Compare commits
99 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
1b5093627e | ||
|
497da90f9c | ||
|
2a665e220f | ||
|
4cd6aee330 | ||
|
634ef86a2c | ||
|
72e9587a10 | ||
|
f5e1edf31f | ||
|
5e5675d12e | ||
|
16f410e809 | ||
|
46dfb82371 | ||
|
87fa3f0729 | ||
|
08db94d507 | ||
|
8ecf9948b2 | ||
|
c5f0b86114 | ||
|
7506614ada | ||
|
fcd944d3ff | ||
|
054720dd7b | ||
|
d16a0de202 | ||
|
76fea3f881 | ||
|
c00513ae0d | ||
|
bccef8bef0 | ||
|
29ee326b85 | ||
|
055568dc86 | ||
|
3a7328e290 | ||
|
d6629c8792 | ||
|
ef65bd3789 | ||
|
d096eba2c9 | ||
|
dd34c57e2e | ||
|
5911f4dd90 | ||
|
dbfe315f4f | ||
|
9c90c902dc | ||
|
7d3f59e54b | ||
|
9da47b1dba | ||
|
41f0e77fc9 | ||
|
fab786a07e | ||
|
40bd7ed380 | ||
|
4941c2b89d | ||
|
ce14dec7e9 | ||
|
b31c8cc707 | ||
|
e21e6c7e02 | ||
|
dd696ea1e0 | ||
|
15e7232747 | ||
|
197b728c63 | ||
|
98892afee0 | ||
|
d5855dbe97 | ||
|
75a39f5b03 | ||
|
1a0e697b27 | ||
|
1a17193b35 | ||
|
aaa3c51e0a | ||
|
62c5974a85 | ||
|
1d26226a2f | ||
|
4232d0ed2a | ||
|
a9edf06507 | ||
|
d3bb430104 | ||
|
6ffd27d12a | ||
|
859e2cae69 | ||
|
d7ea89d47e | ||
|
fa928afe2c | ||
|
7d4a041df2 | ||
|
04c51c00c6 | ||
|
62185b38cf | ||
|
7b93cd4ad5 | ||
|
d7834e2cc0 | ||
|
0af8cf36f8 | ||
|
f8ad1d83eb | ||
|
23a3683860 | ||
|
4be9fb81eb | ||
|
9d38123114 | ||
|
0f9f24e36a | ||
|
09e3ef1d0e | ||
|
7b9b767113 | ||
|
f56ec44afe | ||
|
67a20124e8 | ||
|
72af03b991 | ||
|
71602bf38a | ||
|
a1d9657b91 | ||
|
4dc11a3737 | ||
|
2649e3ac31 | ||
|
2b2e4a5f37 | ||
|
72404f7c4e | ||
|
612ee8dc6a | ||
|
d42693a441 | ||
|
7eb496110f | ||
|
4ab0a5a414 | ||
|
29063dcec4 | ||
|
a37095409b | ||
|
1b420c1f6b | ||
|
7ec5528ade | ||
|
a44219ee47 | ||
|
24ebfdc667 | ||
|
1c658cdc1b | ||
|
1911d4b33e | ||
|
6197d7d5d6 | ||
|
d2856383e2 | ||
|
4eafe88dc4 | ||
|
3afced8662 | ||
|
68034d56f6 | ||
|
97ec15b76a | ||
|
69e5ff3243 |
@@ -1,10 +1,13 @@
|
||||
[bumpversion]
|
||||
current_version = 0.1.8
|
||||
current_version = 0.6.0
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
serialize = {major}.{minor}.{patch}
|
||||
message = build: bump version {current_version} → {new_version}
|
||||
|
||||
[bumpversion:file:setup.py]
|
||||
[bumpversion:file:pyproject.toml]
|
||||
|
||||
[bumpversion:file:./prototorch/models/__init__.py]
|
||||
|
||||
[bumpversion:file:./docs/source/conf.py]
|
||||
|
15
.codacy.yml
15
.codacy.yml
@@ -1,15 +0,0 @@
|
||||
# To validate the contents of your configuration file
|
||||
# run the following command in the folder where the configuration file is located:
|
||||
# codacy-analysis-cli validate-configuration --directory `pwd`
|
||||
# To analyse, run:
|
||||
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
|
||||
---
|
||||
engines:
|
||||
pylintpython3:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
remark-lint:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
exclude_paths:
|
||||
- 'tests/**'
|
@@ -1,2 +0,0 @@
|
||||
comment:
|
||||
require_changes: yes
|
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**Steps to reproduce the behavior**
|
||||
1. ...
|
||||
2. Run script '...' or this snippet:
|
||||
```python
|
||||
import prototorch as pt
|
||||
|
||||
...
|
||||
```
|
||||
3. See errors
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Observed behavior**
|
||||
A clear and concise description of what actually happened.
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**System and version information**
|
||||
- OS: [e.g. Ubuntu 20.10]
|
||||
- ProtoTorch Version: [e.g. 0.4.0]
|
||||
- Python Version: [e.g. 3.9.5]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
25
.github/workflows/examples.yml
vendored
Normal file
25
.github/workflows/examples.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: examples
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- "examples/**.py"
|
||||
jobs:
|
||||
cpu:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python 3.11
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Run examples
|
||||
run: |
|
||||
./tests/test_examples.sh examples/
|
75
.github/workflows/pythonapp.yml
vendored
Normal file
75
.github/workflows/pythonapp.yml
vendored
Normal file
@@ -0,0 +1,75 @@
|
||||
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: tests
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
branches: [master]
|
||||
|
||||
jobs:
|
||||
style:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python 3.11
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- uses: pre-commit/action@v3.0.0
|
||||
compatibility:
|
||||
needs: style
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.8", "3.9", "3.10", "3.11"]
|
||||
os: [ubuntu-latest, windows-latest]
|
||||
exclude:
|
||||
- os: windows-latest
|
||||
python-version: "3.8"
|
||||
- os: windows-latest
|
||||
python-version: "3.9"
|
||||
- os: windows-latest
|
||||
python-version: "3.10"
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest
|
||||
publish_pypi:
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
|
||||
needs: compatibility
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python 3.11
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
pip install wheel
|
||||
- name: Build package
|
||||
run: python setup.py sdist bdist_wheel
|
||||
- name: Publish a Python distribution to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
user: __token__
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
17
.gitignore
vendored
17
.gitignore
vendored
@@ -128,14 +128,19 @@ dmypy.json
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# Datasets
|
||||
datasets/
|
||||
|
||||
# PyTorch-Lightning
|
||||
lightning_logs/
|
||||
|
||||
.vscode/
|
||||
|
||||
# Vim
|
||||
*~
|
||||
*.swp
|
||||
*.swo
|
||||
|
||||
# Pytorch Models or Weights
|
||||
# If necessary make exceptions for single pretrained models
|
||||
*.pt
|
||||
|
||||
# Artifacts created by ProtoTorch Models
|
||||
datasets/
|
||||
lightning_logs/
|
||||
examples/_*.py
|
||||
examples/_*.ipynb
|
||||
|
@@ -1,54 +1,54 @@
|
||||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.4.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
|
||||
|
||||
- repo: https://github.com/myint/autoflake
|
||||
rev: v1.4
|
||||
hooks:
|
||||
- id: autoflake
|
||||
|
||||
- repo: http://github.com/PyCQA/isort
|
||||
rev: 5.8.0
|
||||
hooks:
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: 'v0.902'
|
||||
- repo: https://github.com/myint/autoflake
|
||||
rev: v2.1.1
|
||||
hooks:
|
||||
- id: mypy
|
||||
- id: autoflake
|
||||
|
||||
- repo: http://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v1.3.0
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: 'v0.31.0' # Use the sha / tag you want to point at
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
- id: yapf
|
||||
additional_dependencies: ["toml"]
|
||||
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.9.0 # Use the ref you want to point at
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.10.0
|
||||
hooks:
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.19.4
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.7.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/jorisroovers/gitlint
|
||||
rev: "v0.15.1"
|
||||
- repo: https://github.com/si-cim/gitlint
|
||||
rev: v0.15.2-unofficial
|
||||
hooks:
|
||||
- id: gitlint
|
||||
- id: gitlint
|
||||
args: [--contrib=CT1, --ignore=B6, --msg-filename]
|
||||
|
25
.travis.yml
25
.travis.yml
@@ -1,25 +0,0 @@
|
||||
dist: bionic
|
||||
sudo: false
|
||||
language: python
|
||||
python: 3.9
|
||||
cache:
|
||||
directories:
|
||||
- "$HOME/.cache/pip"
|
||||
- "./tests/artifacts"
|
||||
- "$HOME/datasets"
|
||||
install:
|
||||
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
|
||||
- pip install .[all] --progress-bar off
|
||||
script:
|
||||
- coverage run -m pytest
|
||||
- ./tests/test_examples.sh examples/
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
deploy:
|
||||
provider: pypi
|
||||
username: __token__
|
||||
password:
|
||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
37
README.md
37
README.md
@@ -1,6 +1,5 @@
|
||||
# ProtoTorch Models
|
||||
|
||||
[](https://travis-ci.com/github/si-cim/prototorch_models)
|
||||
[](https://github.com/si-cim/prototorch_models/releases)
|
||||
[](https://pypi.org/project/prototorch_models/)
|
||||
[](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)
|
||||
@@ -20,23 +19,6 @@ pip install prototorch_models
|
||||
of** [ProtoTorch](https://github.com/si-cim/prototorch). The plugin should then
|
||||
be available for use in your Python environment as `prototorch.models`.
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## Available models
|
||||
|
||||
### LVQ Family
|
||||
@@ -53,6 +35,7 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
- Soft Learning Vector Quantization (SLVQ)
|
||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||
- Probabilistic Learning Vector Quantization (PLVQ)
|
||||
- Median-LVQ
|
||||
|
||||
### Other
|
||||
|
||||
@@ -68,7 +51,6 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## Planned models
|
||||
|
||||
- Median-LVQ
|
||||
- Generalized Tangent Learning Vector Quantization (GTLVQ)
|
||||
- Self-Incremental Learning Vector Quantization (SILVQ)
|
||||
|
||||
@@ -103,6 +85,23 @@ To assist in the development process, you may also find it useful to install
|
||||
please avoid installing Tensorflow in this environment. It is known to cause
|
||||
problems with PyTorch-Lightning.**
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I update the plugin?
|
||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.4.4"
|
||||
release = "0.6.0"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
File diff suppressed because one or more lines are too long
@@ -1,49 +1,69 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import CBC, VisCBC2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
|
||||
train_loader = DataLoader(train_ds, batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[2, 2, 2],
|
||||
proto_lr=0.1,
|
||||
distribution=[1, 0, 3],
|
||||
margin=0.1,
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CBC(
|
||||
model = CBC(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
|
||||
components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
|
||||
reasonings_initializer=pt.initializers.
|
||||
PurePositiveReasoningsInitializer(),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisCBC2D(data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True)
|
||||
vis = VisCBC2D(
|
||||
data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
detect_anomaly=True,
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@@ -1,8 +0,0 @@
|
||||
# Examples using Lightning CLI
|
||||
|
||||
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
|
||||
|
||||
To use the example run
|
||||
```
|
||||
python gmlvq.py --config gmlvq.yaml
|
||||
```
|
@@ -1,20 +0,0 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import torch
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
|
||||
import prototorch as pt
|
||||
from prototorch.models import ImageGMLVQ
|
||||
from prototorch.models.abstract import PrototypeModel
|
||||
from prototorch.models.data import MNISTDataModule
|
||||
|
||||
|
||||
class ExperimentClass(ImageGMLVQ):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.zeros(28 * 28),
|
||||
**kwargs)
|
||||
|
||||
|
||||
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)
|
@@ -1,11 +0,0 @@
|
||||
model:
|
||||
hparams:
|
||||
input_dim: 784
|
||||
latent_dim: 784
|
||||
distribution:
|
||||
num_classes: 10
|
||||
prototypes_per_class: 2
|
||||
proto_lr: 0.01
|
||||
bb_lr: 0.01
|
||||
data:
|
||||
batch_size: 32
|
@@ -1,31 +1,50 @@
|
||||
"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import (
|
||||
CELVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
num_classes = 4
|
||||
num_features = 2
|
||||
num_clusters = 1
|
||||
train_ds = pt.datasets.Random(num_samples=500,
|
||||
num_classes=num_classes,
|
||||
num_features=num_features,
|
||||
num_clusters=num_clusters,
|
||||
separation=3.0,
|
||||
seed=42)
|
||||
train_ds = pt.datasets.Random(
|
||||
num_samples=500,
|
||||
num_classes=num_classes,
|
||||
num_features=num_features,
|
||||
num_clusters=num_clusters,
|
||||
separation=3.0,
|
||||
seed=42,
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
|
||||
train_loader = DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
prototypes_per_class = num_clusters * 5
|
||||
@@ -35,27 +54,27 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CELVQ(
|
||||
model = CELVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Ones(2, scale=3),
|
||||
prototypes_initializer=pt.initializers.FVCI(2, 3.0),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(train_ds)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
vis = VisGLVQ2D(train_ds)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01, # prune prototype if it wins less than 1%
|
||||
idle_epochs=20, # pruning too early may cause problems
|
||||
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
|
||||
frequency=1, # prune every epoch
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
@@ -65,17 +84,18 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
progress_bar_refresh_rate=0,
|
||||
terminate_on_nan=True,
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
detect_anomaly=True,
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@@ -1,39 +1,50 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import GLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 4
|
||||
"per_class": 4
|
||||
},
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(
|
||||
model = GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
@@ -42,15 +53,30 @@ if __name__ == "__main__":
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=100,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Manual save
|
||||
trainer.save_checkpoint("./glvq_iris.ckpt")
|
||||
|
||||
# Load saved model
|
||||
new_model = GLVQ.load_from_checkpoint(
|
||||
checkpoint_path="./glvq_iris.ckpt",
|
||||
strict=False,
|
||||
)
|
||||
logging.info(new_model)
|
||||
|
@@ -1,78 +0,0 @@
|
||||
"""GLVQ example using the spiral dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 2
|
||||
prototypes_per_class = 10
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
transfer_function="swish_beta",
|
||||
transfer_beta=10.0,
|
||||
# lr=0.1,
|
||||
proto_lr=0.1,
|
||||
bb_lr=0.1,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(
|
||||
train_ds,
|
||||
show_last_only=False,
|
||||
block=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.02,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=2,
|
||||
replace=True,
|
||||
initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=1.0,
|
||||
patience=5,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
# es,
|
||||
pruning,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,59 +1,78 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
"""GMLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import GMLVQ, VisGMLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
train_loader = DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=4,
|
||||
latent_dim=3,
|
||||
latent_dim=4,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 2
|
||||
"per_class": 2
|
||||
},
|
||||
proto_lr=0.0005,
|
||||
bb_lr=0.0005,
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
model = GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
omega_initializer=pt.components.PCA(train_ds.data)
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
#model.example_input_array = torch.zeros(4, 2)
|
||||
model.example_input_array = torch.zeros(4, 4)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGMLVQ2D(data=train_ds, border=0.1)
|
||||
vis = VisGMLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=100,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
torch.save(model, "iris.pth")
|
||||
|
@@ -1,18 +1,33 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import (
|
||||
ImageGMLVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisImgComp,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
import prototorch as pt
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
@@ -34,12 +49,8 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
|
||||
test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 10
|
||||
@@ -53,14 +64,14 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.ImageGMLVQ(
|
||||
model = ImageGMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisImgComp(
|
||||
vis = VisImgComp(
|
||||
data=train_ds,
|
||||
num_columns=10,
|
||||
show=False,
|
||||
@@ -70,14 +81,14 @@ if __name__ == "__main__":
|
||||
embedding_data=200,
|
||||
flatten_data=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=1,
|
||||
prune_quota_per_epoch=10,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=15,
|
||||
@@ -86,16 +97,18 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
# es,
|
||||
es,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
97
examples/gmlvq_spiral.py
Normal file
97
examples/gmlvq_spiral.py
Normal file
@@ -0,0 +1,97 @@
|
||||
"""GMLVQ example using the spiral dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import (
|
||||
GMLVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 2
|
||||
prototypes_per_class = 10
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
transfer_function="swish_beta",
|
||||
transfer_beta=10.0,
|
||||
proto_lr=0.1,
|
||||
bb_lr=0.1,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(
|
||||
train_ds,
|
||||
show_last_only=False,
|
||||
block=False,
|
||||
)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=5,
|
||||
replace=True,
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=1.0,
|
||||
patience=5,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
pruning,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,24 +1,33 @@
|
||||
"""Growing Neural Gas example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import GrowingNeuralGas, VisNG2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Prepare the data
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
train_loader = DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
@@ -28,26 +37,31 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GrowingNeuralGas(
|
||||
model = GrowingNeuralGas(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Zeros(2),
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisNG2D(data=train_loader)
|
||||
vis = VisNG2D(data=train_loader)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=100,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
77
examples/grlvq_iris.py
Normal file
77
examples/grlvq_iris.py
Normal file
@@ -0,0 +1,77 @@
|
||||
"""GMLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import GRLVQ, VisSiameseGLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris([0, 1])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=2,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"per_class": 2
|
||||
},
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GRLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=5,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
torch.save(model, "iris.pth")
|
119
examples/gtlvq_mnist.py
Normal file
119
examples/gtlvq_mnist.py
Normal file
@@ -0,0 +1,119 @@
|
||||
"""GTLVQ example using the MNIST dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import (
|
||||
ImageGTLVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisImgComp,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
test_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
|
||||
test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 10
|
||||
prototypes_per_class = 1
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
latent_dim=28,
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = ImageGTLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
#Use one batch of data for subspace initiator.
|
||||
omega_initializer=pt.initializers.PCALinearTransformInitializer(
|
||||
next(iter(train_loader))[0].reshape(256, 28 * 28)))
|
||||
|
||||
# Callbacks
|
||||
vis = VisImgComp(
|
||||
data=train_ds,
|
||||
num_columns=10,
|
||||
show=False,
|
||||
tensorboard=True,
|
||||
random_data=100,
|
||||
add_embedding=True,
|
||||
embedding_data=200,
|
||||
flatten_data=False,
|
||||
)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=1,
|
||||
prune_quota_per_epoch=10,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=15,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
# using GPUs here is strongly recommended!
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
79
examples/gtlvq_moons.py
Normal file
79
examples/gtlvq_moons.py
Normal file
@@ -0,0 +1,79 @@
|
||||
"""Localized-GTLVQ example using the Moons dataset."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import GTLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(
|
||||
train_ds,
|
||||
batch_size=256,
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
# Hyperparameters
|
||||
# Latent_dim should be lower than input dim.
|
||||
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
|
||||
|
||||
# Initialize the model
|
||||
model = GTLVQ(hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds))
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
es = EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="max",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,52 +1,75 @@
|
||||
"""k-NN example using the Iris dataset from scikit-learn."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import KNN, VisGLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X = X[:, 0:3:2]
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X,
|
||||
y,
|
||||
test_size=0.5,
|
||||
random_state=42,
|
||||
)
|
||||
|
||||
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
|
||||
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
train_loader = DataLoader(train_ds, batch_size=16)
|
||||
test_loader = DataLoader(test_ds, batch_size=16)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(k=5)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.KNN(hparams, data=train_ds)
|
||||
model = KNN(hparams, data=train_ds)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(
|
||||
data=(x_train, y_train),
|
||||
vis = VisGLVQ2D(
|
||||
data=(X_train, y_train),
|
||||
resolution=200,
|
||||
block=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
max_epochs=1,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
@@ -54,5 +77,8 @@ if __name__ == "__main__":
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Recall
|
||||
y_pred = model.predict(torch.tensor(x_train))
|
||||
print(y_pred)
|
||||
y_pred = model.predict(torch.tensor(X_train))
|
||||
logging.info(y_pred)
|
||||
|
||||
# Test
|
||||
trainer.test(model, dataloaders=test_loader)
|
||||
|
@@ -1,29 +1,25 @@
|
||||
"""Kohonen Self Organizing Map."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models import KohonenSOM
|
||||
from prototorch.utils.colors import hex_to_rgb
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
|
||||
|
||||
def hex_to_rgb(hex_values):
|
||||
for v in hex_values:
|
||||
v = v.lstrip('#')
|
||||
lv = len(v)
|
||||
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
|
||||
yield c
|
||||
|
||||
|
||||
def rgb_to_hex(rgb_values):
|
||||
for v in rgb_values:
|
||||
c = "%02x%02x%02x" % tuple(v)
|
||||
yield c
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Vis2DColorSOM(pl.Callback):
|
||||
|
||||
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
||||
super().__init__()
|
||||
self.title = title
|
||||
@@ -31,7 +27,7 @@ class Vis2DColorSOM(pl.Callback):
|
||||
self.data = data
|
||||
self.pause_time = pause_time
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
@@ -44,12 +40,14 @@ class Vis2DColorSOM(pl.Callback):
|
||||
d = pl_module.compute_distances(self.data)
|
||||
wp = pl_module.predict_from_distances(d)
|
||||
for i, iloc in enumerate(wp):
|
||||
plt.text(iloc[1],
|
||||
iloc[0],
|
||||
cnames[i],
|
||||
ha="center",
|
||||
va="center",
|
||||
bbox=dict(facecolor="white", alpha=0.5, lw=0))
|
||||
plt.text(
|
||||
iloc[1],
|
||||
iloc[0],
|
||||
color_names[i],
|
||||
ha="center",
|
||||
va="center",
|
||||
bbox=dict(facecolor="white", alpha=0.5, lw=0),
|
||||
)
|
||||
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
plt.pause(self.pause_time)
|
||||
@@ -60,11 +58,12 @@ class Vis2DColorSOM(pl.Callback):
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Prepare the data
|
||||
hex_colors = [
|
||||
@@ -72,15 +71,15 @@ if __name__ == "__main__":
|
||||
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
|
||||
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
|
||||
]
|
||||
cnames = [
|
||||
color_names = [
|
||||
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
|
||||
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
|
||||
"lightgrey", "olive", "purple", "orange"
|
||||
]
|
||||
colors = list(hex_to_rgb(hex_colors))
|
||||
data = torch.Tensor(colors) / 255.0
|
||||
train_ds = torch.utils.data.TensorDataset(data)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
|
||||
train_ds = TensorDataset(data)
|
||||
train_loader = DataLoader(train_ds, batch_size=8)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
@@ -91,26 +90,31 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.KohonenSOM(
|
||||
model = KohonenSOM(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Random(3),
|
||||
prototypes_initializer=pt.initializers.RNCI(3),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 3)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = Vis2DColorSOM(data=data)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
max_epochs=500,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@@ -1,28 +1,36 @@
|
||||
"""Localized-GMLVQ example using the Moons dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import LGMLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=256,
|
||||
shuffle=True)
|
||||
train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
@@ -32,18 +40,20 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.LGMLVQ(hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
model = LGMLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
es = EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
@@ -53,14 +63,17 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@@ -1,90 +0,0 @@
|
||||
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
def plot_matrix(matrix):
|
||||
title = "Lambda matrix"
|
||||
plt.figure(title)
|
||||
plt.title(title)
|
||||
plt.imshow(matrix, cmap="gray")
|
||||
plt.axis("off")
|
||||
plt.colorbar()
|
||||
plt.show(block=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
|
||||
test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=10)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 2,
|
||||
"prototypes_per_class": 1
|
||||
},
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
proto_lr=0.0001,
|
||||
bb_lr=0.0001,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGMLVQ(
|
||||
hparams,
|
||||
# optimizer=torch.optim.SGD,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
|
||||
es = pl.callbacks.EarlyStopping(monitor="val_loss",
|
||||
min_delta=0.001,
|
||||
patience=50,
|
||||
verbose=False,
|
||||
mode="min")
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis, es],
|
||||
weights_summary=None,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader, test_loader)
|
||||
|
||||
# Save the model
|
||||
torch.save(model, "liramlvq_tecator.pt")
|
||||
|
||||
# Load a saved model
|
||||
saved_model = torch.load("liramlvq_tecator.pt")
|
||||
|
||||
# Display the Lambda matrix
|
||||
plot_matrix(saved_model.lambda_matrix)
|
||||
|
||||
# Testing
|
||||
trainer.test(model, test_dataloaders=test_loader)
|
@@ -1,14 +1,26 @@
|
||||
"""LVQMLN example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import (
|
||||
LVQMLN,
|
||||
PruneLoserPrototypes,
|
||||
VisSiameseGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
@@ -27,21 +39,22 @@ class Backbone(torch.nn.Module):
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 2],
|
||||
distribution=[3, 4, 5],
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
)
|
||||
@@ -50,28 +63,43 @@ if __name__ == "__main__":
|
||||
backbone = Backbone()
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.LVQMLN(
|
||||
model = LVQMLN(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
|
||||
prototypes_initializer=pt.initializers.SSCI(
|
||||
train_ds,
|
||||
transform=backbone,
|
||||
),
|
||||
backbone=backbone,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(
|
||||
vis = VisSiameseGLVQ2D(
|
||||
data=train_ds,
|
||||
map_protos=False,
|
||||
border=0.1,
|
||||
resolution=500,
|
||||
axis_off=True,
|
||||
)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=20,
|
||||
prune_quota_per_epoch=2,
|
||||
frequency=10,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
71
examples/median_lvq_iris.py
Normal file
71
examples/median_lvq_iris.py
Normal file
@@ -0,0 +1,71 @@
|
||||
"""Median-LVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import MedianLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(
|
||||
train_ds,
|
||||
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = MedianLVQ(
|
||||
hparams=dict(distribution=(3, 2), lr=0.01),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
es = EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.01,
|
||||
patience=5,
|
||||
mode="max",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,24 +1,35 @@
|
||||
"""Neural Gas example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import NeuralGas, VisNG2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import prototorch as pt
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare and pre-process the dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
x_train = x_train[:, 0:3:2]
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
@@ -26,7 +37,7 @@ if __name__ == "__main__":
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
@@ -36,9 +47,9 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.NeuralGas(
|
||||
model = NeuralGas(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Zeros(2),
|
||||
prototypes_initializer=pt.core.ZCI(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
@@ -46,17 +57,20 @@ if __name__ == "__main__":
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisNG2D(data=train_ds)
|
||||
vis = VisNG2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@@ -1,64 +1,70 @@
|
||||
"""RSLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision.transforms import Lambda
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import RSLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
train_loader = DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[2, 2, 3],
|
||||
proto_lr=0.05,
|
||||
lambd=0.1,
|
||||
variance=1.0,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.PLVQ(
|
||||
model = RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
# prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.2),
|
||||
# prototype_initializer=pt.components.Zeros(2),
|
||||
# prototype_initializer=pt.components.Ones(2, scale=2.0),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds)
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
terminate_on_nan=True,
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
detect_anomaly=True,
|
||||
max_epochs=100,
|
||||
log_every_n_steps=1,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@@ -1,14 +1,22 @@
|
||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
@@ -27,46 +35,50 @@ class Backbone(torch.nn.Module):
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 3],
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone()
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGLVQ(
|
||||
model = SiameseGLVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
87
examples/siamese_gtlvq_iris.py
Normal file
87
examples/siamese_gtlvq_iris.py
Normal file
@@ -0,0 +1,87 @@
|
||||
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 3],
|
||||
lr=0.01,
|
||||
input_dim=2,
|
||||
latent_dim=1,
|
||||
)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone(latent_size=hparams["input_dim"])
|
||||
|
||||
# Initialize the model
|
||||
model = SiameseGTLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
129
examples/warm_starting.py
Normal file
129
examples/warm_starting.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from lightning_fabric.utilities.seed import seed_everything
|
||||
from prototorch.models import (
|
||||
GLVQ,
|
||||
KNN,
|
||||
GrowingNeuralGas,
|
||||
PruneLoserPrototypes,
|
||||
VisGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gpus", type=int, default=0)
|
||||
parser.add_argument("--fast_dev_run", type=bool, default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare the data
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
|
||||
|
||||
# Initialize the gng
|
||||
gng = GrowingNeuralGas(
|
||||
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
es = EarlyStopping(
|
||||
monitor="loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer for GNG
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cpu",
|
||||
max_epochs=50 if args.fast_dev_run else
|
||||
1000, # 10 epochs fast dev run reproducible DIV error.
|
||||
callbacks=[
|
||||
es,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(gng, train_loader)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[],
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Warm-start prototypes
|
||||
knn = KNN(dict(k=1), data=train_ds)
|
||||
prototypes = gng.prototypes
|
||||
plabels = knn.predict(prototypes)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.LCI(prototypes),
|
||||
labels_initializer=pt.initializers.LLI(plabels),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.02,
|
||||
idle_epochs=2,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=10,
|
||||
mode="min",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
accelerator="cuda" if args.gpus else "cpu",
|
||||
devices=args.gpus if args.gpus else "auto",
|
||||
fast_dev_run=args.fast_dev_run,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
BIN
glvq_iris.ckpt
Normal file
BIN
glvq_iris.ckpt
Normal file
Binary file not shown.
@@ -1,15 +1,39 @@
|
||||
"""`models` plugin for the `prototorch` package."""
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
||||
from .cbc import CBC, ImageCBC
|
||||
from .glvq import (GLVQ, GLVQ1, GLVQ21, GMLVQ, GRLVQ, LGMLVQ, LVQMLN,
|
||||
ImageGLVQ, ImageGMLVQ, SiameseGLVQ, SiameseGMLVQ)
|
||||
from .glvq import (
|
||||
GLVQ,
|
||||
GLVQ1,
|
||||
GLVQ21,
|
||||
GMLVQ,
|
||||
GRLVQ,
|
||||
GTLVQ,
|
||||
LGMLVQ,
|
||||
LVQMLN,
|
||||
ImageGLVQ,
|
||||
ImageGMLVQ,
|
||||
ImageGTLVQ,
|
||||
SiameseGLVQ,
|
||||
SiameseGMLVQ,
|
||||
SiameseGTLVQ,
|
||||
)
|
||||
from .knn import KNN
|
||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
|
||||
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
|
||||
from .lvq import (
|
||||
LVQ1,
|
||||
LVQ21,
|
||||
MedianLVQ,
|
||||
)
|
||||
from .probabilistic import (
|
||||
CELVQ,
|
||||
RSLVQ,
|
||||
SLVQ,
|
||||
)
|
||||
from .unsupervised import (
|
||||
GrowingNeuralGas,
|
||||
KohonenSOM,
|
||||
NeuralGas,
|
||||
)
|
||||
from .vis import *
|
||||
|
||||
__version__ = "0.1.8"
|
||||
__version__ = "0.6.0"
|
||||
|
@@ -1,29 +1,30 @@
|
||||
"""Abstract classes to be inherited by prototorch models."""
|
||||
|
||||
from typing import Final, final
|
||||
import logging
|
||||
|
||||
import prototorch
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchmetrics
|
||||
from prototorch.components import Components, LabeledComponents
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules import WTAC, LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchMixin(object):
|
||||
pass
|
||||
from prototorch.core.competitions import WTAC
|
||||
from prototorch.core.components import (
|
||||
AbstractComponents,
|
||||
Components,
|
||||
LabeledComponents,
|
||||
)
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
from prototorch.core.initializers import (
|
||||
LabelsInitializer,
|
||||
ZerosCompInitializer,
|
||||
)
|
||||
from prototorch.core.pooling import stratified_min_pooling
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchBolt(pl.LightningModule):
|
||||
"""All ProtoTorch models are ProtoTorch Bolts."""
|
||||
def __repr__(self):
|
||||
surep = super().__repr__()
|
||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||
return wrapped
|
||||
|
||||
|
||||
class PrototypeModel(ProtoTorchBolt):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
@@ -38,8 +39,40 @@ class PrototypeModel(ProtoTorchBolt):
|
||||
self.lr_scheduler = kwargs.get("lr_scheduler", None)
|
||||
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
|
||||
if self.lr_scheduler is not None:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
def reconfigure_optimizers(self):
|
||||
if self.trainer:
|
||||
self.trainer.strategy.setup_optimizers(self.trainer)
|
||||
else:
|
||||
logging.warning("No trainer to reconfigure optimizers!")
|
||||
|
||||
def __repr__(self):
|
||||
surep = super().__repr__()
|
||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||
return wrapped
|
||||
|
||||
|
||||
class PrototypeModel(ProtoTorchBolt):
|
||||
proto_layer: AbstractComponents
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||
self.distance_layer = LambdaLayer(distance_fn)
|
||||
self.distance_layer = LambdaLayer(distance_fn, name="distance_fn")
|
||||
|
||||
@property
|
||||
def num_prototypes(self):
|
||||
@@ -54,48 +87,33 @@ class PrototypeModel(ProtoTorchBolt):
|
||||
"""Only an alias for the prototypes."""
|
||||
return self.prototypes
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
if self.lr_scheduler is not None:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
@final
|
||||
def reconfigure_optimizers(self):
|
||||
self.trainer.accelerator_backend.setup_optimizers(self.trainer)
|
||||
|
||||
def add_prototypes(self, *args, **kwargs):
|
||||
self.proto_layer.add_components(*args, **kwargs)
|
||||
self.hparams["distribution"] = self.proto_layer.distribution
|
||||
self.reconfigure_optimizers()
|
||||
|
||||
def remove_prototypes(self, indices):
|
||||
self.proto_layer.remove_components(indices)
|
||||
self.hparams["distribution"] = self.proto_layer.distribution
|
||||
self.reconfigure_optimizers()
|
||||
|
||||
|
||||
class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
proto_layer: Components
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
if prototypes_initializer is not None:
|
||||
self.proto_layer = Components(
|
||||
self.hparams.num_prototypes,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
self.hparams["num_prototypes"],
|
||||
initializer=prototypes_initializer,
|
||||
)
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos = self.proto_layer()
|
||||
protos = self.proto_layer().type_as(x)
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
@@ -105,27 +123,43 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
|
||||
class SupervisedPrototypeModel(PrototypeModel):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
proto_layer: LabeledComponents
|
||||
|
||||
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
)
|
||||
distribution = hparams.get("distribution", None)
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
labels_initializer = kwargs.get("labels_initializer",
|
||||
LabelsInitializer())
|
||||
if not skip_proto_layer:
|
||||
# when subclasses do not need a customized prototype layer
|
||||
if prototypes_initializer is not None:
|
||||
# when building a new model
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=distribution,
|
||||
components_initializer=prototypes_initializer,
|
||||
labels_initializer=labels_initializer,
|
||||
)
|
||||
proto_shape = self.proto_layer.components.shape[1:]
|
||||
self.hparams["initialized_proto_shape"] = proto_shape
|
||||
else:
|
||||
# when restoring a checkpointed model
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=distribution,
|
||||
components_initializer=ZerosCompInitializer(
|
||||
self.hparams["initialized_proto_shape"]),
|
||||
)
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
return self.proto_layer.labels.detach().cpu()
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return len(self.proto_layer.distribution)
|
||||
return self.proto_layer.num_classes
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
@@ -134,15 +168,14 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
y_pred = self.predict_from_distances(distances)
|
||||
# TODO
|
||||
y_pred = torch.eye(self.num_classes, device=self.device)[
|
||||
y_pred.long()] # depends on labels {0,...,num_classes}
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = F.softmin(winning, dim=1)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
plabels = self.proto_layer.component_labels
|
||||
_, plabels = self.proto_layer()
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
@@ -154,22 +187,46 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def log_acc(self, distances, targets, tag):
|
||||
preds = self.predict_from_distances(distances)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||
# `.int()` because FloatTensors are assumed to be class probabilities
|
||||
accuracy = torchmetrics.functional.accuracy(
|
||||
preds.int(),
|
||||
targets.int(),
|
||||
"multiclass",
|
||||
num_classes=self.num_classes,
|
||||
)
|
||||
|
||||
self.log(tag,
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
self.log(
|
||||
tag,
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
)
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, targets = batch
|
||||
|
||||
preds = self.predict(x)
|
||||
accuracy = torchmetrics.functional.accuracy(
|
||||
preds.int(),
|
||||
targets.int(),
|
||||
"multiclass",
|
||||
num_classes=self.num_classes,
|
||||
)
|
||||
|
||||
self.log("test_acc", accuracy)
|
||||
|
||||
|
||||
class ProtoTorchMixin:
|
||||
"""All mixins are ProtoTorchMixins."""
|
||||
|
||||
|
||||
class NonGradientMixin(ProtoTorchMixin):
|
||||
"""Mixin for custom non-gradient optimization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization: Final = False
|
||||
self.automatic_optimization = False
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
raise NotImplementedError
|
||||
@@ -177,8 +234,10 @@ class NonGradientMixin(ProtoTorchMixin):
|
||||
|
||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||
"""Mixin for models with image prototypes."""
|
||||
@final
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
proto_layer: Components
|
||||
components: torch.Tensor
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
||||
|
@@ -1,32 +1,39 @@
|
||||
"""Lightning Callbacks."""
|
||||
|
||||
import logging
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
from prototorch.core.initializers import LiteralCompInitializer
|
||||
|
||||
from .extras import ConnectionTopology
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from prototorch.models import GLVQ, GrowingNeuralGas
|
||||
|
||||
|
||||
class PruneLoserPrototypes(pl.Callback):
|
||||
def __init__(self,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=-1,
|
||||
frequency=1,
|
||||
replace=False,
|
||||
initializer=None,
|
||||
verbose=False):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=-1,
|
||||
frequency=1,
|
||||
replace=False,
|
||||
prototypes_initializer=None,
|
||||
verbose=False,
|
||||
):
|
||||
self.threshold = threshold # minimum win ratio
|
||||
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
||||
self.prune_quota_per_epoch = prune_quota_per_epoch
|
||||
self.frequency = frequency
|
||||
self.replace = replace
|
||||
self.verbose = verbose
|
||||
self.initializer = initializer
|
||||
self.prototypes_initializer = prototypes_initializer
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
return None
|
||||
if (trainer.current_epoch + 1) % self.frequency:
|
||||
@@ -41,40 +48,44 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
prune_labels = prune_labels[:self.prune_quota_per_epoch]
|
||||
|
||||
if len(to_prune) > 0:
|
||||
if self.verbose:
|
||||
print(f"\nPrototype win ratios: {ratios}")
|
||||
print(f"Pruning prototypes at: {to_prune}")
|
||||
print(f"Corresponding labels are: {prune_labels.tolist()}")
|
||||
logging.debug(f"\nPrototype win ratios: {ratios}")
|
||||
logging.debug(f"Pruning prototypes at: {to_prune}")
|
||||
logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
|
||||
|
||||
cur_num_protos = pl_module.num_prototypes
|
||||
pl_module.remove_prototypes(indices=to_prune)
|
||||
|
||||
if self.replace:
|
||||
labels, counts = torch.unique(prune_labels,
|
||||
sorted=True,
|
||||
return_counts=True)
|
||||
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
||||
if self.verbose:
|
||||
print(f"Re-adding pruned prototypes...")
|
||||
print(f"{distribution=}")
|
||||
pl_module.add_prototypes(distribution=distribution,
|
||||
initializer=self.initializer)
|
||||
|
||||
logging.info(f"Re-adding pruned prototypes...")
|
||||
logging.debug(f"distribution={distribution}")
|
||||
|
||||
pl_module.add_prototypes(
|
||||
distribution=distribution,
|
||||
components_initializer=self.prototypes_initializer)
|
||||
new_num_protos = pl_module.num_prototypes
|
||||
if self.verbose:
|
||||
print(f"`num_prototypes` changed from {cur_num_protos} "
|
||||
f"to {new_num_protos}.")
|
||||
|
||||
logging.info(f"`num_prototypes` changed from {cur_num_protos} "
|
||||
f"to {new_num_protos}.")
|
||||
return True
|
||||
|
||||
|
||||
class PrototypeConvergence(pl.Callback):
|
||||
|
||||
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
||||
self.min_delta = min_delta
|
||||
self.idle_epochs = idle_epochs # epochs to wait
|
||||
self.verbose = verbose
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
return None
|
||||
if self.verbose:
|
||||
print("Stopping...")
|
||||
|
||||
logging.info("Stopping...")
|
||||
# TODO
|
||||
return True
|
||||
|
||||
@@ -87,16 +98,21 @@ class GNGCallback(pl.Callback):
|
||||
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, reduction=0.1, freq=10):
|
||||
self.reduction = reduction
|
||||
self.freq = freq
|
||||
|
||||
def on_epoch_end(self, trainer: pl.Trainer, pl_module):
|
||||
def on_train_epoch_end(
|
||||
self,
|
||||
trainer: pl.Trainer,
|
||||
pl_module: "GrowingNeuralGas",
|
||||
):
|
||||
if (trainer.current_epoch + 1) % self.freq == 0:
|
||||
# Get information
|
||||
errors = pl_module.errors
|
||||
topology: ConnectionTopology = pl_module.topology_layer
|
||||
components: Components = pl_module.proto_layer.components
|
||||
components = pl_module.proto_layer.components
|
||||
|
||||
# Insertion point
|
||||
worst = torch.argmax(errors)
|
||||
@@ -116,7 +132,9 @@ class GNGCallback(pl.Callback):
|
||||
|
||||
# Add component
|
||||
pl_module.proto_layer.add_components(
|
||||
initialized_components=new_component.unsqueeze(0))
|
||||
1,
|
||||
initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
|
||||
)
|
||||
|
||||
# Adjust Topology
|
||||
topology.add_prototype()
|
||||
@@ -131,4 +149,4 @@ class GNGCallback(pl.Callback):
|
||||
pl_module.errors[
|
||||
worst_neighbor] = errors[worst_neighbor] * self.reduction
|
||||
|
||||
trainer.accelerator_backend.setup_optimizers(trainer)
|
||||
trainer.strategy.setup_optimizers(trainer)
|
||||
|
@@ -1,62 +1,74 @@
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.core.competitions import CBCC
|
||||
from prototorch.core.components import ReasoningComponents
|
||||
from prototorch.core.initializers import RandomReasoningsInitializer
|
||||
from prototorch.core.losses import MarginLoss
|
||||
from prototorch.core.similarities import euclidean_similarity
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from .abstract import ImagePrototypesMixin
|
||||
from .extras import (CosineSimilarity, MarginLoss, ReasoningLayer,
|
||||
euclidean_similarity, rescaled_cosine_similarity,
|
||||
shift_activation)
|
||||
from .glvq import SiameseGLVQ
|
||||
|
||||
|
||||
class CBC(SiameseGLVQ):
|
||||
"""Classification-By-Components."""
|
||||
def __init__(self, hparams, margin=0.1, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.margin = margin
|
||||
self.similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
num_components = self.components.shape[0]
|
||||
self.reasoning_layer = ReasoningLayer(num_components=num_components,
|
||||
num_classes=self.num_classes)
|
||||
self.component_layer = self.proto_layer
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
return self.prototypes
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, skip_proto_layer=True, **kwargs)
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
return self.reasoning_layer.reasonings.cpu()
|
||||
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
components_initializer = kwargs.get("components_initializer", None)
|
||||
reasonings_initializer = kwargs.get("reasonings_initializer",
|
||||
RandomReasoningsInitializer())
|
||||
self.components_layer = ReasoningComponents(
|
||||
self.hparams.distribution,
|
||||
components_initializer=components_initializer,
|
||||
reasonings_initializer=reasonings_initializer,
|
||||
)
|
||||
self.similarity_layer = LambdaLayer(similarity_fn)
|
||||
self.competition_layer = CBCC()
|
||||
|
||||
# Namespace hook
|
||||
self.proto_layer = self.components_layer
|
||||
|
||||
self.loss = MarginLoss(self.hparams.margin)
|
||||
|
||||
def forward(self, x):
|
||||
components, _ = self.component_layer()
|
||||
components, reasonings = self.components_layer()
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_components = self.backbone(components)
|
||||
self.backbone.requires_grad_(True)
|
||||
detections = self.similarity_fn(latent_x, latent_components)
|
||||
probs = self.reasoning_layer(detections)
|
||||
detections = self.similarity_layer(latent_x, latent_components)
|
||||
probs = self.competition_layer(detections, reasonings)
|
||||
return probs
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
# x = x.view(x.size(0), -1)
|
||||
y_pred = self(x)
|
||||
num_classes = self.reasoning_layer.num_classes
|
||||
num_classes = self.num_classes
|
||||
y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
|
||||
loss = MarginLoss(self.margin)(y_pred, y_true).mean(dim=0)
|
||||
loss = self.loss(y_pred, y_true).mean()
|
||||
return y_pred, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
|
||||
preds = torch.argmax(y_pred, dim=1)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(),
|
||||
batch[1].int())
|
||||
self.log("train_acc",
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
accuracy = torchmetrics.functional.accuracy(
|
||||
preds.int(),
|
||||
batch[1].int(),
|
||||
"multiclass",
|
||||
num_classes=self.num_classes,
|
||||
)
|
||||
self.log(
|
||||
"train_acc",
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
)
|
||||
return train_loss
|
||||
|
||||
def predict(self, x):
|
||||
@@ -70,7 +82,3 @@ class ImageCBC(ImagePrototypesMixin, CBC):
|
||||
"""CBC model that constrains the components to the range [0, 1] by
|
||||
clamping after updates.
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
# Namespace hook
|
||||
self.proto_layer = self.component_layer
|
||||
|
@@ -1,124 +0,0 @@
|
||||
"""Prototorch Data Modules
|
||||
|
||||
This allows to store the used dataset inside a Lightning Module.
|
||||
Mainly used for PytorchLightningCLI configurations.
|
||||
"""
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import DataLoader, Dataset, random_split
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
# MNIST
|
||||
class MNISTDataModule(pl.LightningDataModule):
|
||||
def __init__(self, batch_size=32):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
# Download mnist dataset as side-effect, only called on the first cpu
|
||||
def prepare_data(self):
|
||||
MNIST("~/datasets", train=True, download=True)
|
||||
MNIST("~/datasets", train=False, download=True)
|
||||
|
||||
# called for every GPU/machine (assigning state is OK)
|
||||
def setup(self, stage=None):
|
||||
# Transforms
|
||||
transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
])
|
||||
# Split dataset
|
||||
if stage in (None, "fit"):
|
||||
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
||||
self.mnist_train, self.mnist_val = random_split(
|
||||
mnist_train,
|
||||
[55000, 5000],
|
||||
)
|
||||
if stage == (None, "test"):
|
||||
self.mnist_test = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
def train_dataloader(self):
|
||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
||||
return mnist_train
|
||||
|
||||
def val_dataloader(self):
|
||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
||||
return mnist_val
|
||||
|
||||
def test_dataloader(self):
|
||||
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
||||
return mnist_test
|
||||
|
||||
|
||||
# def train_on_mnist(batch_size=256) -> type:
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = MNISTDataModule(batch_size=batch_size)
|
||||
|
||||
# def __init__(self, *args, **kwargs):
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# dc: Type[DataClass] = DataClass
|
||||
# return dc
|
||||
|
||||
|
||||
# ABSTRACT
|
||||
class GeneralDataModule(pl.LightningDataModule):
|
||||
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
|
||||
super().__init__()
|
||||
self.train_dataset = dataset
|
||||
self.batch_size = batch_size
|
||||
|
||||
def train_dataloader(self) -> DataLoader:
|
||||
return DataLoader(self.train_dataset, batch_size=self.batch_size)
|
||||
|
||||
|
||||
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = GeneralDataModule(dataset, batch_size)
|
||||
# datashape = dataset[0][0].shape
|
||||
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
|
||||
|
||||
# def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer",
|
||||
# pt.components.Zeros(self.datashape),
|
||||
# )
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# return DataClass
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# from prototorch.models import GLVQ
|
||||
|
||||
# demo_dataset = pt.datasets.Iris()
|
||||
|
||||
# TrainingClass: Type = train_on_dataset(demo_dataset)
|
||||
|
||||
# class DemoGLVQ(TrainingClass, GLVQ):
|
||||
# """Model Definition."""
|
||||
|
||||
# # Hyperparameters
|
||||
# hparams = dict(
|
||||
# distribution={
|
||||
# "num_classes": 3,
|
||||
# "prototypes_per_class": 4
|
||||
# },
|
||||
# lr=0.01,
|
||||
# )
|
||||
|
||||
# initialized = DemoGLVQ(hparams)
|
||||
# print(initialized)
|
@@ -5,26 +5,75 @@ Modules not yet available in prototorch go here temporarily.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.similarities import cosine_similarity
|
||||
from prototorch.core.similarities import gaussian
|
||||
|
||||
|
||||
def rescaled_cosine_similarity(x, y):
|
||||
"""Cosine Similarity rescaled to [0, 1]."""
|
||||
similarities = cosine_similarity(x, y)
|
||||
return (similarities + 1.0) / 2.0
|
||||
def rank_scaled_gaussian(distances, lambd):
|
||||
order = torch.argsort(distances, dim=1)
|
||||
ranks = torch.argsort(order, dim=1)
|
||||
return torch.exp(-torch.exp(-ranks / lambd) * distances)
|
||||
|
||||
|
||||
def shift_activation(x):
|
||||
return (x + 1.0) / 2.0
|
||||
def orthogonalization(tensors):
|
||||
"""Orthogonalization via polar decomposition """
|
||||
u, _, v = torch.svd(tensors, compute_uv=True)
|
||||
u_shape = tuple(list(u.shape))
|
||||
v_shape = tuple(list(v.shape))
|
||||
|
||||
# reshape to (num x N x M)
|
||||
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
|
||||
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
|
||||
|
||||
out = u @ v.permute([0, 2, 1])
|
||||
|
||||
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def euclidean_similarity(x, y, variance=1.0):
|
||||
d = euclidean_distance(x, y)
|
||||
return torch.exp(-(d * d) / (2 * variance))
|
||||
def ltangent_distance(x, y, omegas):
|
||||
r"""Localized Tangent distance.
|
||||
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
|
||||
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
|
||||
|
||||
:param `torch.tensor` omegas: Three dimensional matrix
|
||||
:rtype: `torch.tensor`
|
||||
"""
|
||||
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
|
||||
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
|
||||
omegas, omegas.permute([0, 2, 1]))
|
||||
projected_x = x @ p
|
||||
projected_y = torch.diagonal(y @ p).T
|
||||
expanded_y = torch.unsqueeze(projected_y, dim=1)
|
||||
batchwise_difference = expanded_y - projected_x
|
||||
differences_squared = batchwise_difference**2
|
||||
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
|
||||
distances = distances.permute(1, 0)
|
||||
return distances
|
||||
|
||||
|
||||
class GaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, variance):
|
||||
super().__init__()
|
||||
self.variance = variance
|
||||
|
||||
def forward(self, distances):
|
||||
return gaussian(distances, self.variance)
|
||||
|
||||
|
||||
class RankScaledGaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, lambd):
|
||||
super().__init__()
|
||||
self.lambd = lambd
|
||||
|
||||
def forward(self, distances):
|
||||
return rank_scaled_gaussian(distances, self.lambd)
|
||||
|
||||
|
||||
class ConnectionTopology(torch.nn.Module):
|
||||
|
||||
def __init__(self, agelimit, num_prototypes):
|
||||
super().__init__()
|
||||
self.agelimit = agelimit
|
||||
@@ -79,64 +128,3 @@ class ConnectionTopology(torch.nn.Module):
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(agelimit): ({self.agelimit})"
|
||||
|
||||
|
||||
class CosineSimilarity(torch.nn.Module):
|
||||
def __init__(self, activation=shift_activation):
|
||||
super().__init__()
|
||||
self.activation = activation
|
||||
|
||||
def forward(self, x, y):
|
||||
epsilon = torch.finfo(x.dtype).eps
|
||||
normed_x = (x / x.pow(2).sum(dim=tuple(range(
|
||||
1, x.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
normed_y = (y / y.pow(2).sum(dim=tuple(range(
|
||||
1, y.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
# normed_x = (x / torch.linalg.norm(x, dim=1))
|
||||
diss = torch.inner(normed_x, normed_y)
|
||||
return self.activation(diss)
|
||||
|
||||
|
||||
class MarginLoss(torch.nn.modules.loss._Loss):
|
||||
def __init__(self,
|
||||
margin=0.3,
|
||||
size_average=None,
|
||||
reduce=None,
|
||||
reduction="mean"):
|
||||
super().__init__(size_average, reduce, reduction)
|
||||
self.margin = margin
|
||||
|
||||
def forward(self, input_, target):
|
||||
dp = torch.sum(target * input_, dim=-1)
|
||||
dm = torch.max(input_ - target, dim=-1).values
|
||||
return torch.nn.functional.relu(dm - dp + self.margin)
|
||||
|
||||
|
||||
class ReasoningLayer(torch.nn.Module):
|
||||
def __init__(self, num_components, num_classes, num_replicas=1):
|
||||
super().__init__()
|
||||
self.num_replicas = num_replicas
|
||||
self.num_classes = num_classes
|
||||
probabilities_init = torch.zeros(2, 1, num_components,
|
||||
self.num_classes)
|
||||
probabilities_init.uniform_(0.4, 0.6)
|
||||
# TODO Use `self.register_parameter("param", Paramater(param))` instead
|
||||
self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
pk = self.reasoning_probabilities[0]
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1]
|
||||
ik = 1 - pk - nk
|
||||
img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
|
||||
return img.unsqueeze(1)
|
||||
|
||||
def forward(self, detections):
|
||||
pk = self.reasoning_probabilities[0].clamp(0, 1)
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1].clamp(0, 1)
|
||||
numerator = (detections @ (pk - nk)) + nk.sum(1)
|
||||
probs = numerator / (pk + nk).sum(1)
|
||||
probs = probs.squeeze(0)
|
||||
return probs
|
||||
|
@@ -1,44 +1,54 @@
|
||||
"""Models based on the GLVQ framework."""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (lomega_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.components import LinearMapping
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
from prototorch.core.competitions import wtac
|
||||
from prototorch.core.distances import (
|
||||
lomega_distance,
|
||||
omega_distance,
|
||||
squared_euclidean_distance,
|
||||
)
|
||||
from prototorch.core.initializers import EyeLinearTransformInitializer
|
||||
from prototorch.core.losses import (
|
||||
GLVQLoss,
|
||||
lvq1_loss,
|
||||
lvq21_loss,
|
||||
)
|
||||
from prototorch.core.transforms import LinearTransform
|
||||
from prototorch.nn.wrappers import LambdaLayer, LossLayer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
||||
from .extras import ltangent_distance, orthogonalization
|
||||
|
||||
|
||||
class GLVQ(SupervisedPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("margin", 0.0)
|
||||
self.hparams.setdefault("transfer_fn", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
# Layers
|
||||
transfer_fn = get_activation(self.hparams.transfer_fn)
|
||||
self.transfer_layer = LambdaLayer(transfer_fn)
|
||||
|
||||
# Loss
|
||||
self.loss = LossLayer(glvq_loss)
|
||||
self.loss = GLVQLoss(
|
||||
margin=self.hparams["margin"],
|
||||
transfer_fn=self.hparams["transfer_fn"],
|
||||
beta=self.hparams["transfer_beta"],
|
||||
)
|
||||
|
||||
# Prototype metrics
|
||||
self.initialize_prototype_win_ratios()
|
||||
# def on_save_checkpoint(self, checkpoint):
|
||||
# if "prototype_win_ratios" in checkpoint["state_dict"]:
|
||||
# del checkpoint["state_dict"]["prototype_win_ratios"]
|
||||
|
||||
def initialize_prototype_win_ratios(self):
|
||||
self.register_buffer(
|
||||
"prototype_win_ratios",
|
||||
torch.zeros(self.num_prototypes, device=self.device))
|
||||
|
||||
def on_epoch_start(self):
|
||||
def on_train_epoch_start(self):
|
||||
self.initialize_prototype_win_ratios()
|
||||
|
||||
def log_prototype_win_ratios(self, distances):
|
||||
@@ -59,10 +69,8 @@ class GLVQ(SupervisedPrototypeModel):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
mu = self.loss(out, y, prototype_labels=plabels)
|
||||
batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
_, plabels = self.proto_layer()
|
||||
loss = self.loss(out, y, plabels)
|
||||
return out, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
@@ -104,6 +112,7 @@ class SiameseGLVQ(GLVQ):
|
||||
transformation pipeline are only learned from the inputs.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
hparams,
|
||||
backbone=torch.nn.Identity(),
|
||||
@@ -114,32 +123,17 @@ class SiameseGLVQ(GLVQ):
|
||||
self.backbone = backbone
|
||||
self.both_path_gradients = both_path_gradients
|
||||
|
||||
def configure_optimizers(self):
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
# Only add a backbone optimizer if backbone has trainable parameters
|
||||
if (bb_params := list(self.backbone.parameters())):
|
||||
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
|
||||
optimizers = [proto_opt, bb_opt]
|
||||
else:
|
||||
optimizers = [proto_opt]
|
||||
if self.lr_scheduler is not None:
|
||||
schedulers = []
|
||||
for optimizer in optimizers:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
schedulers.append(scheduler)
|
||||
return optimizers, schedulers
|
||||
else:
|
||||
return optimizers
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = get_flat(x, protos)
|
||||
x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
|
||||
bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
|
||||
|
||||
self.backbone.requires_grad_(bb_grad and self.both_path_gradients)
|
||||
latent_protos = self.backbone(protos)
|
||||
self.backbone.requires_grad_(True)
|
||||
self.backbone.requires_grad_(bb_grad)
|
||||
|
||||
distances = self.distance_layer(latent_x, latent_protos)
|
||||
return distances
|
||||
|
||||
@@ -169,6 +163,7 @@ class LVQMLN(SiameseGLVQ):
|
||||
rather in the embedding space.
|
||||
|
||||
"""
|
||||
|
||||
def compute_distances(self, x):
|
||||
latent_protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
@@ -184,17 +179,22 @@ class GRLVQ(SiameseGLVQ):
|
||||
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
||||
|
||||
"""
|
||||
_relevances: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
relevances = torch.ones(self.hparams.input_dim, device=self.device)
|
||||
relevances = torch.ones(self.hparams["input_dim"], device=self.device)
|
||||
self.register_parameter("_relevances", Parameter(relevances))
|
||||
|
||||
# Override the backbone
|
||||
self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances),
|
||||
self.backbone = LambdaLayer(self._apply_relevances,
|
||||
name="relevance scaling")
|
||||
|
||||
def _apply_relevances(self, x):
|
||||
return x @ torch.diag(self._relevances)
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
return self._relevances.detach().cpu()
|
||||
@@ -209,22 +209,27 @@ class SiameseGMLVQ(SiameseGLVQ):
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Override the backbone
|
||||
self.backbone = torch.nn.Linear(self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
bias=False)
|
||||
omega_initializer = kwargs.get("omega_initializer",
|
||||
EyeLinearTransformInitializer())
|
||||
self.backbone = LinearTransform(
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
initializer=omega_initializer,
|
||||
)
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self.backbone.weight.detach().cpu()
|
||||
return self.backbone.weights
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self.backbone.weight # (latent_dim, input_dim)
|
||||
lam = omega.T @ omega
|
||||
omega = self.backbone.weights # (input_dim, latent_dim)
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
|
||||
@@ -235,27 +240,31 @@ class GMLVQ(GLVQ):
|
||||
function. This makes it easier to implement a localized variant.
|
||||
|
||||
"""
|
||||
|
||||
# Parameters
|
||||
_omega: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
omega_initializer = kwargs.get("omega_initializer", None)
|
||||
initialized_omega = kwargs.get("initialized_omega", None)
|
||||
if omega_initializer is not None or initialized_omega is not None:
|
||||
self.omega_layer = LinearMapping(
|
||||
mapping_shape=(self.hparams.input_dim, self.hparams.latent_dim),
|
||||
initializer=omega_initializer,
|
||||
initialized_linearmapping=initialized_omega,
|
||||
)
|
||||
omega_initializer = kwargs.get("omega_initializer",
|
||||
EyeLinearTransformInitializer())
|
||||
omega = omega_initializer.generate(self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"])
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
self.register_parameter("_omega", Parameter(self.omega_layer.mapping))
|
||||
self.backbone = LambdaLayer(lambda x: x @ self._omega, name = "omega matrix")
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self._omega.detach() # (input_dim, latent_dim)
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos, self._omega)
|
||||
@@ -264,27 +273,10 @@ class GMLVQ(GLVQ):
|
||||
def extra_repr(self):
|
||||
return f"(omega): (shape: {tuple(self._omega.shape)})"
|
||||
|
||||
def predict_latent(self, x, map_protos=True):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
if map_protos:
|
||||
protos = self.backbone(protos)
|
||||
d = squared_euclidean_distance(x, protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
|
||||
|
||||
class LGMLVQ(GMLVQ):
|
||||
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", lomega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
@@ -292,15 +284,59 @@ class LGMLVQ(GMLVQ):
|
||||
# Re-register `_omega` to override the one from the super class.
|
||||
omega = torch.randn(
|
||||
self.num_prototypes,
|
||||
self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
device=self.device,
|
||||
)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
|
||||
class GTLVQ(LGMLVQ):
|
||||
"""Localized and Generalized Tangent Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
omega_initializer = kwargs.get("omega_initializer")
|
||||
|
||||
if omega_initializer is not None:
|
||||
subspace = omega_initializer.generate(
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
)
|
||||
omega = torch.repeat_interleave(
|
||||
subspace.unsqueeze(0),
|
||||
self.num_prototypes,
|
||||
dim=0,
|
||||
)
|
||||
else:
|
||||
omega = torch.rand(
|
||||
self.num_prototypes,
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
# Re-register `_omega` to override the one from the super class.
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
||||
|
||||
|
||||
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
|
||||
"""Generalized Tangent Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class GLVQ1(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq1_loss)
|
||||
@@ -309,6 +345,7 @@ class GLVQ1(GLVQ):
|
||||
|
||||
class GLVQ21(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 2.1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq21_loss)
|
||||
@@ -331,3 +368,18 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
|
||||
"""GTLVQ for training on image data.
|
||||
|
||||
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
||||
|
@@ -2,16 +2,22 @@
|
||||
|
||||
import warnings
|
||||
|
||||
from prototorch.components import LabeledComponents
|
||||
from prototorch.modules import KNNC
|
||||
from prototorch.core.competitions import KNNC
|
||||
from prototorch.core.components import LabeledComponents
|
||||
from prototorch.core.initializers import (
|
||||
LiteralCompInitializer,
|
||||
LiteralLabelsInitializer,
|
||||
)
|
||||
from prototorch.utils.utils import parse_data_arg
|
||||
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
|
||||
|
||||
class KNN(SupervisedPrototypeModel):
|
||||
"""K-Nearest-Neighbors classification algorithm."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
super().__init__(hparams, skip_proto_layer=True, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("k", 1)
|
||||
@@ -19,18 +25,19 @@ class KNN(SupervisedPrototypeModel):
|
||||
data = kwargs.get("data", None)
|
||||
if data is None:
|
||||
raise ValueError("KNN requires data, but was not provided!")
|
||||
data, targets = parse_data_arg(data)
|
||||
|
||||
# Layers
|
||||
self.proto_layer = LabeledComponents(initialized_components=data)
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=len(data) * [1],
|
||||
components_initializer=LiteralCompInitializer(data),
|
||||
labels_initializer=LiteralLabelsInitializer(targets))
|
||||
self.competition_layer = KNNC(k=self.hparams.k)
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
return 1 # skip training step
|
||||
|
||||
def on_train_batch_start(self,
|
||||
train_batch,
|
||||
batch_idx,
|
||||
dataloader_idx=None):
|
||||
def on_train_batch_start(self, train_batch, batch_idx):
|
||||
warnings.warn("k-NN has no training, skipping!")
|
||||
return -1
|
||||
|
||||
|
@@ -1,6 +1,10 @@
|
||||
"""LVQ models that are optimized using non-gradient methods."""
|
||||
|
||||
from prototorch.functions.losses import _get_dp_dm
|
||||
import logging
|
||||
|
||||
from prototorch.core.losses import _get_dp_dm
|
||||
from prototorch.nn.activations import get_activation
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from .abstract import NonGradientMixin
|
||||
from .glvq import GLVQ
|
||||
@@ -8,10 +12,9 @@ from .glvq import GLVQ
|
||||
|
||||
class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plables = self.proto_layer()
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
@@ -29,6 +32,8 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
logging.debug(f"dis={dis}")
|
||||
logging.debug(f"y={y}")
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
@@ -37,9 +42,9 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
|
||||
class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
@@ -65,4 +70,59 @@ class LVQ21(NonGradientMixin, GLVQ):
|
||||
|
||||
|
||||
class MedianLVQ(NonGradientMixin, GLVQ):
|
||||
"""Median LVQ"""
|
||||
"""Median LVQ
|
||||
|
||||
# TODO Avoid computing distances over and over
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.transfer_layer = LambdaLayer(
|
||||
get_activation(self.hparams.transfer_fn))
|
||||
|
||||
def _f(self, x, y, protos, plabels):
|
||||
d = self.distance_layer(x, protos)
|
||||
dp, dm = _get_dp_dm(d, y, plabels)
|
||||
mu = (dp - dm) / (dp + dm)
|
||||
invmu = -1.0 * mu
|
||||
f = self.transfer_layer(invmu, beta=self.hparams.transfer_beta) + 1.0
|
||||
return f
|
||||
|
||||
def expectation(self, x, y, protos, plabels):
|
||||
f = self._f(x, y, protos, plabels)
|
||||
gamma = f / f.sum()
|
||||
return gamma
|
||||
|
||||
def lower_bound(self, x, y, protos, plabels, gamma):
|
||||
f = self._f(x, y, protos, plabels)
|
||||
lower_bound = (gamma * f.log()).sum()
|
||||
return lower_bound
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
|
||||
for i, _ in enumerate(protos):
|
||||
# Expectation step
|
||||
gamma = self.expectation(x, y, protos, plabels)
|
||||
lower_bound = self.lower_bound(x, y, protos, plabels, gamma)
|
||||
|
||||
# Maximization step
|
||||
_protos = protos + 0
|
||||
for k, xk in enumerate(x):
|
||||
_protos[i] = xk
|
||||
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
|
||||
if _lower_bound > lower_bound:
|
||||
logging.debug(f"Updating prototype {i} to data {k}...")
|
||||
self.proto_layer.load_state_dict({"_components": _protos},
|
||||
strict=False)
|
||||
break
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
return None
|
||||
|
@@ -1,18 +1,20 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.losses import nllr_loss, rslvq_loss
|
||||
from prototorch.functions.pooling import (stratified_min_pooling,
|
||||
stratified_sum_pooling)
|
||||
from prototorch.functions.transforms import (GaussianPrior,
|
||||
RankScaledGaussianPrior)
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
from prototorch.core.losses import nllr_loss, rslvq_loss
|
||||
from prototorch.core.pooling import (
|
||||
stratified_min_pooling,
|
||||
stratified_sum_pooling,
|
||||
)
|
||||
from prototorch.nn.wrappers import LossLayer
|
||||
|
||||
from .extras import GaussianPrior, RankScaledGaussianPrior
|
||||
from .glvq import GLVQ, SiameseGMLVQ
|
||||
|
||||
|
||||
class CELVQ(GLVQ):
|
||||
"""Cross-Entropy Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -22,29 +24,37 @@ class CELVQ(GLVQ):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x) # [None, num_protos]
|
||||
plabels = self.proto_layer.component_labels
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||
probs = -1.0 * winning
|
||||
batch_loss = self.loss(probs, y.long())
|
||||
loss = batch_loss.sum(dim=0)
|
||||
loss = batch_loss.sum()
|
||||
return out, loss
|
||||
|
||||
|
||||
class ProbabilisticLVQ(GLVQ):
|
||||
|
||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.conditional_distribution = None
|
||||
self.rejection_confidence = rejection_confidence
|
||||
self._conditional_distribution = None
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
|
||||
conditional = self.conditional_distribution(distances)
|
||||
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
|
||||
device=self.device)
|
||||
posterior = conditional * prior
|
||||
|
||||
plabels = self.proto_layer._labels
|
||||
y_pred = stratified_sum_pooling(posterior, plabels)
|
||||
if isinstance(plabels, torch.LongTensor) or isinstance(
|
||||
plabels, torch.cuda.LongTensor): # type: ignore
|
||||
y_pred = stratified_sum_pooling(posterior, plabels) # type: ignore
|
||||
else:
|
||||
raise ValueError("Labels must be LongTensor.")
|
||||
|
||||
return y_pred
|
||||
|
||||
def predict(self, x):
|
||||
@@ -56,26 +66,44 @@ class ProbabilisticLVQ(GLVQ):
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
_, plabels = self.proto_layer()
|
||||
batch_loss = self.loss(out, y, plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
loss = batch_loss.sum()
|
||||
return loss
|
||||
|
||||
def conditional_distribution(self, distances):
|
||||
"""Conditional distribution of distances."""
|
||||
if self._conditional_distribution is None:
|
||||
raise ValueError("Conditional distribution is not set.")
|
||||
return self._conditional_distribution(distances)
|
||||
|
||||
|
||||
class SLVQ(ProbabilisticLVQ):
|
||||
"""Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("variance", 1.0)
|
||||
variance = self.hparams.get("variance")
|
||||
|
||||
self._conditional_distribution = GaussianPrior(variance)
|
||||
self.loss = LossLayer(nllr_loss)
|
||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
||||
|
||||
|
||||
class RSLVQ(ProbabilisticLVQ):
|
||||
"""Robust Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("variance", 1.0)
|
||||
variance = self.hparams.get("variance")
|
||||
|
||||
self._conditional_distribution = GaussianPrior(variance)
|
||||
self.loss = LossLayer(rslvq_loss)
|
||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
||||
|
||||
|
||||
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
@@ -83,17 +111,21 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
|
||||
TODO: Use Backbone LVQ instead
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.conditional_distribution = RankScaledGaussianPrior(
|
||||
self.hparams.lambd)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("lambda", 1.0)
|
||||
lam = self.hparams.get("lambda", 1.0)
|
||||
|
||||
self.conditional_distribution = RankScaledGaussianPrior(lam)
|
||||
self.loss = torch.nn.KLDivLoss()
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
y_dist = torch.nn.functional.one_hot(
|
||||
y.long(), num_classes=self.num_classes).float()
|
||||
batch_loss = self.loss(out, y_dist)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return loss
|
||||
# FIXME
|
||||
# def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
# x, y = batch
|
||||
# y_pred = self(x)
|
||||
# batch_loss = self.loss(y_pred, y)
|
||||
# loss = batch_loss.sum()
|
||||
# return loss
|
||||
|
@@ -2,10 +2,9 @@
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import squared_euclidean_distance
|
||||
from prototorch.modules import LambdaLayer
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
from prototorch.core.competitions import wtac
|
||||
from prototorch.core.distances import squared_euclidean_distance
|
||||
from prototorch.core.losses import NeuralGasEnergy
|
||||
|
||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
||||
from .callbacks import GNGCallback
|
||||
@@ -18,6 +17,8 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
TODO Allow non-2D grids
|
||||
|
||||
"""
|
||||
_grid: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
h, w = hparams.get("shape")
|
||||
# Ignore `num_prototypes`
|
||||
@@ -34,7 +35,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
|
||||
# Additional parameters
|
||||
x, y = torch.arange(h), torch.arange(w)
|
||||
grid = torch.stack(torch.meshgrid(x, y), dim=-1)
|
||||
grid = torch.stack(torch.meshgrid(x, y, indexing="ij"), dim=-1)
|
||||
self.register_buffer("_grid", grid)
|
||||
self._sigma = self.hparams.sigma
|
||||
self._lr = self.hparams.lr
|
||||
@@ -53,14 +54,16 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
grid = self._grid.view(-1, 2)
|
||||
gd = squared_euclidean_distance(wp, grid)
|
||||
nh = torch.exp(-gd / self._sigma**2)
|
||||
protos = self.proto_layer.components
|
||||
protos = self.proto_layer()
|
||||
diff = x.unsqueeze(dim=1) - protos
|
||||
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
||||
updated_protos = protos + delta.sum(dim=0)
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
self.proto_layer.load_state_dict(
|
||||
{"_components": updated_protos},
|
||||
strict=False,
|
||||
)
|
||||
|
||||
def training_epoch_end(self, training_step_outputs):
|
||||
def on_training_epoch_end(self, training_step_outputs):
|
||||
self._sigma = self.hparams.sigma * np.exp(
|
||||
-self.current_epoch / self.trainer.max_epochs)
|
||||
|
||||
@@ -69,6 +72,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -78,6 +82,7 @@ class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
|
||||
|
||||
class NeuralGas(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -85,13 +90,13 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("agelimit", 10)
|
||||
self.hparams.setdefault("age_limit", 10)
|
||||
self.hparams.setdefault("lm", 1)
|
||||
|
||||
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
|
||||
self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
|
||||
self.topology_layer = ConnectionTopology(
|
||||
agelimit=self.hparams.agelimit,
|
||||
num_prototypes=self.hparams.num_prototypes,
|
||||
agelimit=self.hparams["age_limit"],
|
||||
num_prototypes=self.hparams["num_prototypes"],
|
||||
)
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
@@ -104,12 +109,10 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
||||
self.log("loss", loss)
|
||||
return loss
|
||||
|
||||
# def training_epoch_end(self, training_step_outputs):
|
||||
# print(f"{self.trainer.lr_schedulers}")
|
||||
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
|
||||
|
||||
|
||||
class GrowingNeuralGas(NeuralGas):
|
||||
errors: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
@@ -118,7 +121,10 @@ class GrowingNeuralGas(NeuralGas):
|
||||
self.hparams.setdefault("insert_reduction", 0.1)
|
||||
self.hparams.setdefault("insert_freq", 10)
|
||||
|
||||
errors = torch.zeros(self.hparams.num_prototypes, device=self.device)
|
||||
errors = torch.zeros(
|
||||
self.hparams["num_prototypes"],
|
||||
device=self.device,
|
||||
)
|
||||
self.register_buffer("errors", errors)
|
||||
|
||||
def training_step(self, train_batch, _batch_idx):
|
||||
@@ -132,8 +138,8 @@ class GrowingNeuralGas(NeuralGas):
|
||||
mask[torch.arange(len(mask)), winner] = 1.0
|
||||
dp = d * mask
|
||||
|
||||
self.errors += torch.sum(dp * dp, dim=0)
|
||||
self.errors *= self.hparams.step_reduction
|
||||
self.errors += torch.sum(dp * dp)
|
||||
self.errors *= self.hparams["step_reduction"]
|
||||
|
||||
self.topology_layer(d)
|
||||
self.log("loss", loss)
|
||||
@@ -141,6 +147,8 @@ class GrowingNeuralGas(NeuralGas):
|
||||
|
||||
def configure_callbacks(self):
|
||||
return [
|
||||
GNGCallback(reduction=self.hparams.insert_reduction,
|
||||
freq=self.hparams.insert_freq)
|
||||
GNGCallback(
|
||||
reduction=self.hparams["insert_reduction"],
|
||||
freq=self.hparams["insert_freq"],
|
||||
)
|
||||
]
|
||||
|
@@ -1,18 +1,28 @@
|
||||
"""Visualization Callbacks."""
|
||||
|
||||
import warnings
|
||||
from typing import Sized
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.utils.colors import get_colors, get_legend_handles
|
||||
from prototorch.utils.utils import mesh2d
|
||||
from pytorch_lightning.loggers import TensorBoardLogger
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
|
||||
def __init__(self,
|
||||
data,
|
||||
data=None,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2",
|
||||
legend_labels=None,
|
||||
border=0.1,
|
||||
resolution=100,
|
||||
flatten_data=True,
|
||||
@@ -25,24 +35,36 @@ class Vis2DAbstract(pl.Callback):
|
||||
block=False):
|
||||
super().__init__()
|
||||
|
||||
if isinstance(data, Dataset):
|
||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||
elif isinstance(data, torch.utils.data.DataLoader):
|
||||
x = torch.tensor([])
|
||||
y = torch.tensor([])
|
||||
for x_b, y_b in data:
|
||||
x = torch.cat([x, x_b])
|
||||
y = torch.cat([y, y_b])
|
||||
if data:
|
||||
if isinstance(data, Dataset):
|
||||
if isinstance(data, Sized):
|
||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||
else:
|
||||
# TODO: Add support for non-sized datasets
|
||||
raise NotImplementedError(
|
||||
"Data must be a dataset with a __len__ method.")
|
||||
elif isinstance(data, DataLoader):
|
||||
x = torch.tensor([])
|
||||
y = torch.tensor([])
|
||||
for x_b, y_b in data:
|
||||
x = torch.cat([x, x_b])
|
||||
y = torch.cat([y, y_b])
|
||||
else:
|
||||
x, y = data
|
||||
|
||||
if flatten_data:
|
||||
x = x.reshape(len(x), -1)
|
||||
|
||||
self.x_train = x
|
||||
self.y_train = y
|
||||
else:
|
||||
x, y = data
|
||||
|
||||
if flatten_data:
|
||||
x = x.reshape(len(x), -1)
|
||||
|
||||
self.x_train = x
|
||||
self.y_train = y
|
||||
self.x_train = None
|
||||
self.y_train = None
|
||||
|
||||
self.title = title
|
||||
self.xlabel = xlabel
|
||||
self.ylabel = ylabel
|
||||
self.legend_labels = legend_labels
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.border = border
|
||||
@@ -61,35 +83,17 @@ class Vis2DAbstract(pl.Callback):
|
||||
return False
|
||||
return True
|
||||
|
||||
def setup_ax(self, xlabel=None, ylabel=None):
|
||||
def setup_ax(self):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
if xlabel:
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
if ylabel:
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.set_xlabel(self.xlabel)
|
||||
ax.set_ylabel(self.ylabel)
|
||||
if self.axis_off:
|
||||
ax.axis("off")
|
||||
return ax
|
||||
|
||||
def get_mesh_input(self, x):
|
||||
x_shift = self.border * np.ptp(x[:, 0])
|
||||
y_shift = self.border * np.ptp(x[:, 1])
|
||||
x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
|
||||
y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
|
||||
xx, yy = np.meshgrid(np.linspace(x_min, x_max, self.resolution),
|
||||
np.linspace(y_min, y_max, self.resolution))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
return mesh_input, xx, yy
|
||||
|
||||
def perform_pca_2D(self, data):
|
||||
(_, eigVal, eigVec) = torch.pca_lowrank(data, q=2)
|
||||
return data @ eigVec
|
||||
|
||||
def plot_data(self, ax, x, y, pca=False):
|
||||
if pca:
|
||||
x = self.perform_pca_2D(x)
|
||||
def plot_data(self, ax, x, y):
|
||||
ax.scatter(
|
||||
x[:, 0],
|
||||
x[:, 1],
|
||||
@@ -100,9 +104,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
s=30,
|
||||
)
|
||||
|
||||
def plot_protos(self, ax, protos, plabels, pca=False):
|
||||
if pca:
|
||||
protos = self.perform_pca_2D(protos)
|
||||
def plot_protos(self, ax, protos, plabels):
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
@@ -129,42 +131,47 @@ class Vis2DAbstract(pl.Callback):
|
||||
else:
|
||||
plt.show(block=self.block)
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
self.visualize(pl_module)
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
def on_train_end(self, trainer, pl_module):
|
||||
plt.close()
|
||||
|
||||
def visualize(self, pl_module):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
ax = self.setup_ax()
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
if x_train is not None:
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(np.vstack([x_train, protos]),
|
||||
self.border, self.resolution)
|
||||
else:
|
||||
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
@@ -181,9 +188,9 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
else:
|
||||
mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict_latent(mesh_input,
|
||||
@@ -191,87 +198,62 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = pl_module.backbone(torch.Tensor(x_train).to(device))
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.map_protos:
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = pl_module.backbone(torch.Tensor(protos).to(device))
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
if x_train.shape[1] > 2:
|
||||
self.plot_data(ax, x_train, y_train, pca=True)
|
||||
else:
|
||||
self.plot_data(ax, x_train, y_train, pca=False)
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
if protos.shape[1] > 2:
|
||||
self.plot_protos(ax, protos, plabels, pca=True)
|
||||
else:
|
||||
self.plot_protos(ax, protos, plabels, pca=False)
|
||||
### something to work on: meshgrid with pca
|
||||
# x = np.vstack((x_train, protos))
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
#else:
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
#_components = pl_module.proto_layer._components
|
||||
#mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
#y_pred = pl_module.predict_latent(mesh_input,
|
||||
# map_protos=self.map_protos)
|
||||
#y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
#ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
self.log_and_display(trainer, pl_module)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.components
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
_components = pl_module.component_layer._components
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.components_layer._components
|
||||
y_pred = pl_module.predict(
|
||||
torch.Tensor(mesh_input).type_as(_components))
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.prototypes
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
|
||||
@@ -285,10 +267,27 @@ class VisNG2D(Vis2DAbstract):
|
||||
"k-",
|
||||
)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
class VisSpectralProtos(Vis2DAbstract):
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
ax = self.setup_ax()
|
||||
colors = get_colors(vmax=max(plabels), vmin=min(plabels))
|
||||
for p, pl in zip(protos, plabels):
|
||||
ax.plot(p, c=colors[int(pl)])
|
||||
if self.legend_labels:
|
||||
handles = get_legend_handles(
|
||||
colors,
|
||||
self.legend_labels,
|
||||
marker="lines",
|
||||
)
|
||||
ax.legend(handles=handles)
|
||||
|
||||
|
||||
class VisImgComp(Vis2DAbstract):
|
||||
|
||||
def __init__(self,
|
||||
*args,
|
||||
random_data=0,
|
||||
@@ -304,32 +303,45 @@ class VisImgComp(Vis2DAbstract):
|
||||
self.add_embedding = add_embedding
|
||||
self.embedding_data = embedding_data
|
||||
|
||||
def on_train_start(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
if self.add_embedding:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.embedding_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
# print(f"{data.shape=}")
|
||||
# print(f"{self.y_train[ind].shape=}")
|
||||
tb.add_embedding(data.view(len(ind), -1),
|
||||
label_img=data,
|
||||
global_step=None,
|
||||
tag="Data Embedding",
|
||||
metadata=self.y_train[ind],
|
||||
metadata_header=None)
|
||||
def on_train_start(self, _, pl_module):
|
||||
if isinstance(pl_module.logger, TensorBoardLogger):
|
||||
tb = pl_module.logger.experiment
|
||||
|
||||
if self.random_data:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.random_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
grid = torchvision.utils.make_grid(data, nrow=self.num_columns)
|
||||
tb.add_image(tag="Data",
|
||||
img_tensor=grid,
|
||||
global_step=None,
|
||||
dataformats=self.dataformats)
|
||||
# Add embedding
|
||||
if self.add_embedding:
|
||||
if self.x_train is not None and self.y_train is not None:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.embedding_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
tb.add_embedding(data.view(len(ind), -1),
|
||||
label_img=data,
|
||||
global_step=None,
|
||||
tag="Data Embedding",
|
||||
metadata=self.y_train[ind],
|
||||
metadata_header=None)
|
||||
else:
|
||||
raise ValueError("No data for add embedding flag")
|
||||
|
||||
# Random Data
|
||||
if self.random_data:
|
||||
if self.x_train is not None:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.random_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
grid = torchvision.utils.make_grid(data,
|
||||
nrow=self.num_columns)
|
||||
tb.add_image(tag="Data",
|
||||
img_tensor=grid,
|
||||
global_step=None,
|
||||
dataformats=self.dataformats)
|
||||
else:
|
||||
raise ValueError("No data for random data flag")
|
||||
|
||||
else:
|
||||
warnings.warn(
|
||||
f"TensorBoardLogger is required, got {type(pl_module.logger)}")
|
||||
|
||||
def add_to_tensorboard(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
@@ -343,14 +355,9 @@ class VisImgComp(Vis2DAbstract):
|
||||
dataformats=self.dataformats,
|
||||
)
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
if self.show:
|
||||
components = pl_module.components
|
||||
grid = torchvision.utils.make_grid(components,
|
||||
nrow=self.num_columns)
|
||||
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
96
pyproject.toml
Normal file
96
pyproject.toml
Normal file
@@ -0,0 +1,96 @@
|
||||
|
||||
[project]
|
||||
name = "prototorch-models"
|
||||
version = "0.6.0"
|
||||
description = "Pre-packaged prototype-based machine learning models using ProtoTorch and PyTorch-Lightning."
|
||||
authors = [
|
||||
{ name = "Jensun Ravichandran", email = "jjensun@gmail.com" },
|
||||
{ name = "Alexander Engelsberger", email = "engelsbe@hs-mittweida.de" },
|
||||
]
|
||||
dependencies = ["lightning>=2.0.0", "prototorch>=0.7.5"]
|
||||
requires-python = ">=3.8"
|
||||
readme = "README.md"
|
||||
license = { text = "MIT" }
|
||||
classifiers = [
|
||||
"Development Status :: 2 - Pre-Alpha",
|
||||
"Environment :: Plugins",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Education",
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Natural Language :: English",
|
||||
"Operating System :: OS Independent",
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
"Topic :: Software Development :: Libraries :: Python Modules",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://github.com/si-cim/prototorch_models"
|
||||
Downloads = "https://github.com/si-cim/prototorch_models.git"
|
||||
|
||||
[project.optional-dependencies]
|
||||
dev = ["bumpversion", "pre-commit", "yapf", "toml"]
|
||||
examples = ["matplotlib", "scikit-learn"]
|
||||
ci = ["pytest", "pre-commit"]
|
||||
docs = [
|
||||
"recommonmark",
|
||||
"nbsphinx",
|
||||
"sphinx",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-bibtex",
|
||||
"sphinxcontrib-katex",
|
||||
"ipykernel",
|
||||
]
|
||||
all = [
|
||||
"bumpversion",
|
||||
"pre-commit",
|
||||
"yapf",
|
||||
"toml",
|
||||
"pytest",
|
||||
"matplotlib",
|
||||
"scikit-learn",
|
||||
"recommonmark",
|
||||
"nbsphinx",
|
||||
"sphinx",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-bibtex",
|
||||
"sphinxcontrib-katex",
|
||||
"ipykernel",
|
||||
]
|
||||
|
||||
[project.entry-points."prototorch.plugins"]
|
||||
models = "prototorch.models"
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools>=61", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.yapf]
|
||||
based_on_style = "pep8"
|
||||
spaces_before_comment = 2
|
||||
split_before_logical_operator = true
|
||||
|
||||
[tool.pylint]
|
||||
disable = ["too-many-arguments", "too-few-public-methods", "fixme"]
|
||||
|
||||
[tool.isort]
|
||||
profile = "hug"
|
||||
src_paths = ["isort", "test"]
|
||||
multi_line_output = 3
|
||||
include_trailing_comma = true
|
||||
force_grid_wrap = 3
|
||||
use_parentheses = true
|
||||
line_length = 79
|
||||
|
||||
[tool.mypy]
|
||||
explicit_package_bases = true
|
||||
namespace_packages = true
|
||||
|
||||
[tool.setuptools]
|
||||
py-modules = ["prototorch"]
|
93
setup.py
93
setup.py
@@ -1,93 +0,0 @@
|
||||
"""
|
||||
|
||||
######
|
||||
# # ##### #### ##### #### ##### #### ##### #### # #
|
||||
# # # # # # # # # # # # # # # # # #
|
||||
###### # # # # # # # # # # # # # ######
|
||||
# ##### # # # # # # # # ##### # # #
|
||||
# # # # # # # # # # # # # # # # #
|
||||
# # # #### # #### # #### # # #### # #Plugin
|
||||
|
||||
ProtoTorch models Plugin Package
|
||||
"""
|
||||
from pkg_resources import safe_name
|
||||
from setuptools import find_namespace_packages, setup
|
||||
|
||||
PLUGIN_NAME = "models"
|
||||
|
||||
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
|
||||
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
|
||||
|
||||
with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
INSTALL_REQUIRES = [
|
||||
"prototorch>=0.5.0,<0.6.0",
|
||||
"pytorch_lightning>=1.3.5",
|
||||
"torchmetrics",
|
||||
]
|
||||
CLI = [
|
||||
"jsonargparse",
|
||||
]
|
||||
DEV = [
|
||||
"bumpversion",
|
||||
"pre-commit",
|
||||
]
|
||||
DOCS = [
|
||||
"recommonmark",
|
||||
"sphinx",
|
||||
"nbsphinx",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-katex",
|
||||
"sphinxcontrib-bibtex",
|
||||
]
|
||||
EXAMPLES = [
|
||||
"matplotlib",
|
||||
"scikit-learn",
|
||||
]
|
||||
TESTS = [
|
||||
"codecov",
|
||||
"pytest",
|
||||
]
|
||||
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name=safe_name("prototorch_" + PLUGIN_NAME),
|
||||
version="0.1.8",
|
||||
description="Pre-packaged prototype-based "
|
||||
"machine learning models using ProtoTorch and PyTorch-Lightning.",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
author="Alexander Engelsberger",
|
||||
author_email="engelsbe@hs-mittweida.de",
|
||||
url=PROJECT_URL,
|
||||
download_url=DOWNLOAD_URL,
|
||||
license="MIT",
|
||||
python_requires=">=3.9",
|
||||
install_requires=INSTALL_REQUIRES,
|
||||
extras_require={
|
||||
"dev": DEV,
|
||||
"examples": EXAMPLES,
|
||||
"tests": TESTS,
|
||||
"all": ALL,
|
||||
},
|
||||
classifiers=[
|
||||
"Development Status :: 2 - Pre-Alpha",
|
||||
"Environment :: Plugins",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Education",
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Natural Language :: English",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Operating System :: OS Independent",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
"Topic :: Software Development :: Libraries :: Python Modules",
|
||||
],
|
||||
entry_points={
|
||||
"prototorch.plugins": f"{PLUGIN_NAME} = prototorch.{PLUGIN_NAME}"
|
||||
},
|
||||
packages=find_namespace_packages(include=["prototorch.*"]),
|
||||
zip_safe=False,
|
||||
)
|
@@ -1,14 +0,0 @@
|
||||
"""prototorch.models test suite."""
|
||||
|
||||
import unittest
|
||||
|
||||
|
||||
class TestDummy(unittest.TestCase):
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
def test_dummy(self):
|
||||
pass
|
||||
|
||||
def tearDown(self):
|
||||
pass
|
@@ -1,17 +1,35 @@
|
||||
#! /bin/bash
|
||||
|
||||
|
||||
# Read Flags
|
||||
gpu=0
|
||||
while [ -n "$1" ]; do
|
||||
case "$1" in
|
||||
--gpu) gpu=1;;
|
||||
-g) gpu=1;;
|
||||
*) path=$1;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
python --version
|
||||
echo "Using GPU: " $gpu
|
||||
|
||||
# Loop
|
||||
failed=0
|
||||
|
||||
for example in $(find $1 -maxdepth 1 -name "*.py")
|
||||
for example in $(find $path -maxdepth 1 -name "*.py")
|
||||
do
|
||||
echo -n "$x" $example '... '
|
||||
export DISPLAY= && python $example --fast_dev_run 1 &> /dev/null
|
||||
export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
|
||||
if [[ $? -ne 0 ]]; then
|
||||
echo "FAILED!!"
|
||||
cat run_log.txt
|
||||
failed=1
|
||||
else
|
||||
echo "SUCCESS!"
|
||||
fi
|
||||
rm run_log.txt
|
||||
done
|
||||
|
||||
exit $failed
|
||||
|
195
tests/test_models.py
Normal file
195
tests/test_models.py
Normal file
@@ -0,0 +1,195 @@
|
||||
"""prototorch.models test suite."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
|
||||
def test_glvq_model_build():
|
||||
model = pt.models.GLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_glvq1_model_build():
|
||||
model = pt.models.GLVQ1(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_glvq21_model_build():
|
||||
model = pt.models.GLVQ1(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_gmlvq_model_build():
|
||||
model = pt.models.GMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 2,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_grlvq_model_build():
|
||||
model = pt.models.GRLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_gtlvq_model_build():
|
||||
model = pt.models.GTLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_lgmlvq_model_build():
|
||||
model = pt.models.LGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_image_glvq_model_build():
|
||||
model = pt.models.ImageGLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(16),
|
||||
)
|
||||
|
||||
|
||||
def test_image_gmlvq_model_build():
|
||||
model = pt.models.ImageGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 16,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(16),
|
||||
)
|
||||
|
||||
|
||||
def test_image_gtlvq_model_build():
|
||||
model = pt.models.ImageGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 16,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(16),
|
||||
)
|
||||
|
||||
|
||||
def test_siamese_glvq_model_build():
|
||||
model = pt.models.SiameseGLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(4),
|
||||
)
|
||||
|
||||
|
||||
def test_siamese_gmlvq_model_build():
|
||||
model = pt.models.SiameseGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(4),
|
||||
)
|
||||
|
||||
|
||||
def test_siamese_gtlvq_model_build():
|
||||
model = pt.models.SiameseGTLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(4),
|
||||
)
|
||||
|
||||
|
||||
def test_knn_model_build():
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
model = pt.models.KNN(dict(k=3), data=train_ds)
|
||||
|
||||
|
||||
def test_lvq1_model_build():
|
||||
model = pt.models.LVQ1(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_lvq21_model_build():
|
||||
model = pt.models.LVQ21(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_median_lvq_model_build():
|
||||
model = pt.models.MedianLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_celvq_model_build():
|
||||
model = pt.models.CELVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_rslvq_model_build():
|
||||
model = pt.models.RSLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_slvq_model_build():
|
||||
model = pt.models.SLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_growing_neural_gas_model_build():
|
||||
model = pt.models.GrowingNeuralGas(
|
||||
{"num_prototypes": 5},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_kohonen_som_model_build():
|
||||
model = pt.models.KohonenSOM(
|
||||
{"shape": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_neural_gas_model_build():
|
||||
model = pt.models.NeuralGas(
|
||||
{"num_prototypes": 5},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
Reference in New Issue
Block a user