberger
0af8cf36f8 fix: labels where on cpu in forward pass 2021-08-05 09:14:32 +02:00
Jensun Ravichandran
f8ad1d83eb refactor: clean up abstract classes 2021-07-14 19:17:05 +02:00
Jensun Ravichandran
23a3683860 fix(doc): update outdated 2021-07-12 21:21:29 +02:00
Jensun Ravichandran
4be9fb81eb feat(model): implement MedianLVQ 2021-07-06 17:12:51 +02:00
Jensun Ravichandran
9d38123114 refactor: use GLVQLoss instead of LossLayer 2021-07-06 17:09:21 +02:00
Jensun Ravichandran
0f9f24e36a feat: add early-stopping and pruning to examples/warm_starting.py 2021-06-30 16:04:26 +02:00
Jensun Ravichandran
09e3ef1d0e fix: remove deprecated Trainer.accelerator_backend 2021-06-30 16:03:45 +02:00
Alexander Engelsberger
7b9b767113 fix: training loss is a zero dimensional tensor
Should fix the problem with EarlyStopping callback.
2021-06-25 17:07:06 +02:00
Jensun Ravichandran
f56ec44afe chore(github): update bug report issue template 2021-06-25 17:07:06 +02:00
Jensun Ravichandran
67a20124e8 chore(github): add issue templates 2021-06-25 17:07:06 +02:00
Jensun Ravichandran
72af03b991 refactor: use LinearTransform instead of torch.nn.Linear 2021-06-25 17:07:06 +02:00
Alexander Engelsberger
71602bf38a build: bump version 0.1.8 → 0.2.0 2021-06-21 16:47:17 +02:00
Jensun Ravichandran
a1d9657b91 test: remove examples/liramlvq_tecator.py temporarily 2021-06-21 16:13:41 +02:00
Jensun Ravichandran
4dc11a3737 chore(setup): require prototorch>=0.6.0 2021-06-21 15:51:07 +02:00
Alexander Engelsberger
2649e3ac31 test(examples): print error message on fail 2021-06-21 15:06:37 +02:00
Alexander Engelsberger
2b2e4a5f37 fix: examples/ng_iris.py 2021-06-21 14:59:54 +02:00
Jensun Ravichandran
72404f7c4e fix: examples/gmlvq_mnist.py 2021-06-21 14:42:28 +02:00
Jensun Ravichandran
612ee8dc6a chore(bumpversion): modify bump message 2021-06-20 19:11:29 +02:00
Jensun Ravichandran
d42693a441 refactor(api)!: merge the new api changes into dev 2021-06-20 19:00:12 +02:00
Jensun Ravichandran
7eb496110f Use mesh2d from prototorch.utils 2021-06-18 13:43:44 +02:00
Jensun Ravichandran
4ab0a5a414 Add setup config 2021-06-17 14:51:09 +02:00
Jensun Ravichandran
29063dcec4 Update gitignore 2021-06-16 12:39:39 +02:00
Jensun Ravichandran
a37095409b [BUGFIX] examples/cbc_iris.py works again 2021-06-15 15:59:47 +02:00
Jensun Ravichandran
1b420c1f6b [BUG] LVQ1 is broken 2021-06-14 21:08:05 +02:00
Jensun Ravichandran
7ec5528ade [BUGFIX] examples/lvqmln_iris.py works again 2021-06-14 21:00:26 +02:00
Jensun Ravichandran
a44219ee47 [BUG] PLVQ seems broken 2021-06-14 20:56:38 +02:00
Jensun Ravichandran
24ebfdc667 [BUGFIX] examples/siamese_glvq_iris.py works again 2021-06-14 20:44:36 +02:00
Jensun Ravichandran
1c658cdc1b [FEATURE] Add warm-starting example 2021-06-14 20:42:57 +02:00
Jensun Ravichandran
1911d4b33e [BUGFIX] examples/lgmlvq_moons.py works again 2021-06-14 20:34:46 +02:00
Jensun Ravichandran
6197d7d5d6 [BUGFIX] examples/dynamic_pruning.py works again 2021-06-14 20:31:39 +02:00
Jensun Ravichandran
d2856383e2 [BUGFIX] examples/gng_iris.py works again 2021-06-14 20:29:31 +02:00
Jensun Ravichandran
4eafe88dc4 [BUGFIX] examples/ksom_colors.py works again 2021-06-14 20:23:07 +02:00
Jensun Ravichandran
3afced8662 [BUGFIX] examples/glvq_spiral.py works again 2021-06-14 20:19:08 +02:00
Jensun Ravichandran
68034d56f6 [BUGFIX] examples/glvq_iris.py works again 2021-06-14 20:13:25 +02:00
Jensun Ravichandran
97ec15b76a [BUGFIX] KNN works again 2021-06-14 20:09:41 +02:00
Jensun Ravichandran
69e5ff3243 Import from the newly cleaned-up prototorch namespace 2021-06-14 20:08:08 +02:00
49 changed files with 1312 additions and 1155 deletions

View File

@@ -1,10 +1,13 @@
[bumpversion]
current_version = 0.1.8
current_version = 0.3.0
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
serialize = {major}.{minor}.{patch}
message = build: bump version {current_version} → {new_version}
[bumpversion:file:setup.py]
[bumpversion:file:./prototorch/models/__init__.py]
[bumpversion:file:./docs/source/conf.py]

38
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,38 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Steps to reproduce the behavior**
1. ...
2. Run script '...' or this snippet:
```python
import prototorch as pt
...
```
3. See errors
**Expected behavior**
A clear and concise description of what you expected to happen.
**Observed behavior**
A clear and concise description of what actually happened.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**System and version information**
- OS: [e.g. Ubuntu 20.10]
- ProtoTorch Version: [e.g. 0.4.0]
- Python Version: [e.g. 3.9.5]
**Additional context**
Add any other context about the problem here.

View File

@@ -0,0 +1,20 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

17
.gitignore vendored
View File

@@ -128,14 +128,19 @@ dmypy.json
# Pyre type checker
.pyre/
# Datasets
datasets/
# PyTorch-Lightning
lightning_logs/
.vscode/
# Vim
*~
*.swp
*.swo
# Pytorch Models or Weights
# If necessary make exceptions for single pretrained models
*.pt
# Artifacts created by ProtoTorch Models
datasets/
lightning_logs/
examples/_*.py
examples/_*.ipynb

View File

@@ -1,5 +1,6 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.0.1
@@ -11,44 +12,43 @@ repos:
- id: check-ast
- id: check-case-conflict
- repo: https://github.com/myint/autoflake
rev: v1.4
hooks:
- id: autoflake
- repo: http://github.com/PyCQA/isort
rev: 5.8.0
rev: 5.9.3
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-mypy
rev: 'v0.902'
rev: v0.910-1
hooks:
- id: mypy
files: prototorch
additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf
rev: 'v0.31.0' # Use the sha / tag you want to point at
rev: v0.31.0
hooks:
- id: yapf
- repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.9.0 # Use the ref you want to point at
rev: v1.9.0
hooks:
- id: python-use-type-annotations
- id: python-no-log-warn
- id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade
rev: v2.19.4
rev: v2.29.0
hooks:
- id: pyupgrade
args: [--py36-plus]
- repo: https://github.com/jorisroovers/gitlint
rev: "v0.15.1"
- repo: https://github.com/si-cim/gitlint
rev: v0.15.2-unofficial
hooks:
- id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename]

View File

@@ -1,7 +1,11 @@
dist: bionic
sudo: false
language: python
python: 3.9
python:
- 3.9
- 3.8
- 3.7
- 3.6
cache:
directories:
- "$HOME/.cache/pip"
@@ -15,11 +19,26 @@ script:
- ./tests/test_examples.sh examples/
after_success:
- bash <(curl -s https://codecov.io/bash)
# Publish on PyPI
jobs:
include:
- stage: build
python: 3.9
script: echo "Starting Pypi build"
deploy:
provider: pypi
username: __token__
distributions: "sdist bdist_wheel"
password:
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
on:
tags: true
skip_existing: true
# The password is encrypted with:
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
# See https://docs.travis-ci.com/user/deployment/pypi and
# https://github.com/travis-ci/travis.rb#installation
# for more details
# Note: The encrypt command does not work well in ZSH.

View File

@@ -20,23 +20,6 @@ pip install prototorch_models
of** [ProtoTorch](https://github.com/si-cim/prototorch). The plugin should then
be available for use in your Python environment as `prototorch.models`.
## Contribution
This repository contains definition for [git hooks](https://githooks.com).
[Pre-commit](https://pre-commit.com) is automatically installed as development
dependency with prototorch or you can install it manually with `pip install
pre-commit`.
Please install the hooks by running:
```bash
pre-commit install
pre-commit install --hook-type commit-msg
```
before creating the first commit.
The commit will fail if the commit message does not follow the specification
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
## Available models
### LVQ Family
@@ -53,6 +36,7 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
- Soft Learning Vector Quantization (SLVQ)
- Robust Soft Learning Vector Quantization (RSLVQ)
- Probabilistic Learning Vector Quantization (PLVQ)
- Median-LVQ
### Other
@@ -68,7 +52,6 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
## Planned models
- Median-LVQ
- Generalized Tangent Learning Vector Quantization (GTLVQ)
- Self-Incremental Learning Vector Quantization (SILVQ)
@@ -103,6 +86,23 @@ To assist in the development process, you may also find it useful to install
please avoid installing Tensorflow in this environment. It is known to cause
problems with PyTorch-Lightning.**
## Contribution
This repository contains definition for [git hooks](https://githooks.com).
[Pre-commit](https://pre-commit.com) is automatically installed as development
dependency with prototorch or you can install it manually with `pip install
pre-commit`.
Please install the hooks by running:
```bash
pre-commit install
pre-commit install --hook-type commit-msg
```
before creating the first commit.
The commit will fail if the commit message does not follow the specification
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
## FAQ
### How do I update the plugin?

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.4.4"
release = "0.3.0"
# -- General configuration ---------------------------------------------------

File diff suppressed because one or more lines are too long

View File

@@ -2,11 +2,10 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
@@ -24,21 +23,27 @@ if __name__ == "__main__":
# Hyperparameters
hparams = dict(
distribution=[2, 2, 2],
proto_lr=0.1,
distribution=[1, 0, 3],
margin=0.1,
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = pt.models.CBC(
hparams,
prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
components_initializer=pt.initializers.SSCI(train_ds, noise=0.01),
reasonings_iniitializer=pt.initializers.
PurePositiveReasoningsInitializer(),
)
# Callbacks
vis = pt.models.VisCBC2D(data=train_ds,
vis = pt.models.Visualize2DVoronoiCallback(
data=train_ds,
title="CBC Iris Example",
resolution=100,
axis_off=True)
axis_off=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(

View File

@@ -1,8 +0,0 @@
# Examples using Lightning CLI
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
To use the example run
```
python gmlvq.py --config gmlvq.yaml
```

View File

@@ -1,20 +0,0 @@
"""GMLVQ example using the MNIST dataset."""
import torch
from pytorch_lightning.utilities.cli import LightningCLI
import prototorch as pt
from prototorch.models import ImageGMLVQ
from prototorch.models.abstract import PrototypeModel
from prototorch.models.data import MNISTDataModule
class ExperimentClass(ImageGMLVQ):
def __init__(self, hparams, **kwargs):
super().__init__(hparams,
optimizer=torch.optim.Adam,
prototype_initializer=pt.components.zeros(28 * 28),
**kwargs)
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)

View File

@@ -1,11 +0,0 @@
model:
hparams:
input_dim: 784
latent_dim: 784
distribution:
num_classes: 10
prototypes_per_class: 2
proto_lr: 0.01
bb_lr: 0.01
data:
batch_size: 32

View File

@@ -2,11 +2,10 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
@@ -37,7 +36,7 @@ if __name__ == "__main__":
# Initialize the model
model = pt.models.CELVQ(
hparams,
prototype_initializer=pt.components.Ones(2, scale=3),
prototypes_initializer=pt.initializers.FVCI(2, 3.0),
)
# Compute intermediate input and output sizes

View File

@@ -2,12 +2,12 @@
import argparse
import prototorch as pt
import prototorch.models.clcc
import pytorch_lightning as pl
import torch
from torch.optim.lr_scheduler import ExponentialLR
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
@@ -24,16 +24,16 @@ if __name__ == "__main__":
hparams = dict(
distribution={
"num_classes": 3,
"prototypes_per_class": 4
"per_class": 4
},
lr=0.01,
)
# Initialize the model
model = pt.models.GLVQ(
model = prototorch.models.GLVQ(
hparams,
optimizer=torch.optim.Adam,
prototype_initializer=pt.components.SMI(train_ds),
prototypes_initializer=pt.initializers.SMCI(train_ds),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
@@ -42,7 +42,13 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
vis = pt.models.Visualize2DVoronoiCallback(
data=train_ds,
resolution=200,
title="Example: GLVQ on Iris",
x_label="sepal length",
y_label="petal length",
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(

View File

@@ -2,11 +2,10 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
@@ -26,7 +25,6 @@ if __name__ == "__main__":
distribution=(num_classes, prototypes_per_class),
transfer_function="swish_beta",
transfer_beta=10.0,
# lr=0.1,
proto_lr=0.1,
bb_lr=0.1,
input_dim=2,
@@ -37,7 +35,7 @@ if __name__ == "__main__":
model = pt.models.GMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototype_initializer=pt.components.SSI(train_ds, noise=1e-2),
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
)
# Callbacks
@@ -47,12 +45,12 @@ if __name__ == "__main__":
block=False,
)
pruning = pt.models.PruneLoserPrototypes(
threshold=0.02,
threshold=0.01,
idle_epochs=10,
prune_quota_per_epoch=5,
frequency=2,
frequency=5,
replace=True,
initializer=pt.components.SSI(train_ds, noise=1e-2),
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
verbose=True,
)
es = pl.callbacks.EarlyStopping(
@@ -68,7 +66,7 @@ if __name__ == "__main__":
args,
callbacks=[
vis,
# es,
es,
pruning,
],
terminate_on_nan=True,

View File

@@ -1,4 +1,4 @@
"""GLVQ example using the Iris dataset."""
"""GMLVQ example using the Iris dataset."""
import argparse
@@ -22,30 +22,29 @@ if __name__ == "__main__":
# Hyperparameters
hparams = dict(
input_dim=4,
latent_dim=3,
latent_dim=4,
distribution={
"num_classes": 3,
"prototypes_per_class": 2
"per_class": 2
},
proto_lr=0.0005,
bb_lr=0.0005,
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = pt.models.GMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototype_initializer=pt.components.SSI(train_ds),
prototypes_initializer=pt.initializers.SMCI(train_ds),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
omega_initializer=pt.components.PCA(train_ds.data)
)
# Compute intermediate input and output sizes
#model.example_input_array = torch.zeros(4, 2)
model.example_input_array = torch.zeros(4, 4)
# Callbacks
vis = pt.models.VisGMLVQ2D(data=train_ds, border=0.1)
vis = pt.models.VisGMLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(

View File

@@ -2,13 +2,12 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from torchvision import transforms
from torchvision.datasets import MNIST
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
@@ -56,7 +55,7 @@ if __name__ == "__main__":
model = pt.models.ImageGMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototype_initializer=pt.components.SMI(train_ds),
prototypes_initializer=pt.initializers.SMCI(train_ds),
)
# Callbacks
@@ -95,7 +94,7 @@ if __name__ == "__main__":
],
terminate_on_nan=True,
weights_summary=None,
accelerator="ddp",
# accelerator="ddp",
)
# Training loop

View File

@@ -2,11 +2,10 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
@@ -30,7 +29,7 @@ if __name__ == "__main__":
# Initialize the model
model = pt.models.GrowingNeuralGas(
hparams,
prototype_initializer=pt.components.Zeros(2),
prototypes_initializer=pt.initializers.ZCI(2),
)
# Compute intermediate input and output sizes

View File

@@ -2,11 +2,11 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from sklearn.datasets import load_iris
import prototorch as pt
from sklearn.model_selection import train_test_split
if __name__ == "__main__":
# Command-line arguments
@@ -15,12 +15,20 @@ if __name__ == "__main__":
args = parser.parse_args()
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
X, y = load_iris(return_X_y=True)
X = X[:, [0, 2]]
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.5,
random_state=42)
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
# Hyperparameters
hparams = dict(k=5)
@@ -36,7 +44,7 @@ if __name__ == "__main__":
# Callbacks
vis = pt.models.VisGLVQ2D(
data=(x_train, y_train),
data=(X_train, y_train),
resolution=200,
block=True,
)
@@ -54,5 +62,8 @@ if __name__ == "__main__":
trainer.fit(model, train_loader)
# Recall
y_pred = model.predict(torch.tensor(x_train))
y_pred = model.predict(torch.tensor(X_train))
print(y_pred)
# Test
trainer.test(model, dataloaders=test_loader)

View File

@@ -2,25 +2,11 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
import prototorch as pt
def hex_to_rgb(hex_values):
for v in hex_values:
v = v.lstrip('#')
lv = len(v)
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
yield c
def rgb_to_hex(rgb_values):
for v in rgb_values:
c = "%02x%02x%02x" % tuple(v)
yield c
from prototorch.utils.colors import hex_to_rgb
class Vis2DColorSOM(pl.Callback):
@@ -93,7 +79,7 @@ if __name__ == "__main__":
# Initialize the model
model = pt.models.KohonenSOM(
hparams,
prototype_initializer=pt.components.Random(3),
prototypes_initializer=pt.initializers.RNCI(3),
)
# Compute intermediate input and output sizes

View File

@@ -2,23 +2,22 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
@@ -32,8 +31,10 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.LGMLVQ(hparams,
prototype_initializer=pt.components.SMI(train_ds))
model = pt.models.LGMLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)

View File

@@ -1,90 +0,0 @@
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
import argparse
import matplotlib.pyplot as plt
import pytorch_lightning as pl
import torch
import prototorch as pt
def plot_matrix(matrix):
title = "Lambda matrix"
plt.figure(title)
plt.title(title)
plt.imshow(matrix, cmap="gray")
plt.axis("off")
plt.colorbar()
plt.show(block=True)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
# Reproducibility
pl.utilities.seed.seed_everything(seed=10)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=32)
# Hyperparameters
hparams = dict(
distribution={
"num_classes": 2,
"prototypes_per_class": 1
},
input_dim=100,
latent_dim=2,
proto_lr=0.0001,
bb_lr=0.0001,
)
# Initialize the model
model = pt.models.SiameseGMLVQ(
hparams,
# optimizer=torch.optim.SGD,
optimizer=torch.optim.Adam,
prototype_initializer=pt.components.SMI(train_ds),
)
# Summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
es = pl.callbacks.EarlyStopping(monitor="val_loss",
min_delta=0.001,
patience=50,
verbose=False,
mode="min")
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis, es],
weights_summary=None,
)
# Training loop
trainer.fit(model, train_loader, test_loader)
# Save the model
torch.save(model, "liramlvq_tecator.pt")
# Load a saved model
saved_model = torch.load("liramlvq_tecator.pt")
# Display the Lambda matrix
plot_matrix(saved_model.lambda_matrix)
# Testing
trainer.test(model, test_dataloaders=test_loader)

View File

@@ -2,11 +2,10 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
import prototorch as pt
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
@@ -41,7 +40,7 @@ if __name__ == "__main__":
# Hyperparameters
hparams = dict(
distribution=[1, 2, 2],
distribution=[3, 4, 5],
proto_lr=0.001,
bb_lr=0.001,
)
@@ -52,7 +51,10 @@ if __name__ == "__main__":
# Initialize the model
model = pt.models.LVQMLN(
hparams,
prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
prototypes_initializer=pt.initializers.SSCI(
train_ds,
transform=backbone,
),
backbone=backbone,
)
@@ -67,11 +69,21 @@ if __name__ == "__main__":
resolution=500,
axis_off=True,
)
pruning = pt.models.PruneLoserPrototypes(
threshold=0.01,
idle_epochs=20,
prune_quota_per_epoch=2,
frequency=10,
verbose=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
callbacks=[
vis,
pruning,
],
)
# Training loop

View File

@@ -0,0 +1,52 @@
"""Median-LVQ example using the Iris dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(
train_ds,
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
)
# Initialize the model
model = pt.models.MedianLVQ(
hparams=dict(distribution=(3, 2), lr=0.01),
prototypes_initializer=pt.initializers.SSCI(train_ds),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
monitor="train_acc",
min_delta=0.01,
patience=5,
mode="max",
verbose=True,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis, es],
weights_summary="full",
)
# Training loop
trainer.fit(model, train_loader)

View File

@@ -2,14 +2,13 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torch.optim.lr_scheduler import ExponentialLR
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
@@ -38,7 +37,7 @@ if __name__ == "__main__":
# Initialize the model
model = pt.models.NeuralGas(
hparams,
prototype_initializer=pt.components.Zeros(2),
prototypes_initializer=pt.core.ZCI(2),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)

View File

@@ -2,11 +2,9 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from torchvision.transforms import Lambda
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
@@ -28,19 +26,17 @@ if __name__ == "__main__":
distribution=[2, 2, 3],
proto_lr=0.05,
lambd=0.1,
variance=1.0,
input_dim=2,
latent_dim=2,
bb_lr=0.01,
)
# Initialize the model
model = pt.models.probabilistic.PLVQ(
model = pt.models.RSLVQ(
hparams,
optimizer=torch.optim.Adam,
# prototype_initializer=pt.components.SMI(train_ds),
prototype_initializer=pt.components.SSI(train_ds, noise=0.2),
# prototype_initializer=pt.components.Zeros(2),
# prototype_initializer=pt.components.Ones(2, scale=2.0),
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
)
# Compute intermediate input and output sizes
@@ -50,7 +46,7 @@ if __name__ == "__main__":
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds)
vis = pt.models.VisGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(

View File

@@ -2,11 +2,10 @@
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
import prototorch as pt
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
@@ -52,7 +51,7 @@ if __name__ == "__main__":
# Initialize the model
model = pt.models.SiameseGLVQ(
hparams,
prototype_initializer=pt.components.SMI(train_ds),
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)

103
examples/warm_starting.py Normal file
View File

@@ -0,0 +1,103 @@
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from torch.optim.lr_scheduler import ExponentialLR
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Initialize the gng
gng = pt.models.GrowingNeuralGas(
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
prototypes_initializer=pt.initializers.ZCI(2),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Callbacks
es = pl.callbacks.EarlyStopping(
monitor="loss",
min_delta=0.001,
patience=20,
mode="min",
verbose=False,
check_on_train_epoch_end=True,
)
# Setup trainer for GNG
trainer = pl.Trainer(
max_epochs=100,
callbacks=[es],
weights_summary=None,
)
# Training loop
trainer.fit(gng, train_loader)
# Hyperparameters
hparams = dict(
distribution=[],
lr=0.01,
)
# Warm-start prototypes
knn = pt.models.KNN(dict(k=1), data=train_ds)
prototypes = gng.prototypes
plabels = knn.predict(prototypes)
# Initialize the model
model = pt.models.GLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.LCI(prototypes),
labels_initializer=pt.initializers.LLI(plabels),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
pruning = pt.models.PruneLoserPrototypes(
threshold=0.02,
idle_epochs=2,
prune_quota_per_epoch=5,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=10,
mode="min",
verbose=True,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
pruning,
es,
],
weights_summary="full",
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)

View File

@@ -1,15 +1,24 @@
"""`models` plugin for the `prototorch` package."""
from importlib.metadata import PackageNotFoundError, version
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
from .cbc import CBC, ImageCBC
from .glvq import (GLVQ, GLVQ1, GLVQ21, GMLVQ, GRLVQ, LGMLVQ, LVQMLN,
ImageGLVQ, ImageGMLVQ, SiameseGLVQ, SiameseGMLVQ)
from .glvq import (
GLVQ,
GLVQ1,
GLVQ21,
GMLVQ,
GRLVQ,
LGMLVQ,
LVQMLN,
ImageGLVQ,
ImageGMLVQ,
SiameseGLVQ,
SiameseGMLVQ,
)
from .knn import KNN
from .lvq import LVQ1, LVQ21, MedianLVQ
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
from .vis import *
__version__ = "0.1.8"
__version__ = "0.3.0"

View File

@@ -1,29 +1,18 @@
"""Abstract classes to be inherited by prototorch models."""
from typing import Final, final
import pytorch_lightning as pl
import torch
import torchmetrics
from prototorch.components import Components, LabeledComponents
from prototorch.functions.distances import euclidean_distance
from prototorch.modules import WTAC, LambdaLayer
class ProtoTorchMixin(object):
pass
from prototorch.core.competitions import WTAC
from prototorch.core.components import Components, LabeledComponents
from prototorch.core.distances import euclidean_distance
from prototorch.core.initializers import LabelsInitializer
from prototorch.core.pooling import stratified_min_pooling
from prototorch.nn.wrappers import LambdaLayer
class ProtoTorchBolt(pl.LightningModule):
"""All ProtoTorch models are ProtoTorch Bolts."""
def __repr__(self):
surep = super().__repr__()
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
wrapped = f"ProtoTorch Bolt(\n{indented})"
return wrapped
class PrototypeModel(ProtoTorchBolt):
def __init__(self, hparams, **kwargs):
super().__init__()
@@ -38,6 +27,33 @@ class PrototypeModel(ProtoTorchBolt):
self.lr_scheduler = kwargs.get("lr_scheduler", None)
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
if self.lr_scheduler is not None:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
sch = {
"scheduler": scheduler,
"interval": "step",
} # called after each training step
return [optimizer], [sch]
else:
return optimizer
def reconfigure_optimizers(self):
self.trainer.accelerator.setup_optimizers(self.trainer)
def __repr__(self):
surep = super().__repr__()
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
wrapped = f"ProtoTorch Bolt(\n{indented})"
return wrapped
class PrototypeModel(ProtoTorchBolt):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
distance_fn = kwargs.get("distance_fn", euclidean_distance)
self.distance_layer = LambdaLayer(distance_fn)
@@ -54,23 +70,6 @@ class PrototypeModel(ProtoTorchBolt):
"""Only an alias for the prototypes."""
return self.prototypes
def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
if self.lr_scheduler is not None:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
sch = {
"scheduler": scheduler,
"interval": "step",
} # called after each training step
return [optimizer], [sch]
else:
return optimizer
@final
def reconfigure_optimizers(self):
self.trainer.accelerator_backend.setup_optimizers(self.trainer)
def add_prototypes(self, *args, **kwargs):
self.proto_layer.add_components(*args, **kwargs)
self.reconfigure_optimizers()
@@ -85,17 +84,15 @@ class UnsupervisedPrototypeModel(PrototypeModel):
super().__init__(hparams, **kwargs)
# Layers
prototype_initializer = kwargs.get("prototype_initializer", None)
initialized_prototypes = kwargs.get("initialized_prototypes", None)
if prototype_initializer is not None or initialized_prototypes is not None:
prototypes_initializer = kwargs.get("prototypes_initializer", None)
if prototypes_initializer is not None:
self.proto_layer = Components(
self.hparams.num_prototypes,
initializer=prototype_initializer,
initialized_components=initialized_prototypes,
initializer=prototypes_initializer,
)
def compute_distances(self, x):
protos = self.proto_layer()
protos = self.proto_layer().type_as(x)
distances = self.distance_layer(x, protos)
return distances
@@ -109,23 +106,24 @@ class SupervisedPrototypeModel(PrototypeModel):
super().__init__(hparams, **kwargs)
# Layers
prototype_initializer = kwargs.get("prototype_initializer", None)
initialized_prototypes = kwargs.get("initialized_prototypes", None)
if prototype_initializer is not None or initialized_prototypes is not None:
prototypes_initializer = kwargs.get("prototypes_initializer", None)
labels_initializer = kwargs.get("labels_initializer",
LabelsInitializer())
if prototypes_initializer is not None:
self.proto_layer = LabeledComponents(
distribution=self.hparams.distribution,
initializer=prototype_initializer,
initialized_components=initialized_prototypes,
components_initializer=prototypes_initializer,
labels_initializer=labels_initializer,
)
self.competition_layer = WTAC()
@property
def prototype_labels(self):
return self.proto_layer.component_labels.detach().cpu()
return self.proto_layer.labels.detach().cpu()
@property
def num_classes(self):
return len(self.proto_layer.distribution)
return self.proto_layer.num_classes
def compute_distances(self, x):
protos, _ = self.proto_layer()
@@ -134,15 +132,14 @@ class SupervisedPrototypeModel(PrototypeModel):
def forward(self, x):
distances = self.compute_distances(x)
y_pred = self.predict_from_distances(distances)
# TODO
y_pred = torch.eye(self.num_classes, device=self.device)[
y_pred.long()] # depends on labels {0,...,num_classes}
_, plabels = self.proto_layer()
winning = stratified_min_pooling(distances, plabels)
y_pred = torch.nn.functional.softmin(winning)
return y_pred
def predict_from_distances(self, distances):
with torch.no_grad():
plabels = self.proto_layer.component_labels
_, plabels = self.proto_layer()
y_pred = self.competition_layer(distances, plabels)
return y_pred
@@ -164,27 +161,10 @@ class SupervisedPrototypeModel(PrototypeModel):
prog_bar=True,
logger=True)
def test_step(self, batch, batch_idx):
x, targets = batch
class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization: Final = False
preds = self.predict(x)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
@final
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
from torchvision.utils import make_grid
grid = make_grid(self.components, nrow=num_columns)
if return_channels_last:
grid = grid.permute((1, 2, 0))
return grid.cpu()
self.log("test_acc", accuracy)

View File

@@ -4,7 +4,8 @@ import logging
import pytorch_lightning as pl
import torch
from prototorch.components import Components
from prototorch.core.components import Components
from prototorch.core.initializers import LiteralCompInitializer
from .extras import ConnectionTopology
@@ -16,7 +17,7 @@ class PruneLoserPrototypes(pl.Callback):
prune_quota_per_epoch=-1,
frequency=1,
replace=False,
initializer=None,
prototypes_initializer=None,
verbose=False):
self.threshold = threshold # minimum win ratio
self.idle_epochs = idle_epochs # epochs to wait before pruning
@@ -24,7 +25,7 @@ class PruneLoserPrototypes(pl.Callback):
self.frequency = frequency
self.replace = replace
self.verbose = verbose
self.initializer = initializer
self.prototypes_initializer = prototypes_initializer
def on_epoch_end(self, trainer, pl_module):
if (trainer.current_epoch + 1) < self.idle_epochs:
@@ -54,9 +55,10 @@ class PruneLoserPrototypes(pl.Callback):
distribution = dict(zip(labels.tolist(), counts.tolist()))
if self.verbose:
print(f"Re-adding pruned prototypes...")
print(f"{distribution=}")
pl_module.add_prototypes(distribution=distribution,
initializer=self.initializer)
print(f"distribution={distribution}")
pl_module.add_prototypes(
distribution=distribution,
components_initializer=self.prototypes_initializer)
new_num_protos = pl_module.num_prototypes
if self.verbose:
print(f"`num_prototypes` changed from {cur_num_protos} "
@@ -116,7 +118,8 @@ class GNGCallback(pl.Callback):
# Add component
pl_module.proto_layer.add_components(
initialized_components=new_component.unsqueeze(0))
None,
initializer=LiteralCompInitializer(new_component.unsqueeze(0)))
# Adjust Topology
topology.add_prototype()
@@ -131,4 +134,4 @@ class GNGCallback(pl.Callback):
pl_module.errors[
worst_neighbor] = errors[worst_neighbor] * self.reduction
trainer.accelerator_backend.setup_optimizers(trainer)
trainer.accelerator.setup_optimizers(trainer)

View File

@@ -1,49 +1,54 @@
import torch
import torchmetrics
from prototorch.core.competitions import CBCC
from prototorch.core.components import ReasoningComponents
from prototorch.core.initializers import RandomReasoningsInitializer
from prototorch.core.losses import MarginLoss
from prototorch.core.similarities import euclidean_similarity
from prototorch.nn.wrappers import LambdaLayer
from .abstract import ImagePrototypesMixin
from .extras import (CosineSimilarity, MarginLoss, ReasoningLayer,
euclidean_similarity, rescaled_cosine_similarity,
shift_activation)
from .glvq import SiameseGLVQ
from .mixin import ImagePrototypesMixin
class CBC(SiameseGLVQ):
"""Classification-By-Components."""
def __init__(self, hparams, margin=0.1, **kwargs):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.margin = margin
self.similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
num_components = self.components.shape[0]
self.reasoning_layer = ReasoningLayer(num_components=num_components,
num_classes=self.num_classes)
self.component_layer = self.proto_layer
@property
def components(self):
return self.prototypes
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
components_initializer = kwargs.get("components_initializer", None)
reasonings_initializer = kwargs.get("reasonings_initializer",
RandomReasoningsInitializer())
self.components_layer = ReasoningComponents(
self.hparams.distribution,
components_initializer=components_initializer,
reasonings_initializer=reasonings_initializer,
)
self.similarity_layer = LambdaLayer(similarity_fn)
self.competition_layer = CBCC()
@property
def reasonings(self):
return self.reasoning_layer.reasonings.cpu()
# Namespace hook
self.proto_layer = self.components_layer
self.loss = MarginLoss(self.hparams.margin)
def forward(self, x):
components, _ = self.component_layer()
components, reasonings = self.components_layer()
latent_x = self.backbone(x)
self.backbone.requires_grad_(self.both_path_gradients)
latent_components = self.backbone(components)
self.backbone.requires_grad_(True)
detections = self.similarity_fn(latent_x, latent_components)
probs = self.reasoning_layer(detections)
detections = self.similarity_layer(latent_x, latent_components)
probs = self.competition_layer(detections, reasonings)
return probs
def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
# x = x.view(x.size(0), -1)
y_pred = self(x)
num_classes = self.reasoning_layer.num_classes
num_classes = self.num_classes
y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
loss = MarginLoss(self.margin)(y_pred, y_true).mean(dim=0)
loss = self.loss(y_pred, y_true).mean()
return y_pred, loss
def training_step(self, batch, batch_idx, optimizer_idx=None):
@@ -70,7 +75,3 @@ class ImageCBC(ImagePrototypesMixin, CBC):
"""CBC model that constrains the components to the range [0, 1] by
clamping after updates.
"""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
# Namespace hook
self.proto_layer = self.component_layer

View File

View File

@@ -0,0 +1,86 @@
from dataclasses import dataclass
from typing import Callable
import torch
from prototorch.core.competitions import WTAC
from prototorch.core.components import LabeledComponents
from prototorch.core.distances import euclidean_distance
from prototorch.core.initializers import AbstractComponentsInitializer, LabelsInitializer
from prototorch.core.losses import GLVQLoss
from prototorch.models.clcc.clcc_scheme import CLCCScheme
from prototorch.nn.wrappers import LambdaLayer
@dataclass
class GLVQhparams:
distribution: dict
component_initializer: AbstractComponentsInitializer
distance_fn: Callable = euclidean_distance
lr: float = 0.01
margin: float = 0.0
# TODO: make nicer
transfer_fn: str = "identity"
transfer_beta: float = 10.0
optimizer: torch.optim.Optimizer = torch.optim.Adam
class GLVQ(CLCCScheme):
def __init__(self, hparams: GLVQhparams) -> None:
super().__init__(hparams)
self.lr = hparams.lr
self.optimizer = hparams.optimizer
# Initializers
def init_components(self, hparams):
# initialize Component Layer
self.components_layer = LabeledComponents(
distribution=hparams.distribution,
components_initializer=hparams.component_initializer,
labels_initializer=LabelsInitializer(),
)
def init_comparison(self, hparams):
# initialize Distance Layer
self.comparison_layer = LambdaLayer(hparams.distance_fn)
def init_inference(self, hparams):
self.competition_layer = WTAC()
def init_loss(self, hparams):
self.loss_layer = GLVQLoss(
margin=hparams.margin,
transfer_fn=hparams.transfer_fn,
beta=hparams.transfer_beta,
)
# Steps
def comparison(self, batch, components):
comp_tensor, _ = components
batch_tensor, _ = batch
comp_tensor = comp_tensor.unsqueeze(1)
distances = self.comparison_layer(batch_tensor, comp_tensor)
return distances
def inference(self, comparisonmeasures, components):
comp_labels = components[1]
return self.competition_layer(comparisonmeasures, comp_labels)
def loss(self, comparisonmeasures, batch, components):
target = batch[1]
comp_labels = components[1]
return self.loss_layer(comparisonmeasures, target, comp_labels)
def configure_optimizers(self):
return self.optimizer(self.parameters(), lr=self.lr)
# Properties
@property
def prototypes(self):
return self.components_layer.components.detach().cpu()
@property
def prototype_labels(self):
return self.components_layer.labels.detach().cpu()

View File

@@ -0,0 +1,192 @@
"""
CLCC Scheme
CLCC is a LVQ scheme containing 4 steps
- Components
- Latent Space
- Comparison
- Competition
"""
from typing import Dict, Set, Type
import pytorch_lightning as pl
import torch
import torchmetrics
class CLCCScheme(pl.LightningModule):
registered_metrics: Dict[Type[torchmetrics.Metric],
torchmetrics.Metric] = {}
registered_metric_names: Dict[Type[torchmetrics.Metric], Set[str]] = {}
def __init__(self, hparams) -> None:
super().__init__()
# Common Steps
self.init_components(hparams)
self.init_latent(hparams)
self.init_comparison(hparams)
self.init_competition(hparams)
# Train Steps
self.init_loss(hparams)
# Inference Steps
self.init_inference(hparams)
# Initialize Model Metrics
self.init_model_metrics()
# internal API, called by models and callbacks
def register_torchmetric(self, name: str, metric: torchmetrics.Metric):
if metric not in self.registered_metrics:
self.registered_metrics[metric] = metric()
self.registered_metric_names[metric] = {name}
else:
self.registered_metric_names[metric].add(name)
# external API
def get_competion(self, batch, components):
latent_batch, latent_components = self.latent(batch, components)
# TODO: => Latent Hook
comparison_tensor = self.comparison(latent_batch, latent_components)
# TODO: => Comparison Hook
return comparison_tensor
def forward(self, batch):
if isinstance(batch, torch.Tensor):
batch = (batch, None)
# TODO: manage different datatypes?
components = self.components_layer()
# TODO: => Component Hook
comparison_tensor = self.get_competion(batch, components)
# TODO: => Competition Hook
return self.inference(comparison_tensor, components)
def predict(self, batch):
"""
Alias for forward
"""
return self.forward(batch)
def loss_forward(self, batch):
# TODO: manage different datatypes?
components = self.components_layer()
# TODO: => Component Hook
comparison_tensor = self.get_competion(batch, components)
# TODO: => Competition Hook
return self.loss(comparison_tensor, batch, components)
# Empty Initialization
# TODO: Type hints
# TODO: Docs
def init_components(self, hparams):
...
def init_latent(self, hparams):
...
def init_comparison(self, hparams):
...
def init_competition(self, hparams):
...
def init_loss(self, hparams):
...
def init_inference(self, hparams):
...
def init_model_metrics(self):
self.register_torchmetric('train_accuracy', torchmetrics.Accuracy)
# Empty Steps
# TODO: Type hints
def components(self):
"""
This step has no input.
It returns the components.
"""
raise NotImplementedError(
"The components step has no reasonable default.")
def latent(self, batch, components):
"""
The latent step receives the data batch and the components.
It can transform both by an arbitrary function.
It returns the transformed batch and components, each of the same length as the original input.
"""
return batch, components
def comparison(self, batch, components):
"""
Takes a batch of size N and the componentsset of size M.
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
"""
raise NotImplementedError(
"The comparison step has no reasonable default.")
def competition(self, comparisonmeasures, components):
"""
Takes the tensor of comparison measures.
Assigns a competition vector to each class.
"""
raise NotImplementedError(
"The competition step has no reasonable default.")
def loss(self, comparisonmeasures, batch, components):
"""
Takes the tensor of competition measures.
Calculates a single loss value
"""
raise NotImplementedError("The loss step has no reasonable default.")
def inference(self, comparisonmeasures, components):
"""
Takes the tensor of competition measures.
Returns the inferred vector.
"""
raise NotImplementedError(
"The inference step has no reasonable default.")
def update_metrics_step(self, batch):
x, y = batch
preds = self(x)
for metric in self.registered_metrics:
instance = self.registered_metrics[metric].to(self.device)
value = instance(y, preds)
for name in self.registered_metric_names[metric]:
self.log(name, value)
def update_metrics_epoch(self):
for metric in self.registered_metrics:
instance = self.registered_metrics[metric].to(self.device)
value = instance.compute()
for name in self.registered_metric_names[metric]:
self.log(name, value)
# Lightning Hooks
def training_step(self, batch, batch_idx, optimizer_idx=None):
self.update_metrics_step(batch)
return self.loss_forward(batch)
def train_epoch_end(self, outs) -> None:
self.update_metrics_epoch()
def validation_step(self, batch, batch_idx):
return self.loss_forward(batch)
def test_step(self, batch, batch_idx):
return self.loss_forward(batch)

View File

@@ -0,0 +1,76 @@
from typing import Optional
import matplotlib.pyplot as plt
import prototorch as pt
import pytorch_lightning as pl
import torch
import torchmetrics
from prototorch.core.initializers import SMCI, RandomNormalCompInitializer
from prototorch.models.clcc.clcc_glvq import GLVQ, GLVQhparams
from prototorch.models.clcc.clcc_scheme import CLCCScheme
from prototorch.models.vis import Visualize2DVoronoiCallback
# NEW STUFF
# ##############################################################################
# TODO: Metrics
class MetricsTestCallback(pl.Callback):
metric_name = "test_cb_acc"
def setup(self,
trainer: pl.Trainer,
pl_module: CLCCScheme,
stage: Optional[str] = None) -> None:
pl_module.register_torchmetric(self.metric_name, torchmetrics.Accuracy)
def on_epoch_end(self, trainer: pl.Trainer,
pl_module: pl.LightningModule) -> None:
metric = trainer.logged_metrics[self.metric_name]
if metric > 0.95:
trainer.should_stop = True
# TODO: Pruning
# ##############################################################################
if __name__ == "__main__":
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=64,
num_workers=8)
components_initializer = SMCI(train_ds)
hparams = GLVQhparams(
distribution=dict(
num_classes=3,
per_class=2,
),
component_initializer=components_initializer,
)
model = GLVQ(hparams)
print(model)
# Callbacks
vis = Visualize2DVoronoiCallback(
data=train_ds,
resolution=500,
)
metrics = MetricsTestCallback()
# Train
trainer = pl.Trainer(
callbacks=[
#vis,
metrics,
],
gpus=1,
max_epochs=100,
weights_summary=None,
log_every_n_steps=1,
)
trainer.fit(model, train_loader)

View File

@@ -1,124 +0,0 @@
"""Prototorch Data Modules
This allows to store the used dataset inside a Lightning Module.
Mainly used for PytorchLightningCLI configurations.
"""
from typing import Any, Optional, Type
import pytorch_lightning as pl
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision import transforms
from torchvision.datasets import MNIST
import prototorch as pt
# MNIST
class MNISTDataModule(pl.LightningDataModule):
def __init__(self, batch_size=32):
super().__init__()
self.batch_size = batch_size
# Download mnist dataset as side-effect, only called on the first cpu
def prepare_data(self):
MNIST("~/datasets", train=True, download=True)
MNIST("~/datasets", train=False, download=True)
# called for every GPU/machine (assigning state is OK)
def setup(self, stage=None):
# Transforms
transform = transforms.Compose([
transforms.ToTensor(),
])
# Split dataset
if stage in (None, "fit"):
mnist_train = MNIST("~/datasets", train=True, transform=transform)
self.mnist_train, self.mnist_val = random_split(
mnist_train,
[55000, 5000],
)
if stage == (None, "test"):
self.mnist_test = MNIST(
"~/datasets",
train=False,
transform=transform,
)
# Dataloaders
def train_dataloader(self):
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
return mnist_train
def val_dataloader(self):
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
return mnist_val
def test_dataloader(self):
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
return mnist_test
# def train_on_mnist(batch_size=256) -> type:
# class DataClass(pl.LightningModule):
# datamodule = MNISTDataModule(batch_size=batch_size)
# def __init__(self, *args, **kwargs):
# prototype_initializer = kwargs.pop(
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
# super().__init__(*args,
# prototype_initializer=prototype_initializer,
# **kwargs)
# dc: Type[DataClass] = DataClass
# return dc
# ABSTRACT
class GeneralDataModule(pl.LightningDataModule):
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
super().__init__()
self.train_dataset = dataset
self.batch_size = batch_size
def train_dataloader(self) -> DataLoader:
return DataLoader(self.train_dataset, batch_size=self.batch_size)
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
# class DataClass(pl.LightningModule):
# datamodule = GeneralDataModule(dataset, batch_size)
# datashape = dataset[0][0].shape
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
# def __init__(self, *args: Any, **kwargs: Any) -> None:
# prototype_initializer = kwargs.pop(
# "prototype_initializer",
# pt.components.Zeros(self.datashape),
# )
# super().__init__(*args,
# prototype_initializer=prototype_initializer,
# **kwargs)
# return DataClass
# if __name__ == "__main__":
# from prototorch.models import GLVQ
# demo_dataset = pt.datasets.Iris()
# TrainingClass: Type = train_on_dataset(demo_dataset)
# class DemoGLVQ(TrainingClass, GLVQ):
# """Model Definition."""
# # Hyperparameters
# hparams = dict(
# distribution={
# "num_classes": 3,
# "prototypes_per_class": 4
# },
# lr=0.01,
# )
# initialized = DemoGLVQ(hparams)
# print(initialized)

View File

@@ -5,23 +5,31 @@ Modules not yet available in prototorch go here temporarily.
"""
import torch
from prototorch.functions.distances import euclidean_distance
from prototorch.functions.similarities import cosine_similarity
from prototorch.core.similarities import gaussian
def rescaled_cosine_similarity(x, y):
"""Cosine Similarity rescaled to [0, 1]."""
similarities = cosine_similarity(x, y)
return (similarities + 1.0) / 2.0
def rank_scaled_gaussian(distances, lambd):
order = torch.argsort(distances, dim=1)
ranks = torch.argsort(order, dim=1)
return torch.exp(-torch.exp(-ranks / lambd) * distances)
def shift_activation(x):
return (x + 1.0) / 2.0
class GaussianPrior(torch.nn.Module):
def __init__(self, variance):
super().__init__()
self.variance = variance
def forward(self, distances):
return gaussian(distances, self.variance)
def euclidean_similarity(x, y, variance=1.0):
d = euclidean_distance(x, y)
return torch.exp(-(d * d) / (2 * variance))
class RankScaledGaussianPrior(torch.nn.Module):
def __init__(self, lambd):
super().__init__()
self.lambd = lambd
def forward(self, distances):
return rank_scaled_gaussian(distances, self.lambd)
class ConnectionTopology(torch.nn.Module):
@@ -79,64 +87,3 @@ class ConnectionTopology(torch.nn.Module):
def extra_repr(self):
return f"(agelimit): ({self.agelimit})"
class CosineSimilarity(torch.nn.Module):
def __init__(self, activation=shift_activation):
super().__init__()
self.activation = activation
def forward(self, x, y):
epsilon = torch.finfo(x.dtype).eps
normed_x = (x / x.pow(2).sum(dim=tuple(range(
1, x.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
start_dim=1)
normed_y = (y / y.pow(2).sum(dim=tuple(range(
1, y.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
start_dim=1)
# normed_x = (x / torch.linalg.norm(x, dim=1))
diss = torch.inner(normed_x, normed_y)
return self.activation(diss)
class MarginLoss(torch.nn.modules.loss._Loss):
def __init__(self,
margin=0.3,
size_average=None,
reduce=None,
reduction="mean"):
super().__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input_, target):
dp = torch.sum(target * input_, dim=-1)
dm = torch.max(input_ - target, dim=-1).values
return torch.nn.functional.relu(dm - dp + self.margin)
class ReasoningLayer(torch.nn.Module):
def __init__(self, num_components, num_classes, num_replicas=1):
super().__init__()
self.num_replicas = num_replicas
self.num_classes = num_classes
probabilities_init = torch.zeros(2, 1, num_components,
self.num_classes)
probabilities_init.uniform_(0.4, 0.6)
# TODO Use `self.register_parameter("param", Paramater(param))` instead
self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
@property
def reasonings(self):
pk = self.reasoning_probabilities[0]
nk = (1 - pk) * self.reasoning_probabilities[1]
ik = 1 - pk - nk
img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
return img.unsqueeze(1)
def forward(self, detections):
pk = self.reasoning_probabilities[0].clamp(0, 1)
nk = (1 - pk) * self.reasoning_probabilities[1].clamp(0, 1)
numerator = (detections @ (pk - nk)) + nk.sum(1)
probs = numerator / (pk + nk).sum(1)
probs = probs.squeeze(0)
return probs

View File

@@ -1,17 +1,16 @@
"""Models based on the GLVQ framework."""
import torch
from prototorch.functions.activations import get_activation
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import (lomega_distance, omega_distance,
squared_euclidean_distance)
from prototorch.functions.helper import get_flat
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
from prototorch.components import LinearMapping
from prototorch.modules import LambdaLayer, LossLayer
from prototorch.core.competitions import wtac
from prototorch.core.distances import lomega_distance, omega_distance, squared_euclidean_distance
from prototorch.core.initializers import EyeTransformInitializer
from prototorch.core.losses import GLVQLoss, lvq1_loss, lvq21_loss
from prototorch.core.transforms import LinearTransform
from prototorch.nn.wrappers import LambdaLayer, LossLayer
from torch.nn.parameter import Parameter
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
from .abstract import SupervisedPrototypeModel
from .mixin import ImagePrototypesMixin
class GLVQ(SupervisedPrototypeModel):
@@ -20,18 +19,16 @@ class GLVQ(SupervisedPrototypeModel):
super().__init__(hparams, **kwargs)
# Default hparams
self.hparams.setdefault("margin", 0.0)
self.hparams.setdefault("transfer_fn", "identity")
self.hparams.setdefault("transfer_beta", 10.0)
# Layers
transfer_fn = get_activation(self.hparams.transfer_fn)
self.transfer_layer = LambdaLayer(transfer_fn)
# Loss
self.loss = LossLayer(glvq_loss)
# Prototype metrics
self.initialize_prototype_win_ratios()
self.loss = GLVQLoss(
margin=self.hparams.margin,
transfer_fn=self.hparams.transfer_fn,
beta=self.hparams.transfer_beta,
)
def initialize_prototype_win_ratios(self):
self.register_buffer(
@@ -59,10 +56,8 @@ class GLVQ(SupervisedPrototypeModel):
def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self.compute_distances(x)
plabels = self.proto_layer.component_labels
mu = self.loss(out, y, prototype_labels=plabels)
batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
loss = batch_loss.sum(dim=0)
_, plabels = self.proto_layer()
loss = self.loss(out, y, plabels)
return out, loss
def training_step(self, batch, batch_idx, optimizer_idx=None):
@@ -118,7 +113,8 @@ class SiameseGLVQ(GLVQ):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
# Only add a backbone optimizer if backbone has trainable parameters
if (bb_params := list(self.backbone.parameters())):
bb_params = list(self.backbone.parameters())
if (bb_params):
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
optimizers = [proto_opt, bb_opt]
else:
@@ -135,7 +131,7 @@ class SiameseGLVQ(GLVQ):
def compute_distances(self, x):
protos, _ = self.proto_layer()
x, protos = get_flat(x, protos)
x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
latent_x = self.backbone(x)
self.backbone.requires_grad_(self.both_path_gradients)
latent_protos = self.backbone(protos)
@@ -213,18 +209,22 @@ class SiameseGMLVQ(SiameseGLVQ):
super().__init__(hparams, **kwargs)
# Override the backbone
self.backbone = torch.nn.Linear(self.hparams.input_dim,
self.hparams.latent_dim,
bias=False)
omega_initializer = kwargs.get("omega_initializer",
EyeTransformInitializer())
self.backbone = LinearTransform(
self.hparams.input_dim,
self.hparams.output_dim,
initializer=omega_initializer,
)
@property
def omega_matrix(self):
return self.backbone.weight.detach().cpu()
return self.backbone.weights
@property
def lambda_matrix(self):
omega = self.backbone.weight # (latent_dim, input_dim)
lam = omega.T @ omega
omega = self.backbone.weight # (input_dim, latent_dim)
lam = omega @ omega.T
return lam.detach().cpu()
@@ -240,22 +240,24 @@ class GMLVQ(GLVQ):
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
# Additional parameters
omega_initializer = kwargs.get("omega_initializer", None)
initialized_omega = kwargs.get("initialized_omega", None)
if omega_initializer is not None or initialized_omega is not None:
self.omega_layer = LinearMapping(
mapping_shape=(self.hparams.input_dim, self.hparams.latent_dim),
initializer=omega_initializer,
initialized_linearmapping=initialized_omega,
)
self.register_parameter("_omega", Parameter(self.omega_layer.mapping))
self.backbone = LambdaLayer(lambda x: x @ self._omega, name = "omega matrix")
omega_initializer = kwargs.get("omega_initializer",
EyeTransformInitializer())
omega = omega_initializer.generate(self.hparams.input_dim,
self.hparams.latent_dim)
self.register_parameter("_omega", Parameter(omega))
self.backbone = LambdaLayer(lambda x: x @ self._omega,
name="omega matrix")
@property
def omega_matrix(self):
return self._omega.detach().cpu()
@property
def lambda_matrix(self):
omega = self._omega.detach() # (input_dim, latent_dim)
lam = omega @ omega.T
return lam.detach().cpu()
def compute_distances(self, x):
protos, _ = self.proto_layer()
distances = self.distance_layer(x, protos, self._omega)
@@ -264,24 +266,6 @@ class GMLVQ(GLVQ):
def extra_repr(self):
return f"(omega): (shape: {tuple(self._omega.shape)})"
def predict_latent(self, x, map_protos=True):
"""Predict `x` assuming it is already embedded in the latent space.
Only the prototypes are embedded in the latent space using the
backbone.
"""
self.eval()
with torch.no_grad():
protos, plabels = self.proto_layer()
if map_protos:
protos = self.backbone(protos)
d = squared_euclidean_distance(x, protos)
y_pred = wtac(d, plabels)
return y_pred
class LGMLVQ(GMLVQ):
"""Localized and Generalized Matrix Learning Vector Quantization."""

View File

@@ -2,8 +2,10 @@
import warnings
from prototorch.components import LabeledComponents
from prototorch.modules import KNNC
from prototorch.core.competitions import KNNC
from prototorch.core.components import LabeledComponents
from prototorch.core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
from prototorch.utils.utils import parse_data_arg
from .abstract import SupervisedPrototypeModel
@@ -19,9 +21,13 @@ class KNN(SupervisedPrototypeModel):
data = kwargs.get("data", None)
if data is None:
raise ValueError("KNN requires data, but was not provided!")
data, targets = parse_data_arg(data)
# Layers
self.proto_layer = LabeledComponents(initialized_components=data)
self.proto_layer = LabeledComponents(
distribution=[],
components_initializer=LiteralCompInitializer(data),
labels_initializer=LiteralLabelsInitializer(targets))
self.competition_layer = KNNC(k=self.hparams.k)
def training_step(self, train_batch, batch_idx, optimizer_idx=None):

View File

@@ -1,17 +1,17 @@
"""LVQ models that are optimized using non-gradient methods."""
from prototorch.functions.losses import _get_dp_dm
from prototorch.core.losses import _get_dp_dm
from prototorch.nn.activations import get_activation
from prototorch.nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin
from .glvq import GLVQ
from .mixin import NonGradientMixin
class LVQ1(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos = self.proto_layer.components
plabels = self.proto_layer.component_labels
protos, plables = self.proto_layer()
x, y = train_batch
dis = self.compute_distances(x)
# TODO Vectorized implementation
@@ -29,6 +29,8 @@ class LVQ1(NonGradientMixin, GLVQ):
self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False)
print(f"dis={dis}")
print(f"y={y}")
# Logging
self.log_acc(dis, y, tag="train_acc")
@@ -38,8 +40,7 @@ class LVQ1(NonGradientMixin, GLVQ):
class LVQ21(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 2.1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos = self.proto_layer.components
plabels = self.proto_layer.component_labels
protos, plabels = self.proto_layer()
x, y = train_batch
dis = self.compute_distances(x)
@@ -65,4 +66,60 @@ class LVQ21(NonGradientMixin, GLVQ):
class MedianLVQ(NonGradientMixin, GLVQ):
"""Median LVQ"""
"""Median LVQ
# TODO Avoid computing distances over and over
"""
def __init__(self, hparams, verbose=True, **kwargs):
self.verbose = verbose
super().__init__(hparams, **kwargs)
self.transfer_layer = LambdaLayer(
get_activation(self.hparams.transfer_fn))
def _f(self, x, y, protos, plabels):
d = self.distance_layer(x, protos)
dp, dm = _get_dp_dm(d, y, plabels)
mu = (dp - dm) / (dp + dm)
invmu = -1.0 * mu
f = self.transfer_layer(invmu, beta=self.hparams.transfer_beta) + 1.0
return f
def expectation(self, x, y, protos, plabels):
f = self._f(x, y, protos, plabels)
gamma = f / f.sum()
return gamma
def lower_bound(self, x, y, protos, plabels, gamma):
f = self._f(x, y, protos, plabels)
lower_bound = (gamma * f.log()).sum()
return lower_bound
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos, plabels = self.proto_layer()
x, y = train_batch
dis = self.compute_distances(x)
for i, _ in enumerate(protos):
# Expectation step
gamma = self.expectation(x, y, protos, plabels)
lower_bound = self.lower_bound(x, y, protos, plabels, gamma)
# Maximization step
_protos = protos + 0
for k, xk in enumerate(x):
_protos[i] = xk
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
if _lower_bound > lower_bound:
if self.verbose:
print(f"Updating prototype {i} to data {k}...")
self.proto_layer.load_state_dict({"_components": _protos},
strict=False)
break
# Logging
self.log_acc(dis, y, tag="train_acc")
return None

View File

@@ -0,0 +1,27 @@
class ProtoTorchMixin:
"""All mixins are ProtoTorchMixins."""
pass
class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
from torchvision.utils import make_grid
grid = make_grid(self.components, nrow=num_columns)
if return_channels_last:
grid = grid.permute((1, 2, 0))
return grid.cpu()

View File

@@ -1,13 +1,11 @@
"""Probabilistic GLVQ methods"""
import torch
from prototorch.functions.losses import nllr_loss, rslvq_loss
from prototorch.functions.pooling import (stratified_min_pooling,
stratified_sum_pooling)
from prototorch.functions.transforms import (GaussianPrior,
RankScaledGaussianPrior)
from prototorch.modules import LambdaLayer, LossLayer
from prototorch.core.losses import nllr_loss, rslvq_loss
from prototorch.core.pooling import stratified_min_pooling, stratified_sum_pooling
from prototorch.nn.wrappers import LambdaLayer, LossLayer
from .extras import GaussianPrior, RankScaledGaussianPrior
from .glvq import GLVQ, SiameseGMLVQ
@@ -22,11 +20,11 @@ class CELVQ(GLVQ):
def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self.compute_distances(x) # [None, num_protos]
plabels = self.proto_layer.component_labels
_, plabels = self.proto_layer()
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
probs = -1.0 * winning
batch_loss = self.loss(probs, y.long())
loss = batch_loss.sum(dim=0)
loss = batch_loss.sum()
return out, loss
@@ -56,9 +54,9 @@ class ProbabilisticLVQ(GLVQ):
def training_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self.forward(x)
plabels = self.proto_layer.component_labels
_, plabels = self.proto_layer()
batch_loss = self.loss(out, y, plabels)
loss = batch_loss.sum(dim=0)
loss = batch_loss.sum()
return loss
@@ -89,11 +87,10 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
self.hparams.lambd)
self.loss = torch.nn.KLDivLoss()
def training_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self.forward(x)
y_dist = torch.nn.functional.one_hot(
y.long(), num_classes=self.num_classes).float()
batch_loss = self.loss(out, y_dist)
loss = batch_loss.sum(dim=0)
return loss
# FIXME
# def training_step(self, batch, batch_idx, optimizer_idx=None):
# x, y = batch
# y_pred = self(x)
# batch_loss = self.loss(y_pred, y)
# loss = batch_loss.sum()
# return loss

View File

@@ -2,14 +2,15 @@
import numpy as np
import torch
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import squared_euclidean_distance
from prototorch.modules import LambdaLayer
from prototorch.modules.losses import NeuralGasEnergy
from prototorch.core.competitions import wtac
from prototorch.core.distances import squared_euclidean_distance
from prototorch.core.losses import NeuralGasEnergy
from prototorch.nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
from .abstract import UnsupervisedPrototypeModel
from .callbacks import GNGCallback
from .extras import ConnectionTopology
from .mixin import NonGradientMixin
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
@@ -53,7 +54,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
grid = self._grid.view(-1, 2)
gd = squared_euclidean_distance(wp, grid)
nh = torch.exp(-gd / self._sigma**2)
protos = self.proto_layer.components
protos = self.proto_layer()
diff = x.unsqueeze(dim=1) - protos
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
updated_protos = protos + delta.sum(dim=0)
@@ -132,7 +133,7 @@ class GrowingNeuralGas(NeuralGas):
mask[torch.arange(len(mask)), winner] = 1.0
dp = d * mask
self.errors += torch.sum(dp * dp, dim=0)
self.errors += torch.sum(dp * dp)
self.errors *= self.hparams.step_reduction
self.topology_layer(d)

View File

@@ -5,13 +5,18 @@ import pytorch_lightning as pl
import torch
import torchvision
from matplotlib import pyplot as plt
from prototorch.utils.utils import generate_mesh, mesh2d
from torch.utils.data import DataLoader, Dataset
COLOR_UNLABELED = 'w'
class Vis2DAbstract(pl.Callback):
def __init__(self,
data,
title="Prototype Visualization",
title=None,
x_label=None,
y_label=None,
cmap="viridis",
border=0.1,
resolution=100,
@@ -43,6 +48,8 @@ class Vis2DAbstract(pl.Callback):
self.y_train = y
self.title = title
self.x_label = x_label
self.y_label = y_label
self.fig = plt.figure(self.title)
self.cmap = cmap
self.border = border
@@ -55,41 +62,24 @@ class Vis2DAbstract(pl.Callback):
self.pause_time = pause_time
self.block = block
def precheck(self, trainer):
if self.show_last_only:
if trainer.current_epoch != trainer.max_epochs - 1:
def show_on_current_epoch(self, trainer):
if self.show_last_only and trainer.current_epoch != trainer.max_epochs - 1:
return False
return True
def setup_ax(self, xlabel=None, ylabel=None):
def setup_ax(self):
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
if xlabel:
ax.set_xlabel("Data dimension 1")
if ylabel:
ax.set_ylabel("Data dimension 2")
if self.x_label:
ax.set_xlabel(self.x_label)
if self.x_label:
ax.set_ylabel(self.y_label)
if self.axis_off:
ax.axis("off")
return ax
def get_mesh_input(self, x):
x_shift = self.border * np.ptp(x[:, 0])
y_shift = self.border * np.ptp(x[:, 1])
x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
xx, yy = np.meshgrid(np.linspace(x_min, x_max, self.resolution),
np.linspace(y_min, y_max, self.resolution))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
return mesh_input, xx, yy
def perform_pca_2D(self, data):
(_, eigVal, eigVec) = torch.pca_lowrank(data, q=2)
return data @ eigVec
def plot_data(self, ax, x, y, pca=False):
if pca:
x = self.perform_pca_2D(x)
def plot_data(self, ax, x, y):
ax.scatter(
x[:, 0],
x[:, 1],
@@ -100,9 +90,7 @@ class Vis2DAbstract(pl.Callback):
s=30,
)
def plot_protos(self, ax, protos, plabels, pca=False):
if pca:
protos = self.perform_pca_2D(protos)
def plot_protos(self, ax, protos, plabels):
ax.scatter(
protos[:, 0],
protos[:, 1],
@@ -133,25 +121,64 @@ class Vis2DAbstract(pl.Callback):
plt.close()
class VisGLVQ2D(Vis2DAbstract):
class Visualize2DVoronoiCallback(Vis2DAbstract):
def __init__(self, data, **kwargs):
super().__init__(data, **kwargs)
self.data_min = torch.min(self.x_train, axis=0).values
self.data_max = torch.max(self.x_train, axis=0).values
def current_span(self, proto_values):
proto_min = torch.min(proto_values, axis=0).values
proto_max = torch.max(proto_values, axis=0).values
overall_min = torch.minimum(proto_min, self.data_min)
overall_max = torch.maximum(proto_max, self.data_max)
return overall_min, overall_max
def get_voronoi_diagram(self, min, max, model):
mesh_input, (xx, yy) = generate_mesh(
min,
max,
border=self.border,
resolution=self.resolution,
device=model.device,
)
y_pred = model.predict(mesh_input)
return xx, yy, y_pred.reshape(xx.shape)
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
if not self.show_on_current_epoch(trainer):
return True
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train
ax = self.setup_ax(xlabel="Data dimension 1",
ylabel="Data dimension 2")
self.plot_data(ax, x_train, y_train)
self.plot_protos(ax, protos, plabels)
x = np.vstack((x_train, protos))
mesh_input, xx, yy = self.get_mesh_input(x)
_components = pl_module.proto_layer._components
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
y_pred = pl_module.predict(mesh_input)
y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
# Extract Prototypes
proto_values = pl_module.prototypes
if hasattr(pl_module, "prototype_labels"):
proto_labels = pl_module.prototype_labels
else:
proto_labels = COLOR_UNLABELED
# Calculate Voronoi Diagram
overall_min, overall_max = self.current_span(proto_values)
xx, yy, y_pred = self.get_voronoi_diagram(
overall_min,
overall_max,
pl_module,
)
ax = self.setup_ax()
ax.contourf(
xx.cpu(),
yy.cpu(),
y_pred.cpu(),
cmap=self.cmap,
alpha=0.35,
)
self.plot_data(ax, self.x_train, self.y_train)
self.plot_protos(ax, proto_values, proto_labels)
self.log_and_display(trainer, pl_module)
@@ -162,7 +189,7 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
self.map_protos = map_protos
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
if not self.show_on_current_epoch(trainer):
return True
protos = pl_module.prototypes
@@ -181,9 +208,9 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
if self.show_protos:
self.plot_protos(ax, protos, plabels)
x = np.vstack((x_train, protos))
mesh_input, xx, yy = self.get_mesh_input(x)
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
else:
mesh_input, xx, yy = self.get_mesh_input(x_train)
mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
_components = pl_module.proto_layer._components
mesh_input = torch.Tensor(mesh_input).type_as(_components)
y_pred = pl_module.predict_latent(mesh_input,
@@ -195,83 +222,48 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
class VisGMLVQ2D(Vis2DAbstract):
def __init__(self, *args, map_protos=True, **kwargs):
def __init__(self, *args, ev_proj=True, **kwargs):
super().__init__(*args, **kwargs)
self.map_protos = map_protos
self.ev_proj = ev_proj
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
if not self.show_on_current_epoch(trainer):
return True
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train
device = pl_module.device
omega = pl_module._omega.detach()
lam = omega @ omega.T
u, _, _ = torch.pca_lowrank(lam, q=2)
with torch.no_grad():
x_train = pl_module.backbone(torch.Tensor(x_train).to(device))
x_train = torch.Tensor(x_train).to(device)
x_train = x_train @ u
x_train = x_train.cpu().detach()
if self.map_protos:
if self.show_protos:
with torch.no_grad():
protos = pl_module.backbone(torch.Tensor(protos).to(device))
protos = torch.Tensor(protos).to(device)
protos = protos @ u
protos = protos.cpu().detach()
ax = self.setup_ax()
if x_train.shape[1] > 2:
self.plot_data(ax, x_train, y_train, pca=True)
else:
self.plot_data(ax, x_train, y_train, pca=False)
if self.show_protos:
if protos.shape[1] > 2:
self.plot_protos(ax, protos, plabels, pca=True)
else:
self.plot_protos(ax, protos, plabels, pca=False)
### something to work on: meshgrid with pca
# x = np.vstack((x_train, protos))
# mesh_input, xx, yy = self.get_mesh_input(x)
#else:
# mesh_input, xx, yy = self.get_mesh_input(x_train)
#_components = pl_module.proto_layer._components
#mesh_input = torch.Tensor(mesh_input).type_as(_components)
#y_pred = pl_module.predict_latent(mesh_input,
# map_protos=self.map_protos)
#y_pred = y_pred.cpu().reshape(xx.shape)
#ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
self.log_and_display(trainer, pl_module)
class VisCBC2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
x_train, y_train = self.x_train, self.y_train
protos = pl_module.components
ax = self.setup_ax(xlabel="Data dimension 1",
ylabel="Data dimension 2")
self.plot_data(ax, x_train, y_train)
self.plot_protos(ax, protos, "w")
x = np.vstack((x_train, protos))
mesh_input, xx, yy = self.get_mesh_input(x)
_components = pl_module.component_layer._components
y_pred = pl_module.predict(
torch.Tensor(mesh_input).type_as(_components))
y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
if self.show_protos:
self.plot_protos(ax, protos, plabels)
self.log_and_display(trainer, pl_module)
class VisNG2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
if not self.show_on_current_epoch(trainer):
return True
x_train, y_train = self.x_train, self.y_train
protos = pl_module.prototypes
cmat = pl_module.topology_layer.cmat.cpu().numpy()
ax = self.setup_ax(xlabel="Data dimension 1",
ylabel="Data dimension 2")
ax = self.setup_ax()
self.plot_data(ax, x_train, y_train)
self.plot_protos(ax, protos, "w")
@@ -311,8 +303,6 @@ class VisImgComp(Vis2DAbstract):
size=self.embedding_data,
replace=False)
data = self.x_train[ind]
# print(f"{data.shape=}")
# print(f"{self.y_train[ind].shape=}")
tb.add_embedding(data.view(len(ind), -1),
label_img=data,
global_step=None,
@@ -344,7 +334,7 @@ class VisImgComp(Vis2DAbstract):
)
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
if not self.show_on_current_epoch(trainer):
return True
if self.show:

8
setup.cfg Normal file
View File

@@ -0,0 +1,8 @@
[isort]
profile = hug
src_paths = isort, test
[yapf]
based_on_style = pep8
spaces_before_comment = 2
split_before_logical_operator = true

View File

@@ -18,11 +18,11 @@ PLUGIN_NAME = "models"
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
with open("README.md", "r") as fh:
with open("README.md") as fh:
long_description = fh.read()
INSTALL_REQUIRES = [
"prototorch>=0.5.0,<0.6.0",
"prototorch>=0.7.0",
"pytorch_lightning>=1.3.5",
"torchmetrics",
]
@@ -37,6 +37,7 @@ DOCS = [
"recommonmark",
"sphinx",
"nbsphinx",
"ipykernel",
"sphinx_rtd_theme",
"sphinxcontrib-katex",
"sphinxcontrib-bibtex",
@@ -53,7 +54,7 @@ ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
setup(
name=safe_name("prototorch_" + PLUGIN_NAME),
version="0.1.8",
version="0.3.0",
description="Pre-packaged prototype-based "
"machine learning models using ProtoTorch and PyTorch-Lightning.",
long_description=long_description,
@@ -63,7 +64,7 @@ setup(
url=PROJECT_URL,
download_url=DOWNLOAD_URL,
license="MIT",
python_requires=">=3.9",
python_requires=">=3.6",
install_requires=INSTALL_REQUIRES,
extras_require={
"dev": DEV,
@@ -80,6 +81,9 @@ setup(
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.6",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",

View File

@@ -1,17 +1,35 @@
#! /bin/bash
# Read Flags
gpu=0
while [ -n "$1" ]; do
case "$1" in
--gpu) gpu=1;;
-g) gpu=1;;
*) path=$1;;
esac
shift
done
python --version
echo "Using GPU: " $gpu
# Loop
failed=0
for example in $(find $1 -maxdepth 1 -name "*.py")
for example in $(find $path -maxdepth 1 -name "*.py")
do
echo -n "$x" $example '... '
export DISPLAY= && python $example --fast_dev_run 1 &> /dev/null
export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
if [[ $? -ne 0 ]]; then
echo "FAILED!!"
cat run_log.txt
failed=1
else
echo "SUCCESS!"
fi
rm run_log.txt
done
exit $failed