Compare commits
54 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
75a39f5b03 | ||
|
1a0e697b27 | ||
|
1a17193b35 | ||
|
aaa3c51e0a | ||
|
62c5974a85 | ||
|
1d26226a2f | ||
|
4232d0ed2a | ||
|
a9edf06507 | ||
|
d3bb430104 | ||
|
6ffd27d12a | ||
|
859e2cae69 | ||
|
d7ea89d47e | ||
|
fa928afe2c | ||
|
7d4a041df2 | ||
|
04c51c00c6 | ||
|
62185b38cf | ||
|
7b93cd4ad5 | ||
|
d7834e2cc0 | ||
|
0af8cf36f8 | ||
|
f8ad1d83eb | ||
|
23a3683860 | ||
|
4be9fb81eb | ||
|
9d38123114 | ||
|
0f9f24e36a | ||
|
09e3ef1d0e | ||
|
7b9b767113 | ||
|
f56ec44afe | ||
|
67a20124e8 | ||
|
72af03b991 | ||
|
71602bf38a | ||
|
a1d9657b91 | ||
|
4dc11a3737 | ||
|
2649e3ac31 | ||
|
2b2e4a5f37 | ||
|
72404f7c4e | ||
|
612ee8dc6a | ||
|
d42693a441 | ||
|
7eb496110f | ||
|
4ab0a5a414 | ||
|
29063dcec4 | ||
|
a37095409b | ||
|
1b420c1f6b | ||
|
7ec5528ade | ||
|
a44219ee47 | ||
|
24ebfdc667 | ||
|
1c658cdc1b | ||
|
1911d4b33e | ||
|
6197d7d5d6 | ||
|
d2856383e2 | ||
|
4eafe88dc4 | ||
|
3afced8662 | ||
|
68034d56f6 | ||
|
97ec15b76a | ||
|
69e5ff3243 |
@@ -1,10 +1,13 @@
|
||||
[bumpversion]
|
||||
current_version = 0.1.8
|
||||
current_version = 0.4.1
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
serialize = {major}.{minor}.{patch}
|
||||
message = build: bump version {current_version} → {new_version}
|
||||
|
||||
[bumpversion:file:setup.py]
|
||||
|
||||
[bumpversion:file:./prototorch/models/__init__.py]
|
||||
|
||||
[bumpversion:file:./docs/source/conf.py]
|
||||
|
15
.codacy.yml
15
.codacy.yml
@@ -1,15 +0,0 @@
|
||||
# To validate the contents of your configuration file
|
||||
# run the following command in the folder where the configuration file is located:
|
||||
# codacy-analysis-cli validate-configuration --directory `pwd`
|
||||
# To analyse, run:
|
||||
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
|
||||
---
|
||||
engines:
|
||||
pylintpython3:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
remark-lint:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
exclude_paths:
|
||||
- 'tests/**'
|
@@ -1,2 +0,0 @@
|
||||
comment:
|
||||
require_changes: yes
|
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**Steps to reproduce the behavior**
|
||||
1. ...
|
||||
2. Run script '...' or this snippet:
|
||||
```python
|
||||
import prototorch as pt
|
||||
|
||||
...
|
||||
```
|
||||
3. See errors
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Observed behavior**
|
||||
A clear and concise description of what actually happened.
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**System and version information**
|
||||
- OS: [e.g. Ubuntu 20.10]
|
||||
- ProtoTorch Version: [e.g. 0.4.0]
|
||||
- Python Version: [e.g. 3.9.5]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
25
.github/workflows/examples.yml
vendored
Normal file
25
.github/workflows/examples.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: examples
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'examples/**.py'
|
||||
jobs:
|
||||
cpu:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Run examples
|
||||
run: |
|
||||
./tests/test_examples.sh examples/
|
73
.github/workflows/pythonapp.yml
vendored
Normal file
73
.github/workflows/pythonapp.yml
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: tests
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
branches: [ master ]
|
||||
|
||||
jobs:
|
||||
style:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- uses: pre-commit/action@v2.0.3
|
||||
compatibility:
|
||||
needs: style
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.7", "3.8", "3.9"]
|
||||
os: [ubuntu-latest, windows-latest]
|
||||
exclude:
|
||||
- os: windows-latest
|
||||
python-version: "3.7"
|
||||
- os: windows-latest
|
||||
python-version: "3.8"
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest
|
||||
publish_pypi:
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
|
||||
needs: compatibility
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: "3.9"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
pip install wheel
|
||||
- name: Build package
|
||||
run: python setup.py sdist bdist_wheel
|
||||
- name: Publish a Python distribution to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
user: __token__
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
17
.gitignore
vendored
17
.gitignore
vendored
@@ -128,14 +128,19 @@ dmypy.json
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# Datasets
|
||||
datasets/
|
||||
|
||||
# PyTorch-Lightning
|
||||
lightning_logs/
|
||||
|
||||
.vscode/
|
||||
|
||||
# Vim
|
||||
*~
|
||||
*.swp
|
||||
*.swo
|
||||
|
||||
# Pytorch Models or Weights
|
||||
# If necessary make exceptions for single pretrained models
|
||||
*.pt
|
||||
|
||||
# Artifacts created by ProtoTorch Models
|
||||
datasets/
|
||||
lightning_logs/
|
||||
examples/_*.py
|
||||
examples/_*.ipynb
|
||||
|
@@ -1,54 +1,53 @@
|
||||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.1.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
|
||||
- repo: https://github.com/myint/autoflake
|
||||
rev: v1.4
|
||||
hooks:
|
||||
- id: autoflake
|
||||
- id: autoflake
|
||||
|
||||
- repo: http://github.com/PyCQA/isort
|
||||
rev: 5.8.0
|
||||
rev: 5.10.1
|
||||
hooks:
|
||||
- id: isort
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: 'v0.902'
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v0.931
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: 'v0.31.0' # Use the sha / tag you want to point at
|
||||
hooks:
|
||||
- id: yapf
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.9.0 # Use the ref you want to point at
|
||||
hooks:
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.9.0
|
||||
hooks:
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.31.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.19.4
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/jorisroovers/gitlint
|
||||
rev: "v0.15.1"
|
||||
hooks:
|
||||
- id: gitlint
|
||||
args: [--contrib=CT1, --ignore=B6, --msg-filename]
|
||||
- repo: https://github.com/si-cim/gitlint
|
||||
rev: v0.15.2-unofficial
|
||||
hooks:
|
||||
- id: gitlint
|
||||
args: [--contrib=CT1, --ignore=B6, --msg-filename]
|
||||
|
25
.travis.yml
25
.travis.yml
@@ -1,25 +0,0 @@
|
||||
dist: bionic
|
||||
sudo: false
|
||||
language: python
|
||||
python: 3.9
|
||||
cache:
|
||||
directories:
|
||||
- "$HOME/.cache/pip"
|
||||
- "./tests/artifacts"
|
||||
- "$HOME/datasets"
|
||||
install:
|
||||
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
|
||||
- pip install .[all] --progress-bar off
|
||||
script:
|
||||
- coverage run -m pytest
|
||||
- ./tests/test_examples.sh examples/
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
deploy:
|
||||
provider: pypi
|
||||
username: __token__
|
||||
password:
|
||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
37
README.md
37
README.md
@@ -1,6 +1,5 @@
|
||||
# ProtoTorch Models
|
||||
|
||||
[](https://travis-ci.com/github/si-cim/prototorch_models)
|
||||
[](https://github.com/si-cim/prototorch_models/releases)
|
||||
[](https://pypi.org/project/prototorch_models/)
|
||||
[](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)
|
||||
@@ -20,23 +19,6 @@ pip install prototorch_models
|
||||
of** [ProtoTorch](https://github.com/si-cim/prototorch). The plugin should then
|
||||
be available for use in your Python environment as `prototorch.models`.
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## Available models
|
||||
|
||||
### LVQ Family
|
||||
@@ -53,6 +35,7 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
- Soft Learning Vector Quantization (SLVQ)
|
||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||
- Probabilistic Learning Vector Quantization (PLVQ)
|
||||
- Median-LVQ
|
||||
|
||||
### Other
|
||||
|
||||
@@ -68,7 +51,6 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## Planned models
|
||||
|
||||
- Median-LVQ
|
||||
- Generalized Tangent Learning Vector Quantization (GTLVQ)
|
||||
- Self-Incremental Learning Vector Quantization (SILVQ)
|
||||
|
||||
@@ -103,6 +85,23 @@ To assist in the development process, you may also find it useful to install
|
||||
please avoid installing Tensorflow in this environment. It is known to cause
|
||||
problems with PyTorch-Lightning.**
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I update the plugin?
|
||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.4.4"
|
||||
release = "0.4.1"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
File diff suppressed because one or more lines are too long
@@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -24,14 +23,18 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[2, 2, 2],
|
||||
proto_lr=0.1,
|
||||
distribution=[1, 0, 3],
|
||||
margin=0.1,
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CBC(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
|
||||
components_initializer=pt.initializers.SSCI(train_ds, noise=0.01),
|
||||
reasonings_iniitializer=pt.initializers.
|
||||
PurePositiveReasoningsInitializer(),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
|
@@ -1,8 +0,0 @@
|
||||
# Examples using Lightning CLI
|
||||
|
||||
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
|
||||
|
||||
To use the example run
|
||||
```
|
||||
python gmlvq.py --config gmlvq.yaml
|
||||
```
|
@@ -1,20 +0,0 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import torch
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
|
||||
import prototorch as pt
|
||||
from prototorch.models import ImageGMLVQ
|
||||
from prototorch.models.abstract import PrototypeModel
|
||||
from prototorch.models.data import MNISTDataModule
|
||||
|
||||
|
||||
class ExperimentClass(ImageGMLVQ):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.zeros(28 * 28),
|
||||
**kwargs)
|
||||
|
||||
|
||||
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)
|
@@ -1,11 +0,0 @@
|
||||
model:
|
||||
hparams:
|
||||
input_dim: 784
|
||||
latent_dim: 784
|
||||
distribution:
|
||||
num_classes: 10
|
||||
prototypes_per_class: 2
|
||||
proto_lr: 0.01
|
||||
bb_lr: 0.01
|
||||
data:
|
||||
batch_size: 32
|
@@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -37,7 +36,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.CELVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Ones(2, scale=3),
|
||||
prototypes_initializer=pt.initializers.FVCI(2, 3.0),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
|
@@ -2,12 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -24,7 +23,7 @@ if __name__ == "__main__":
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 4
|
||||
"per_class": 4
|
||||
},
|
||||
lr=0.01,
|
||||
)
|
||||
@@ -33,7 +32,7 @@ if __name__ == "__main__":
|
||||
model = pt.models.GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
@@ -1,4 +1,4 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
"""GMLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
@@ -22,30 +22,29 @@ if __name__ == "__main__":
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=4,
|
||||
latent_dim=3,
|
||||
latent_dim=4,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 2
|
||||
"per_class": 2
|
||||
},
|
||||
proto_lr=0.0005,
|
||||
bb_lr=0.0005,
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
omega_initializer=pt.components.PCA(train_ds.data)
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
#model.example_input_array = torch.zeros(4, 2)
|
||||
model.example_input_array = torch.zeros(4, 4)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGMLVQ2D(data=train_ds, border=0.1)
|
||||
vis = pt.models.VisGMLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
@@ -2,13 +2,12 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -56,7 +55,7 @@ if __name__ == "__main__":
|
||||
model = pt.models.ImageGMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
@@ -95,7 +94,7 @@ if __name__ == "__main__":
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
# accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@@ -1,12 +1,11 @@
|
||||
"""GLVQ example using the spiral dataset."""
|
||||
"""GMLVQ example using the spiral dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -26,7 +25,6 @@ if __name__ == "__main__":
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
transfer_function="swish_beta",
|
||||
transfer_beta=10.0,
|
||||
# lr=0.1,
|
||||
proto_lr=0.1,
|
||||
bb_lr=0.1,
|
||||
input_dim=2,
|
||||
@@ -37,7 +35,7 @@ if __name__ == "__main__":
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
@@ -47,12 +45,12 @@ if __name__ == "__main__":
|
||||
block=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.02,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=2,
|
||||
frequency=5,
|
||||
replace=True,
|
||||
initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
@@ -68,7 +66,7 @@ if __name__ == "__main__":
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
# es,
|
||||
es,
|
||||
pruning,
|
||||
],
|
||||
terminate_on_nan=True,
|
@@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -30,7 +29,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.GrowingNeuralGas(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Zeros(2),
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
|
104
examples/gtlvq_mnist.py
Normal file
104
examples/gtlvq_mnist.py
Normal file
@@ -0,0 +1,104 @@
|
||||
"""GTLVQ example using the MNIST dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
test_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 10
|
||||
prototypes_per_class = 1
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
latent_dim=28,
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.ImageGTLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
#Use one batch of data for subspace initiator.
|
||||
omega_initializer=pt.initializers.PCALinearTransformInitializer(
|
||||
next(iter(train_loader))[0].reshape(256, 28 * 28)))
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisImgComp(
|
||||
data=train_ds,
|
||||
num_columns=10,
|
||||
show=False,
|
||||
tensorboard=True,
|
||||
random_data=100,
|
||||
add_embedding=True,
|
||||
embedding_data=200,
|
||||
flatten_data=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=1,
|
||||
prune_quota_per_epoch=10,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=15,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
# using GPUs here is strongly recommended!
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
# es,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
63
examples/gtlvq_moons.py
Normal file
63
examples/gtlvq_moons.py
Normal file
@@ -0,0 +1,63 @@
|
||||
"""Localized-GTLVQ example using the Moons dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=256,
|
||||
shuffle=True)
|
||||
|
||||
# Hyperparameters
|
||||
# Latent_dim should be lower than input dim.
|
||||
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GTLVQ(
|
||||
hparams, prototypes_initializer=pt.initializers.SMCI(train_ds))
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="max",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -2,11 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
import prototorch as pt
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
@@ -15,12 +15,20 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X = X[:, [0, 2]]
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X,
|
||||
y,
|
||||
test_size=0.5,
|
||||
random_state=42)
|
||||
|
||||
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
|
||||
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(k=5)
|
||||
@@ -36,7 +44,7 @@ if __name__ == "__main__":
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(
|
||||
data=(x_train, y_train),
|
||||
data=(X_train, y_train),
|
||||
resolution=200,
|
||||
block=True,
|
||||
)
|
||||
@@ -54,5 +62,8 @@ if __name__ == "__main__":
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Recall
|
||||
y_pred = model.predict(torch.tensor(x_train))
|
||||
y_pred = model.predict(torch.tensor(X_train))
|
||||
print(y_pred)
|
||||
|
||||
# Test
|
||||
trainer.test(model, dataloaders=test_loader)
|
||||
|
@@ -2,28 +2,15 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
def hex_to_rgb(hex_values):
|
||||
for v in hex_values:
|
||||
v = v.lstrip('#')
|
||||
lv = len(v)
|
||||
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
|
||||
yield c
|
||||
|
||||
|
||||
def rgb_to_hex(rgb_values):
|
||||
for v in rgb_values:
|
||||
c = "%02x%02x%02x" % tuple(v)
|
||||
yield c
|
||||
from prototorch.utils.colors import hex_to_rgb
|
||||
|
||||
|
||||
class Vis2DColorSOM(pl.Callback):
|
||||
|
||||
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
||||
super().__init__()
|
||||
self.title = title
|
||||
@@ -93,7 +80,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.KohonenSOM(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Random(3),
|
||||
prototypes_initializer=pt.initializers.RNCI(3),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
|
@@ -2,23 +2,22 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=256,
|
||||
@@ -32,8 +31,10 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.LGMLVQ(hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
model = pt.models.LGMLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
@@ -1,90 +0,0 @@
|
||||
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
def plot_matrix(matrix):
|
||||
title = "Lambda matrix"
|
||||
plt.figure(title)
|
||||
plt.title(title)
|
||||
plt.imshow(matrix, cmap="gray")
|
||||
plt.axis("off")
|
||||
plt.colorbar()
|
||||
plt.show(block=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
|
||||
test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=10)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 2,
|
||||
"prototypes_per_class": 1
|
||||
},
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
proto_lr=0.0001,
|
||||
bb_lr=0.0001,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGMLVQ(
|
||||
hparams,
|
||||
# optimizer=torch.optim.SGD,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
|
||||
es = pl.callbacks.EarlyStopping(monitor="val_loss",
|
||||
min_delta=0.001,
|
||||
patience=50,
|
||||
verbose=False,
|
||||
mode="min")
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis, es],
|
||||
weights_summary=None,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader, test_loader)
|
||||
|
||||
# Save the model
|
||||
torch.save(model, "liramlvq_tecator.pt")
|
||||
|
||||
# Load a saved model
|
||||
saved_model = torch.load("liramlvq_tecator.pt")
|
||||
|
||||
# Display the Lambda matrix
|
||||
plot_matrix(saved_model.lambda_matrix)
|
||||
|
||||
# Testing
|
||||
trainer.test(model, test_dataloaders=test_loader)
|
@@ -2,13 +2,13 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
@@ -41,7 +41,7 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 2],
|
||||
distribution=[3, 4, 5],
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
)
|
||||
@@ -52,7 +52,10 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.LVQMLN(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
|
||||
prototypes_initializer=pt.initializers.SSCI(
|
||||
train_ds,
|
||||
transform=backbone,
|
||||
),
|
||||
backbone=backbone,
|
||||
)
|
||||
|
||||
@@ -67,11 +70,21 @@ if __name__ == "__main__":
|
||||
resolution=500,
|
||||
axis_off=True,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=20,
|
||||
prune_quota_per_epoch=2,
|
||||
frequency=10,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
52
examples/median_lvq_iris.py
Normal file
52
examples/median_lvq_iris.py
Normal file
@@ -0,0 +1,52 @@
|
||||
"""Median-LVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
train_ds,
|
||||
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.MedianLVQ(
|
||||
hparams=dict(distribution=(3, 2), lr=0.01),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.01,
|
||||
patience=5,
|
||||
mode="max",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis, es],
|
||||
weights_summary="full",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -2,14 +2,13 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -38,7 +37,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.NeuralGas(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Zeros(2),
|
||||
prototypes_initializer=pt.core.ZCI(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
@@ -2,11 +2,9 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision.transforms import Lambda
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
@@ -28,19 +26,17 @@ if __name__ == "__main__":
|
||||
distribution=[2, 2, 3],
|
||||
proto_lr=0.05,
|
||||
lambd=0.1,
|
||||
variance=1.0,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.PLVQ(
|
||||
model = pt.models.RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
# prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.2),
|
||||
# prototype_initializer=pt.components.Zeros(2),
|
||||
# prototype_initializer=pt.components.Ones(2, scale=2.0),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
@@ -50,7 +46,7 @@ if __name__ == "__main__":
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds)
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
@@ -2,13 +2,13 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
@@ -52,7 +52,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGLVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
73
examples/siamese_gtlvq_iris.py
Normal file
73
examples/siamese_gtlvq_iris.py
Normal file
@@ -0,0 +1,73 @@
|
||||
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(distribution=[1, 2, 3],
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
input_dim=2,
|
||||
latent_dim=1)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone(latent_size=hparams["input_dim"])
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGTLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
103
examples/warm_starting.py
Normal file
103
examples/warm_starting.py
Normal file
@@ -0,0 +1,103 @@
|
||||
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare the data
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Initialize the gng
|
||||
gng = pt.models.GrowingNeuralGas(
|
||||
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer for GNG
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=100,
|
||||
callbacks=[es],
|
||||
weights_summary=None,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(gng, train_loader)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[],
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Warm-start prototypes
|
||||
knn = pt.models.KNN(dict(k=1), data=train_ds)
|
||||
prototypes = gng.prototypes
|
||||
plabels = knn.predict(prototypes)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.LCI(prototypes),
|
||||
labels_initializer=pt.initializers.LLI(plabels),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.02,
|
||||
idle_epochs=2,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=10,
|
||||
mode="min",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,15 +1,41 @@
|
||||
"""`models` plugin for the `prototorch` package."""
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
||||
from .cbc import CBC, ImageCBC
|
||||
from .glvq import (GLVQ, GLVQ1, GLVQ21, GMLVQ, GRLVQ, LGMLVQ, LVQMLN,
|
||||
ImageGLVQ, ImageGMLVQ, SiameseGLVQ, SiameseGMLVQ)
|
||||
from .glvq import (
|
||||
GLVQ,
|
||||
GLVQ1,
|
||||
GLVQ21,
|
||||
GMLVQ,
|
||||
GRLVQ,
|
||||
GTLVQ,
|
||||
LGMLVQ,
|
||||
LVQMLN,
|
||||
ImageGLVQ,
|
||||
ImageGMLVQ,
|
||||
ImageGTLVQ,
|
||||
SiameseGLVQ,
|
||||
SiameseGMLVQ,
|
||||
SiameseGTLVQ,
|
||||
)
|
||||
from .knn import KNN
|
||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
|
||||
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
|
||||
from .lvq import (
|
||||
LVQ1,
|
||||
LVQ21,
|
||||
MedianLVQ,
|
||||
)
|
||||
from .probabilistic import (
|
||||
CELVQ,
|
||||
PLVQ,
|
||||
RSLVQ,
|
||||
SLVQ,
|
||||
)
|
||||
from .unsupervised import (
|
||||
GrowingNeuralGas,
|
||||
HeskesSOM,
|
||||
KohonenSOM,
|
||||
NeuralGas,
|
||||
)
|
||||
from .vis import *
|
||||
|
||||
__version__ = "0.1.8"
|
||||
__version__ = "0.4.1"
|
||||
|
@@ -1,29 +1,20 @@
|
||||
"""Abstract classes to be inherited by prototorch models."""
|
||||
|
||||
from typing import Final, final
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.components import Components, LabeledComponents
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules import WTAC, LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchMixin(object):
|
||||
pass
|
||||
from ..core.competitions import WTAC
|
||||
from ..core.components import Components, LabeledComponents
|
||||
from ..core.distances import euclidean_distance
|
||||
from ..core.initializers import LabelsInitializer
|
||||
from ..core.pooling import stratified_min_pooling
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchBolt(pl.LightningModule):
|
||||
"""All ProtoTorch models are ProtoTorch Bolts."""
|
||||
def __repr__(self):
|
||||
surep = super().__repr__()
|
||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||
return wrapped
|
||||
|
||||
|
||||
class PrototypeModel(ProtoTorchBolt):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
@@ -38,6 +29,34 @@ class PrototypeModel(ProtoTorchBolt):
|
||||
self.lr_scheduler = kwargs.get("lr_scheduler", None)
|
||||
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
if self.lr_scheduler is not None:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
def reconfigure_optimizers(self):
|
||||
self.trainer.accelerator.setup_optimizers(self.trainer)
|
||||
|
||||
def __repr__(self):
|
||||
surep = super().__repr__()
|
||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||
return wrapped
|
||||
|
||||
|
||||
class PrototypeModel(ProtoTorchBolt):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||
self.distance_layer = LambdaLayer(distance_fn)
|
||||
|
||||
@@ -54,23 +73,6 @@ class PrototypeModel(ProtoTorchBolt):
|
||||
"""Only an alias for the prototypes."""
|
||||
return self.prototypes
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
if self.lr_scheduler is not None:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
@final
|
||||
def reconfigure_optimizers(self):
|
||||
self.trainer.accelerator_backend.setup_optimizers(self.trainer)
|
||||
|
||||
def add_prototypes(self, *args, **kwargs):
|
||||
self.proto_layer.add_components(*args, **kwargs)
|
||||
self.reconfigure_optimizers()
|
||||
@@ -81,21 +83,20 @@ class PrototypeModel(ProtoTorchBolt):
|
||||
|
||||
|
||||
class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
if prototypes_initializer is not None:
|
||||
self.proto_layer = Components(
|
||||
self.hparams.num_prototypes,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
initializer=prototypes_initializer,
|
||||
)
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos = self.proto_layer()
|
||||
protos = self.proto_layer().type_as(x)
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
@@ -105,27 +106,29 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
|
||||
class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
labels_initializer = kwargs.get("labels_initializer",
|
||||
LabelsInitializer())
|
||||
if prototypes_initializer is not None:
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
components_initializer=prototypes_initializer,
|
||||
labels_initializer=labels_initializer,
|
||||
)
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
return self.proto_layer.labels.detach().cpu()
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return len(self.proto_layer.distribution)
|
||||
return self.proto_layer.num_classes
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
@@ -134,15 +137,14 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
y_pred = self.predict_from_distances(distances)
|
||||
# TODO
|
||||
y_pred = torch.eye(self.num_classes, device=self.device)[
|
||||
y_pred.long()] # depends on labels {0,...,num_classes}
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = torch.nn.functional.softmin(winning, dim=1)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
plabels = self.proto_layer.component_labels
|
||||
_, plabels = self.proto_layer()
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
@@ -164,12 +166,26 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, targets = batch
|
||||
|
||||
preds = self.predict(x)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||
|
||||
self.log("test_acc", accuracy)
|
||||
|
||||
|
||||
class ProtoTorchMixin(object):
|
||||
"""All mixins are ProtoTorchMixins."""
|
||||
pass
|
||||
|
||||
|
||||
class NonGradientMixin(ProtoTorchMixin):
|
||||
"""Mixin for custom non-gradient optimization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization: Final = False
|
||||
self.automatic_optimization = False
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
raise NotImplementedError
|
||||
@@ -177,7 +193,7 @@ class NonGradientMixin(ProtoTorchMixin):
|
||||
|
||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||
"""Mixin for models with image prototypes."""
|
||||
@final
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
@@ -4,19 +4,21 @@ import logging
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
|
||||
from ..core.components import Components
|
||||
from ..core.initializers import LiteralCompInitializer
|
||||
from .extras import ConnectionTopology
|
||||
|
||||
|
||||
class PruneLoserPrototypes(pl.Callback):
|
||||
|
||||
def __init__(self,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=-1,
|
||||
frequency=1,
|
||||
replace=False,
|
||||
initializer=None,
|
||||
prototypes_initializer=None,
|
||||
verbose=False):
|
||||
self.threshold = threshold # minimum win ratio
|
||||
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
||||
@@ -24,7 +26,7 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
self.frequency = frequency
|
||||
self.replace = replace
|
||||
self.verbose = verbose
|
||||
self.initializer = initializer
|
||||
self.prototypes_initializer = prototypes_initializer
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
@@ -54,9 +56,10 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
||||
if self.verbose:
|
||||
print(f"Re-adding pruned prototypes...")
|
||||
print(f"{distribution=}")
|
||||
pl_module.add_prototypes(distribution=distribution,
|
||||
initializer=self.initializer)
|
||||
print(f"distribution={distribution}")
|
||||
pl_module.add_prototypes(
|
||||
distribution=distribution,
|
||||
components_initializer=self.prototypes_initializer)
|
||||
new_num_protos = pl_module.num_prototypes
|
||||
if self.verbose:
|
||||
print(f"`num_prototypes` changed from {cur_num_protos} "
|
||||
@@ -65,6 +68,7 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
|
||||
|
||||
class PrototypeConvergence(pl.Callback):
|
||||
|
||||
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
||||
self.min_delta = min_delta
|
||||
self.idle_epochs = idle_epochs # epochs to wait
|
||||
@@ -87,6 +91,7 @@ class GNGCallback(pl.Callback):
|
||||
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, reduction=0.1, freq=10):
|
||||
self.reduction = reduction
|
||||
self.freq = freq
|
||||
@@ -116,7 +121,8 @@ class GNGCallback(pl.Callback):
|
||||
|
||||
# Add component
|
||||
pl_module.proto_layer.add_components(
|
||||
initialized_components=new_component.unsqueeze(0))
|
||||
None,
|
||||
initializer=LiteralCompInitializer(new_component.unsqueeze(0)))
|
||||
|
||||
# Adjust Topology
|
||||
topology.add_prototype()
|
||||
@@ -131,4 +137,4 @@ class GNGCallback(pl.Callback):
|
||||
pl_module.errors[
|
||||
worst_neighbor] = errors[worst_neighbor] * self.reduction
|
||||
|
||||
trainer.accelerator_backend.setup_optimizers(trainer)
|
||||
trainer.accelerator.setup_optimizers(trainer)
|
||||
|
@@ -1,49 +1,55 @@
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
from ..core.competitions import CBCC
|
||||
from ..core.components import ReasoningComponents
|
||||
from ..core.initializers import RandomReasoningsInitializer
|
||||
from ..core.losses import MarginLoss
|
||||
from ..core.similarities import euclidean_similarity
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import ImagePrototypesMixin
|
||||
from .extras import (CosineSimilarity, MarginLoss, ReasoningLayer,
|
||||
euclidean_similarity, rescaled_cosine_similarity,
|
||||
shift_activation)
|
||||
from .glvq import SiameseGLVQ
|
||||
|
||||
|
||||
class CBC(SiameseGLVQ):
|
||||
"""Classification-By-Components."""
|
||||
def __init__(self, hparams, margin=0.1, **kwargs):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.margin = margin
|
||||
self.similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
num_components = self.components.shape[0]
|
||||
self.reasoning_layer = ReasoningLayer(num_components=num_components,
|
||||
num_classes=self.num_classes)
|
||||
self.component_layer = self.proto_layer
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
return self.prototypes
|
||||
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
components_initializer = kwargs.get("components_initializer", None)
|
||||
reasonings_initializer = kwargs.get("reasonings_initializer",
|
||||
RandomReasoningsInitializer())
|
||||
self.components_layer = ReasoningComponents(
|
||||
self.hparams.distribution,
|
||||
components_initializer=components_initializer,
|
||||
reasonings_initializer=reasonings_initializer,
|
||||
)
|
||||
self.similarity_layer = LambdaLayer(similarity_fn)
|
||||
self.competition_layer = CBCC()
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
return self.reasoning_layer.reasonings.cpu()
|
||||
# Namespace hook
|
||||
self.proto_layer = self.components_layer
|
||||
|
||||
self.loss = MarginLoss(self.hparams.margin)
|
||||
|
||||
def forward(self, x):
|
||||
components, _ = self.component_layer()
|
||||
components, reasonings = self.components_layer()
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_components = self.backbone(components)
|
||||
self.backbone.requires_grad_(True)
|
||||
detections = self.similarity_fn(latent_x, latent_components)
|
||||
probs = self.reasoning_layer(detections)
|
||||
detections = self.similarity_layer(latent_x, latent_components)
|
||||
probs = self.competition_layer(detections, reasonings)
|
||||
return probs
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
# x = x.view(x.size(0), -1)
|
||||
y_pred = self(x)
|
||||
num_classes = self.reasoning_layer.num_classes
|
||||
num_classes = self.num_classes
|
||||
y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
|
||||
loss = MarginLoss(self.margin)(y_pred, y_true).mean(dim=0)
|
||||
loss = self.loss(y_pred, y_true).mean()
|
||||
return y_pred, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
@@ -70,7 +76,3 @@ class ImageCBC(ImagePrototypesMixin, CBC):
|
||||
"""CBC model that constrains the components to the range [0, 1] by
|
||||
clamping after updates.
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
# Namespace hook
|
||||
self.proto_layer = self.component_layer
|
||||
|
@@ -1,124 +0,0 @@
|
||||
"""Prototorch Data Modules
|
||||
|
||||
This allows to store the used dataset inside a Lightning Module.
|
||||
Mainly used for PytorchLightningCLI configurations.
|
||||
"""
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import DataLoader, Dataset, random_split
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
# MNIST
|
||||
class MNISTDataModule(pl.LightningDataModule):
|
||||
def __init__(self, batch_size=32):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
# Download mnist dataset as side-effect, only called on the first cpu
|
||||
def prepare_data(self):
|
||||
MNIST("~/datasets", train=True, download=True)
|
||||
MNIST("~/datasets", train=False, download=True)
|
||||
|
||||
# called for every GPU/machine (assigning state is OK)
|
||||
def setup(self, stage=None):
|
||||
# Transforms
|
||||
transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
])
|
||||
# Split dataset
|
||||
if stage in (None, "fit"):
|
||||
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
||||
self.mnist_train, self.mnist_val = random_split(
|
||||
mnist_train,
|
||||
[55000, 5000],
|
||||
)
|
||||
if stage == (None, "test"):
|
||||
self.mnist_test = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
def train_dataloader(self):
|
||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
||||
return mnist_train
|
||||
|
||||
def val_dataloader(self):
|
||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
||||
return mnist_val
|
||||
|
||||
def test_dataloader(self):
|
||||
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
||||
return mnist_test
|
||||
|
||||
|
||||
# def train_on_mnist(batch_size=256) -> type:
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = MNISTDataModule(batch_size=batch_size)
|
||||
|
||||
# def __init__(self, *args, **kwargs):
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# dc: Type[DataClass] = DataClass
|
||||
# return dc
|
||||
|
||||
|
||||
# ABSTRACT
|
||||
class GeneralDataModule(pl.LightningDataModule):
|
||||
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
|
||||
super().__init__()
|
||||
self.train_dataset = dataset
|
||||
self.batch_size = batch_size
|
||||
|
||||
def train_dataloader(self) -> DataLoader:
|
||||
return DataLoader(self.train_dataset, batch_size=self.batch_size)
|
||||
|
||||
|
||||
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = GeneralDataModule(dataset, batch_size)
|
||||
# datashape = dataset[0][0].shape
|
||||
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
|
||||
|
||||
# def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer",
|
||||
# pt.components.Zeros(self.datashape),
|
||||
# )
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# return DataClass
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# from prototorch.models import GLVQ
|
||||
|
||||
# demo_dataset = pt.datasets.Iris()
|
||||
|
||||
# TrainingClass: Type = train_on_dataset(demo_dataset)
|
||||
|
||||
# class DemoGLVQ(TrainingClass, GLVQ):
|
||||
# """Model Definition."""
|
||||
|
||||
# # Hyperparameters
|
||||
# hparams = dict(
|
||||
# distribution={
|
||||
# "num_classes": 3,
|
||||
# "prototypes_per_class": 4
|
||||
# },
|
||||
# lr=0.01,
|
||||
# )
|
||||
|
||||
# initialized = DemoGLVQ(hparams)
|
||||
# print(initialized)
|
@@ -5,26 +5,76 @@ Modules not yet available in prototorch go here temporarily.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.similarities import cosine_similarity
|
||||
|
||||
from ..core.similarities import gaussian
|
||||
|
||||
|
||||
def rescaled_cosine_similarity(x, y):
|
||||
"""Cosine Similarity rescaled to [0, 1]."""
|
||||
similarities = cosine_similarity(x, y)
|
||||
return (similarities + 1.0) / 2.0
|
||||
def rank_scaled_gaussian(distances, lambd):
|
||||
order = torch.argsort(distances, dim=1)
|
||||
ranks = torch.argsort(order, dim=1)
|
||||
return torch.exp(-torch.exp(-ranks / lambd) * distances)
|
||||
|
||||
|
||||
def shift_activation(x):
|
||||
return (x + 1.0) / 2.0
|
||||
def orthogonalization(tensors):
|
||||
"""Orthogonalization via polar decomposition """
|
||||
u, _, v = torch.svd(tensors, compute_uv=True)
|
||||
u_shape = tuple(list(u.shape))
|
||||
v_shape = tuple(list(v.shape))
|
||||
|
||||
# reshape to (num x N x M)
|
||||
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
|
||||
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
|
||||
|
||||
out = u @ v.permute([0, 2, 1])
|
||||
|
||||
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def euclidean_similarity(x, y, variance=1.0):
|
||||
d = euclidean_distance(x, y)
|
||||
return torch.exp(-(d * d) / (2 * variance))
|
||||
def ltangent_distance(x, y, omegas):
|
||||
r"""Localized Tangent distance.
|
||||
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
|
||||
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
|
||||
|
||||
:param `torch.tensor` omegas: Three dimensional matrix
|
||||
:rtype: `torch.tensor`
|
||||
"""
|
||||
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)]
|
||||
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
|
||||
omegas, omegas.permute([0, 2, 1]))
|
||||
projected_x = x @ p
|
||||
projected_y = torch.diagonal(y @ p).T
|
||||
expanded_y = torch.unsqueeze(projected_y, dim=1)
|
||||
batchwise_difference = expanded_y - projected_x
|
||||
differences_squared = batchwise_difference**2
|
||||
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
|
||||
distances = distances.permute(1, 0)
|
||||
return distances
|
||||
|
||||
|
||||
class GaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, variance):
|
||||
super().__init__()
|
||||
self.variance = variance
|
||||
|
||||
def forward(self, distances):
|
||||
return gaussian(distances, self.variance)
|
||||
|
||||
|
||||
class RankScaledGaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, lambd):
|
||||
super().__init__()
|
||||
self.lambd = lambd
|
||||
|
||||
def forward(self, distances):
|
||||
return rank_scaled_gaussian(distances, self.lambd)
|
||||
|
||||
|
||||
class ConnectionTopology(torch.nn.Module):
|
||||
|
||||
def __init__(self, agelimit, num_prototypes):
|
||||
super().__init__()
|
||||
self.agelimit = agelimit
|
||||
@@ -79,64 +129,3 @@ class ConnectionTopology(torch.nn.Module):
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(agelimit): ({self.agelimit})"
|
||||
|
||||
|
||||
class CosineSimilarity(torch.nn.Module):
|
||||
def __init__(self, activation=shift_activation):
|
||||
super().__init__()
|
||||
self.activation = activation
|
||||
|
||||
def forward(self, x, y):
|
||||
epsilon = torch.finfo(x.dtype).eps
|
||||
normed_x = (x / x.pow(2).sum(dim=tuple(range(
|
||||
1, x.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
normed_y = (y / y.pow(2).sum(dim=tuple(range(
|
||||
1, y.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
# normed_x = (x / torch.linalg.norm(x, dim=1))
|
||||
diss = torch.inner(normed_x, normed_y)
|
||||
return self.activation(diss)
|
||||
|
||||
|
||||
class MarginLoss(torch.nn.modules.loss._Loss):
|
||||
def __init__(self,
|
||||
margin=0.3,
|
||||
size_average=None,
|
||||
reduce=None,
|
||||
reduction="mean"):
|
||||
super().__init__(size_average, reduce, reduction)
|
||||
self.margin = margin
|
||||
|
||||
def forward(self, input_, target):
|
||||
dp = torch.sum(target * input_, dim=-1)
|
||||
dm = torch.max(input_ - target, dim=-1).values
|
||||
return torch.nn.functional.relu(dm - dp + self.margin)
|
||||
|
||||
|
||||
class ReasoningLayer(torch.nn.Module):
|
||||
def __init__(self, num_components, num_classes, num_replicas=1):
|
||||
super().__init__()
|
||||
self.num_replicas = num_replicas
|
||||
self.num_classes = num_classes
|
||||
probabilities_init = torch.zeros(2, 1, num_components,
|
||||
self.num_classes)
|
||||
probabilities_init.uniform_(0.4, 0.6)
|
||||
# TODO Use `self.register_parameter("param", Paramater(param))` instead
|
||||
self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
pk = self.reasoning_probabilities[0]
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1]
|
||||
ik = 1 - pk - nk
|
||||
img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
|
||||
return img.unsqueeze(1)
|
||||
|
||||
def forward(self, detections):
|
||||
pk = self.reasoning_probabilities[0].clamp(0, 1)
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1].clamp(0, 1)
|
||||
numerator = (detections @ (pk - nk)) + nk.sum(1)
|
||||
probs = numerator / (pk + nk).sum(1)
|
||||
probs = probs.squeeze(0)
|
||||
return probs
|
||||
|
@@ -1,37 +1,43 @@
|
||||
"""Models based on the GLVQ framework."""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (lomega_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.components import LinearMapping
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from ..core.competitions import wtac
|
||||
from ..core.distances import (
|
||||
lomega_distance,
|
||||
omega_distance,
|
||||
squared_euclidean_distance,
|
||||
)
|
||||
from ..core.initializers import EyeTransformInitializer
|
||||
from ..core.losses import (
|
||||
GLVQLoss,
|
||||
lvq1_loss,
|
||||
lvq21_loss,
|
||||
)
|
||||
from ..core.transforms import LinearTransform
|
||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
||||
from .extras import ltangent_distance, orthogonalization
|
||||
|
||||
|
||||
class GLVQ(SupervisedPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("margin", 0.0)
|
||||
self.hparams.setdefault("transfer_fn", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
# Layers
|
||||
transfer_fn = get_activation(self.hparams.transfer_fn)
|
||||
self.transfer_layer = LambdaLayer(transfer_fn)
|
||||
|
||||
# Loss
|
||||
self.loss = LossLayer(glvq_loss)
|
||||
|
||||
# Prototype metrics
|
||||
self.initialize_prototype_win_ratios()
|
||||
self.loss = GLVQLoss(
|
||||
margin=self.hparams.margin,
|
||||
transfer_fn=self.hparams.transfer_fn,
|
||||
beta=self.hparams.transfer_beta,
|
||||
)
|
||||
|
||||
def initialize_prototype_win_ratios(self):
|
||||
self.register_buffer(
|
||||
@@ -59,10 +65,8 @@ class GLVQ(SupervisedPrototypeModel):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
mu = self.loss(out, y, prototype_labels=plabels)
|
||||
batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
_, plabels = self.proto_layer()
|
||||
loss = self.loss(out, y, plabels)
|
||||
return out, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
@@ -104,6 +108,7 @@ class SiameseGLVQ(GLVQ):
|
||||
transformation pipeline are only learned from the inputs.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
hparams,
|
||||
backbone=torch.nn.Identity(),
|
||||
@@ -118,7 +123,8 @@ class SiameseGLVQ(GLVQ):
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
# Only add a backbone optimizer if backbone has trainable parameters
|
||||
if (bb_params := list(self.backbone.parameters())):
|
||||
bb_params = list(self.backbone.parameters())
|
||||
if (bb_params):
|
||||
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
|
||||
optimizers = [proto_opt, bb_opt]
|
||||
else:
|
||||
@@ -135,7 +141,7 @@ class SiameseGLVQ(GLVQ):
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = get_flat(x, protos)
|
||||
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_protos = self.backbone(protos)
|
||||
@@ -169,6 +175,7 @@ class LVQMLN(SiameseGLVQ):
|
||||
rather in the embedding space.
|
||||
|
||||
"""
|
||||
|
||||
def compute_distances(self, x):
|
||||
latent_protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
@@ -184,6 +191,7 @@ class GRLVQ(SiameseGLVQ):
|
||||
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -209,22 +217,27 @@ class SiameseGMLVQ(SiameseGLVQ):
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Override the backbone
|
||||
self.backbone = torch.nn.Linear(self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
bias=False)
|
||||
omega_initializer = kwargs.get("omega_initializer",
|
||||
EyeTransformInitializer())
|
||||
self.backbone = LinearTransform(
|
||||
self.hparams.input_dim,
|
||||
self.hparams.output_dim,
|
||||
initializer=omega_initializer,
|
||||
)
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self.backbone.weight.detach().cpu()
|
||||
return self.backbone.weights
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self.backbone.weight # (latent_dim, input_dim)
|
||||
lam = omega.T @ omega
|
||||
omega = self.backbone.weight # (input_dim, latent_dim)
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
|
||||
@@ -235,27 +248,30 @@ class GMLVQ(GLVQ):
|
||||
function. This makes it easier to implement a localized variant.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
omega_initializer = kwargs.get("omega_initializer", None)
|
||||
initialized_omega = kwargs.get("initialized_omega", None)
|
||||
if omega_initializer is not None or initialized_omega is not None:
|
||||
self.omega_layer = LinearMapping(
|
||||
mapping_shape=(self.hparams.input_dim, self.hparams.latent_dim),
|
||||
initializer=omega_initializer,
|
||||
initialized_linearmapping=initialized_omega,
|
||||
)
|
||||
omega_initializer = kwargs.get("omega_initializer",
|
||||
EyeTransformInitializer())
|
||||
omega = omega_initializer.generate(self.hparams.input_dim,
|
||||
self.hparams.latent_dim)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
self.backbone = LambdaLayer(lambda x: x @ self._omega,
|
||||
name="omega matrix")
|
||||
|
||||
self.register_parameter("_omega", Parameter(self.omega_layer.mapping))
|
||||
self.backbone = LambdaLayer(lambda x: x @ self._omega, name = "omega matrix")
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self._omega.detach() # (input_dim, latent_dim)
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos, self._omega)
|
||||
@@ -264,27 +280,10 @@ class GMLVQ(GLVQ):
|
||||
def extra_repr(self):
|
||||
return f"(omega): (shape: {tuple(self._omega.shape)})"
|
||||
|
||||
def predict_latent(self, x, map_protos=True):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
if map_protos:
|
||||
protos = self.backbone(protos)
|
||||
d = squared_euclidean_distance(x, protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
|
||||
|
||||
class LGMLVQ(GMLVQ):
|
||||
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", lomega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
@@ -299,8 +298,48 @@ class LGMLVQ(GMLVQ):
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
|
||||
class GTLVQ(LGMLVQ):
|
||||
"""Localized and Generalized Tangent Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
omega_initializer = kwargs.get("omega_initializer")
|
||||
|
||||
if omega_initializer is not None:
|
||||
subspace = omega_initializer.generate(self.hparams.input_dim,
|
||||
self.hparams.latent_dim)
|
||||
omega = torch.repeat_interleave(subspace.unsqueeze(0),
|
||||
self.num_prototypes,
|
||||
dim=0)
|
||||
else:
|
||||
omega = torch.rand(
|
||||
self.num_prototypes,
|
||||
self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
# Re-register `_omega` to override the one from the super class.
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
||||
|
||||
|
||||
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
|
||||
"""Generalized Tangent Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class GLVQ1(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq1_loss)
|
||||
@@ -309,6 +348,7 @@ class GLVQ1(GLVQ):
|
||||
|
||||
class GLVQ21(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 2.1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq21_loss)
|
||||
@@ -331,3 +371,18 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
|
||||
"""GTLVQ for training on image data.
|
||||
|
||||
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
||||
|
@@ -2,14 +2,19 @@
|
||||
|
||||
import warnings
|
||||
|
||||
from prototorch.components import LabeledComponents
|
||||
from prototorch.modules import KNNC
|
||||
|
||||
from ..core.competitions import KNNC
|
||||
from ..core.components import LabeledComponents
|
||||
from ..core.initializers import (
|
||||
LiteralCompInitializer,
|
||||
LiteralLabelsInitializer,
|
||||
)
|
||||
from ..utils.utils import parse_data_arg
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
|
||||
|
||||
class KNN(SupervisedPrototypeModel):
|
||||
"""K-Nearest-Neighbors classification algorithm."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -19,9 +24,13 @@ class KNN(SupervisedPrototypeModel):
|
||||
data = kwargs.get("data", None)
|
||||
if data is None:
|
||||
raise ValueError("KNN requires data, but was not provided!")
|
||||
data, targets = parse_data_arg(data)
|
||||
|
||||
# Layers
|
||||
self.proto_layer = LabeledComponents(initialized_components=data)
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=[],
|
||||
components_initializer=LiteralCompInitializer(data),
|
||||
labels_initializer=LiteralLabelsInitializer(targets))
|
||||
self.competition_layer = KNNC(k=self.hparams.k)
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
|
@@ -1,17 +1,17 @@
|
||||
"""LVQ models that are optimized using non-gradient methods."""
|
||||
|
||||
from prototorch.functions.losses import _get_dp_dm
|
||||
|
||||
from ..core.losses import _get_dp_dm
|
||||
from ..nn.activations import get_activation
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import NonGradientMixin
|
||||
from .glvq import GLVQ
|
||||
|
||||
|
||||
class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plables = self.proto_layer()
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
@@ -29,6 +29,8 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
print(f"dis={dis}")
|
||||
print(f"y={y}")
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
@@ -37,9 +39,9 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
|
||||
class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
@@ -65,4 +67,61 @@ class LVQ21(NonGradientMixin, GLVQ):
|
||||
|
||||
|
||||
class MedianLVQ(NonGradientMixin, GLVQ):
|
||||
"""Median LVQ"""
|
||||
"""Median LVQ
|
||||
|
||||
# TODO Avoid computing distances over and over
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, verbose=True, **kwargs):
|
||||
self.verbose = verbose
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.transfer_layer = LambdaLayer(
|
||||
get_activation(self.hparams.transfer_fn))
|
||||
|
||||
def _f(self, x, y, protos, plabels):
|
||||
d = self.distance_layer(x, protos)
|
||||
dp, dm = _get_dp_dm(d, y, plabels)
|
||||
mu = (dp - dm) / (dp + dm)
|
||||
invmu = -1.0 * mu
|
||||
f = self.transfer_layer(invmu, beta=self.hparams.transfer_beta) + 1.0
|
||||
return f
|
||||
|
||||
def expectation(self, x, y, protos, plabels):
|
||||
f = self._f(x, y, protos, plabels)
|
||||
gamma = f / f.sum()
|
||||
return gamma
|
||||
|
||||
def lower_bound(self, x, y, protos, plabels, gamma):
|
||||
f = self._f(x, y, protos, plabels)
|
||||
lower_bound = (gamma * f.log()).sum()
|
||||
return lower_bound
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
|
||||
for i, _ in enumerate(protos):
|
||||
# Expectation step
|
||||
gamma = self.expectation(x, y, protos, plabels)
|
||||
lower_bound = self.lower_bound(x, y, protos, plabels, gamma)
|
||||
|
||||
# Maximization step
|
||||
_protos = protos + 0
|
||||
for k, xk in enumerate(x):
|
||||
_protos[i] = xk
|
||||
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
|
||||
if _lower_bound > lower_bound:
|
||||
if self.verbose:
|
||||
print(f"Updating prototype {i} to data {k}...")
|
||||
self.proto_layer.load_state_dict({"_components": _protos},
|
||||
strict=False)
|
||||
break
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
return None
|
||||
|
@@ -1,18 +1,17 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.losses import nllr_loss, rslvq_loss
|
||||
from prototorch.functions.pooling import (stratified_min_pooling,
|
||||
stratified_sum_pooling)
|
||||
from prototorch.functions.transforms import (GaussianPrior,
|
||||
RankScaledGaussianPrior)
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
|
||||
from ..core.losses import nllr_loss, rslvq_loss
|
||||
from ..core.pooling import stratified_min_pooling, stratified_sum_pooling
|
||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||
from .extras import GaussianPrior, RankScaledGaussianPrior
|
||||
from .glvq import GLVQ, SiameseGMLVQ
|
||||
|
||||
|
||||
class CELVQ(GLVQ):
|
||||
"""Cross-Entropy Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -22,15 +21,16 @@ class CELVQ(GLVQ):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x) # [None, num_protos]
|
||||
plabels = self.proto_layer.component_labels
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||
probs = -1.0 * winning
|
||||
batch_loss = self.loss(probs, y.long())
|
||||
loss = batch_loss.sum(dim=0)
|
||||
loss = batch_loss.sum()
|
||||
return out, loss
|
||||
|
||||
|
||||
class ProbabilisticLVQ(GLVQ):
|
||||
|
||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -56,14 +56,15 @@ class ProbabilisticLVQ(GLVQ):
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
_, plabels = self.proto_layer()
|
||||
batch_loss = self.loss(out, y, plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
loss = batch_loss.sum()
|
||||
return loss
|
||||
|
||||
|
||||
class SLVQ(ProbabilisticLVQ):
|
||||
"""Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(nllr_loss)
|
||||
@@ -72,6 +73,7 @@ class SLVQ(ProbabilisticLVQ):
|
||||
|
||||
class RSLVQ(ProbabilisticLVQ):
|
||||
"""Robust Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(rslvq_loss)
|
||||
@@ -83,17 +85,17 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
|
||||
TODO: Use Backbone LVQ instead
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.conditional_distribution = RankScaledGaussianPrior(
|
||||
self.hparams.lambd)
|
||||
self.loss = torch.nn.KLDivLoss()
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
y_dist = torch.nn.functional.one_hot(
|
||||
y.long(), num_classes=self.num_classes).float()
|
||||
batch_loss = self.loss(out, y_dist)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return loss
|
||||
# FIXME
|
||||
# def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
# x, y = batch
|
||||
# y_pred = self(x)
|
||||
# batch_loss = self.loss(y_pred, y)
|
||||
# loss = batch_loss.sum()
|
||||
# return loss
|
||||
|
@@ -2,11 +2,11 @@
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import squared_euclidean_distance
|
||||
from prototorch.modules import LambdaLayer
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
|
||||
from ..core.competitions import wtac
|
||||
from ..core.distances import squared_euclidean_distance
|
||||
from ..core.losses import NeuralGasEnergy
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
||||
from .callbacks import GNGCallback
|
||||
from .extras import ConnectionTopology
|
||||
@@ -18,6 +18,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
TODO Allow non-2D grids
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
h, w = hparams.get("shape")
|
||||
# Ignore `num_prototypes`
|
||||
@@ -53,7 +54,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
grid = self._grid.view(-1, 2)
|
||||
gd = squared_euclidean_distance(wp, grid)
|
||||
nh = torch.exp(-gd / self._sigma**2)
|
||||
protos = self.proto_layer.components
|
||||
protos = self.proto_layer()
|
||||
diff = x.unsqueeze(dim=1) - protos
|
||||
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
||||
updated_protos = protos + delta.sum(dim=0)
|
||||
@@ -69,6 +70,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -78,6 +80,7 @@ class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class NeuralGas(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -110,6 +113,7 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class GrowingNeuralGas(NeuralGas):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -132,7 +136,7 @@ class GrowingNeuralGas(NeuralGas):
|
||||
mask[torch.arange(len(mask)), winner] = 1.0
|
||||
dp = d * mask
|
||||
|
||||
self.errors += torch.sum(dp * dp, dim=0)
|
||||
self.errors += torch.sum(dp * dp)
|
||||
self.errors *= self.hparams.step_reduction
|
||||
|
||||
self.topology_layer(d)
|
||||
|
@@ -7,8 +7,11 @@ import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
from ..utils.utils import mesh2d
|
||||
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
|
||||
def __init__(self,
|
||||
data,
|
||||
title="Prototype Visualization",
|
||||
@@ -73,23 +76,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
ax.axis("off")
|
||||
return ax
|
||||
|
||||
def get_mesh_input(self, x):
|
||||
x_shift = self.border * np.ptp(x[:, 0])
|
||||
y_shift = self.border * np.ptp(x[:, 1])
|
||||
x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
|
||||
y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
|
||||
xx, yy = np.meshgrid(np.linspace(x_min, x_max, self.resolution),
|
||||
np.linspace(y_min, y_max, self.resolution))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
return mesh_input, xx, yy
|
||||
|
||||
def perform_pca_2D(self, data):
|
||||
(_, eigVal, eigVec) = torch.pca_lowrank(data, q=2)
|
||||
return data @ eigVec
|
||||
|
||||
def plot_data(self, ax, x, y, pca=False):
|
||||
if pca:
|
||||
x = self.perform_pca_2D(x)
|
||||
def plot_data(self, ax, x, y):
|
||||
ax.scatter(
|
||||
x[:, 0],
|
||||
x[:, 1],
|
||||
@@ -100,9 +87,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
s=30,
|
||||
)
|
||||
|
||||
def plot_protos(self, ax, protos, plabels, pca=False):
|
||||
if pca:
|
||||
protos = self.perform_pca_2D(protos)
|
||||
def plot_protos(self, ax, protos, plabels):
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
@@ -134,6 +119,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
@@ -146,7 +132,7 @@ class VisGLVQ2D(Vis2DAbstract):
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
@@ -157,6 +143,7 @@ class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
@@ -181,9 +168,9 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
else:
|
||||
mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict_latent(mesh_input,
|
||||
@@ -195,9 +182,10 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
@@ -207,38 +195,28 @@ class VisGMLVQ2D(Vis2DAbstract):
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = pl_module.backbone(torch.Tensor(x_train).to(device))
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.map_protos:
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = pl_module.backbone(torch.Tensor(protos).to(device))
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
if x_train.shape[1] > 2:
|
||||
self.plot_data(ax, x_train, y_train, pca=True)
|
||||
else:
|
||||
self.plot_data(ax, x_train, y_train, pca=False)
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
if protos.shape[1] > 2:
|
||||
self.plot_protos(ax, protos, plabels, pca=True)
|
||||
else:
|
||||
self.plot_protos(ax, protos, plabels, pca=False)
|
||||
### something to work on: meshgrid with pca
|
||||
# x = np.vstack((x_train, protos))
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
#else:
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
#_components = pl_module.proto_layer._components
|
||||
#mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
#y_pred = pl_module.predict_latent(mesh_input,
|
||||
# map_protos=self.map_protos)
|
||||
#y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
#ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
@@ -250,8 +228,8 @@ class VisCBC2D(Vis2DAbstract):
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
_components = pl_module.component_layer._components
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.components_layer._components
|
||||
y_pred = pl_module.predict(
|
||||
torch.Tensor(mesh_input).type_as(_components))
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
@@ -262,6 +240,7 @@ class VisCBC2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
@@ -289,6 +268,7 @@ class VisNG2D(Vis2DAbstract):
|
||||
|
||||
|
||||
class VisImgComp(Vis2DAbstract):
|
||||
|
||||
def __init__(self,
|
||||
*args,
|
||||
random_data=0,
|
||||
@@ -311,8 +291,6 @@ class VisImgComp(Vis2DAbstract):
|
||||
size=self.embedding_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
# print(f"{data.shape=}")
|
||||
# print(f"{self.y_train[ind].shape=}")
|
||||
tb.add_embedding(data.view(len(ind), -1),
|
||||
label_img=data,
|
||||
global_step=None,
|
||||
|
23
setup.cfg
Normal file
23
setup.cfg
Normal file
@@ -0,0 +1,23 @@
|
||||
[yapf]
|
||||
based_on_style = pep8
|
||||
spaces_before_comment = 2
|
||||
split_before_logical_operator = true
|
||||
|
||||
[pylint]
|
||||
disable =
|
||||
too-many-arguments,
|
||||
too-few-public-methods,
|
||||
fixme,
|
||||
|
||||
|
||||
[pycodestyle]
|
||||
max-line-length = 79
|
||||
|
||||
[isort]
|
||||
profile = hug
|
||||
src_paths = isort, test
|
||||
multi_line_output = 3
|
||||
include_trailing_comma = True
|
||||
force_grid_wrap = 3
|
||||
use_parentheses = True
|
||||
line_length = 79
|
10
setup.py
10
setup.py
@@ -22,7 +22,7 @@ with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
INSTALL_REQUIRES = [
|
||||
"prototorch>=0.5.0,<0.6.0",
|
||||
"prototorch>=0.7.0",
|
||||
"pytorch_lightning>=1.3.5",
|
||||
"torchmetrics",
|
||||
]
|
||||
@@ -37,6 +37,7 @@ DOCS = [
|
||||
"recommonmark",
|
||||
"sphinx",
|
||||
"nbsphinx",
|
||||
"ipykernel",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-katex",
|
||||
"sphinxcontrib-bibtex",
|
||||
@@ -53,7 +54,7 @@ ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name=safe_name("prototorch_" + PLUGIN_NAME),
|
||||
version="0.1.8",
|
||||
version="0.4.1",
|
||||
description="Pre-packaged prototype-based "
|
||||
"machine learning models using ProtoTorch and PyTorch-Lightning.",
|
||||
long_description=long_description,
|
||||
@@ -63,7 +64,7 @@ setup(
|
||||
url=PROJECT_URL,
|
||||
download_url=DOWNLOAD_URL,
|
||||
license="MIT",
|
||||
python_requires=">=3.9",
|
||||
python_requires=">=3.6",
|
||||
install_requires=INSTALL_REQUIRES,
|
||||
extras_require={
|
||||
"dev": DEV,
|
||||
@@ -80,6 +81,9 @@ setup(
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Natural Language :: English",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.7",
|
||||
"Programming Language :: Python :: 3.6",
|
||||
"Operating System :: OS Independent",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
|
@@ -4,6 +4,7 @@ import unittest
|
||||
|
||||
|
||||
class TestDummy(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
|
@@ -1,17 +1,35 @@
|
||||
#! /bin/bash
|
||||
|
||||
|
||||
# Read Flags
|
||||
gpu=0
|
||||
while [ -n "$1" ]; do
|
||||
case "$1" in
|
||||
--gpu) gpu=1;;
|
||||
-g) gpu=1;;
|
||||
*) path=$1;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
python --version
|
||||
echo "Using GPU: " $gpu
|
||||
|
||||
# Loop
|
||||
failed=0
|
||||
|
||||
for example in $(find $1 -maxdepth 1 -name "*.py")
|
||||
for example in $(find $path -maxdepth 1 -name "*.py")
|
||||
do
|
||||
echo -n "$x" $example '... '
|
||||
export DISPLAY= && python $example --fast_dev_run 1 &> /dev/null
|
||||
export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
|
||||
if [[ $? -ne 0 ]]; then
|
||||
echo "FAILED!!"
|
||||
cat run_log.txt
|
||||
failed=1
|
||||
else
|
||||
echo "SUCCESS!"
|
||||
fi
|
||||
rm run_log.txt
|
||||
done
|
||||
|
||||
exit $failed
|
||||
|
Reference in New Issue
Block a user