193 lines
5.5 KiB
Python
193 lines
5.5 KiB
Python
"""
|
|
CLCC Scheme
|
|
|
|
CLCC is a LVQ scheme containing 4 steps
|
|
- Components
|
|
- Latent Space
|
|
- Comparison
|
|
- Competition
|
|
|
|
"""
|
|
from typing import Dict, Set, Type
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
import torchmetrics
|
|
|
|
|
|
class CLCCScheme(pl.LightningModule):
|
|
registered_metrics: Dict[Type[torchmetrics.Metric],
|
|
torchmetrics.Metric] = {}
|
|
registered_metric_names: Dict[Type[torchmetrics.Metric], Set[str]] = {}
|
|
|
|
def __init__(self, hparams) -> None:
|
|
super().__init__()
|
|
|
|
# Common Steps
|
|
self.init_components(hparams)
|
|
self.init_latent(hparams)
|
|
self.init_comparison(hparams)
|
|
self.init_competition(hparams)
|
|
|
|
# Train Steps
|
|
self.init_loss(hparams)
|
|
|
|
# Inference Steps
|
|
self.init_inference(hparams)
|
|
|
|
# Initialize Model Metrics
|
|
self.init_model_metrics()
|
|
|
|
# internal API, called by models and callbacks
|
|
def register_torchmetric(self, name: str, metric: torchmetrics.Metric):
|
|
if metric not in self.registered_metrics:
|
|
self.registered_metrics[metric] = metric()
|
|
self.registered_metric_names[metric] = {name}
|
|
else:
|
|
self.registered_metric_names[metric].add(name)
|
|
|
|
# external API
|
|
def get_competion(self, batch, components):
|
|
latent_batch, latent_components = self.latent(batch, components)
|
|
# TODO: => Latent Hook
|
|
comparison_tensor = self.comparison(latent_batch, latent_components)
|
|
# TODO: => Comparison Hook
|
|
return comparison_tensor
|
|
|
|
def forward(self, batch):
|
|
if isinstance(batch, torch.Tensor):
|
|
batch = (batch, None)
|
|
# TODO: manage different datatypes?
|
|
components = self.components_layer()
|
|
# TODO: => Component Hook
|
|
comparison_tensor = self.get_competion(batch, components)
|
|
# TODO: => Competition Hook
|
|
return self.inference(comparison_tensor, components)
|
|
|
|
def predict(self, batch):
|
|
"""
|
|
Alias for forward
|
|
"""
|
|
return self.forward(batch)
|
|
|
|
def loss_forward(self, batch):
|
|
# TODO: manage different datatypes?
|
|
components = self.components_layer()
|
|
# TODO: => Component Hook
|
|
comparison_tensor = self.get_competion(batch, components)
|
|
# TODO: => Competition Hook
|
|
return self.loss(comparison_tensor, batch, components)
|
|
|
|
# Empty Initialization
|
|
# TODO: Type hints
|
|
# TODO: Docs
|
|
def init_components(self, hparams):
|
|
...
|
|
|
|
def init_latent(self, hparams):
|
|
...
|
|
|
|
def init_comparison(self, hparams):
|
|
...
|
|
|
|
def init_competition(self, hparams):
|
|
...
|
|
|
|
def init_loss(self, hparams):
|
|
...
|
|
|
|
def init_inference(self, hparams):
|
|
...
|
|
|
|
def init_model_metrics(self):
|
|
self.register_torchmetric('train_accuracy', torchmetrics.Accuracy)
|
|
|
|
# Empty Steps
|
|
# TODO: Type hints
|
|
def components(self):
|
|
"""
|
|
This step has no input.
|
|
|
|
It returns the components.
|
|
"""
|
|
raise NotImplementedError(
|
|
"The components step has no reasonable default.")
|
|
|
|
def latent(self, batch, components):
|
|
"""
|
|
The latent step receives the data batch and the components.
|
|
It can transform both by an arbitrary function.
|
|
|
|
It returns the transformed batch and components, each of the same length as the original input.
|
|
"""
|
|
return batch, components
|
|
|
|
def comparison(self, batch, components):
|
|
"""
|
|
Takes a batch of size N and the componentsset of size M.
|
|
|
|
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
|
|
"""
|
|
raise NotImplementedError(
|
|
"The comparison step has no reasonable default.")
|
|
|
|
def competition(self, comparisonmeasures, components):
|
|
"""
|
|
Takes the tensor of comparison measures.
|
|
|
|
Assigns a competition vector to each class.
|
|
"""
|
|
raise NotImplementedError(
|
|
"The competition step has no reasonable default.")
|
|
|
|
def loss(self, comparisonmeasures, batch, components):
|
|
"""
|
|
Takes the tensor of competition measures.
|
|
|
|
Calculates a single loss value
|
|
"""
|
|
raise NotImplementedError("The loss step has no reasonable default.")
|
|
|
|
def inference(self, comparisonmeasures, components):
|
|
"""
|
|
Takes the tensor of competition measures.
|
|
|
|
Returns the inferred vector.
|
|
"""
|
|
raise NotImplementedError(
|
|
"The inference step has no reasonable default.")
|
|
|
|
def update_metrics_step(self, batch):
|
|
x, y = batch
|
|
preds = self(x)
|
|
|
|
for metric in self.registered_metrics:
|
|
instance = self.registered_metrics[metric].to(self.device)
|
|
value = instance(y, preds)
|
|
|
|
for name in self.registered_metric_names[metric]:
|
|
self.log(name, value)
|
|
|
|
def update_metrics_epoch(self):
|
|
for metric in self.registered_metrics:
|
|
instance = self.registered_metrics[metric].to(self.device)
|
|
value = instance.compute()
|
|
|
|
for name in self.registered_metric_names[metric]:
|
|
self.log(name, value)
|
|
|
|
# Lightning Hooks
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
self.update_metrics_step(batch)
|
|
|
|
return self.loss_forward(batch)
|
|
|
|
def train_epoch_end(self, outs) -> None:
|
|
self.update_metrics_epoch()
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
return self.loss_forward(batch)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
return self.loss_forward(batch)
|