feat: Improve 2D visualization with Voronoi Cells
This commit is contained in:
parent
967953442b
commit
d1985571b3
@ -38,10 +38,12 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisCBC2D(data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True)
|
||||
vis = pt.models.Visualize2DVoronoiCallback(
|
||||
data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
@ -3,7 +3,7 @@
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import prototorch.models.expanded
|
||||
import prototorch.models.clcc
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
@ -30,7 +30,7 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = prototorch.models.expanded.GLVQ(
|
||||
model = prototorch.models.GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
@ -42,7 +42,13 @@ if __name__ == "__main__":
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
vis = pt.models.Visualize2DVoronoiCallback(
|
||||
data=train_ds,
|
||||
resolution=200,
|
||||
title="Example: GLVQ on Iris",
|
||||
x_label="sepal length",
|
||||
y_label="petal length",
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
0
prototorch/models/clcc/__init__.py
Normal file
0
prototorch/models/clcc/__init__.py
Normal file
@ -7,7 +7,7 @@ from prototorch.core.components import LabeledComponents
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
from prototorch.core.initializers import AbstractComponentsInitializer, LabelsInitializer
|
||||
from prototorch.core.losses import GLVQLoss
|
||||
from prototorch.models.expanded.clcc_scheme import CLCCScheme
|
||||
from prototorch.models.clcc.clcc_scheme import CLCCScheme
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
|
@ -9,6 +9,7 @@ CLCC is a LVQ scheme containing 4 steps
|
||||
|
||||
"""
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
|
||||
class CLCCScheme(pl.LightningModule):
|
||||
@ -36,6 +37,8 @@ class CLCCScheme(pl.LightningModule):
|
||||
return comparison_tensor
|
||||
|
||||
def forward(self, batch):
|
||||
if isinstance(batch, torch.Tensor):
|
||||
batch = (batch, None)
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
@ -43,6 +46,12 @@ class CLCCScheme(pl.LightningModule):
|
||||
# TODO: => Competition Hook
|
||||
return self.inference(comparison_tensor, components)
|
||||
|
||||
def predict(self, batch):
|
||||
"""
|
||||
Alias for forward
|
||||
"""
|
||||
return self.forward(batch)
|
||||
|
||||
def loss_forward(self, batch):
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
@ -3,12 +3,12 @@ import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.core.initializers import SMCI, RandomNormalCompInitializer
|
||||
from prototorch.models.expanded.clcc_glvq import GLVQ, GLVQhparams
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision import datasets
|
||||
from torchvision.transforms import Compose, Lambda, ToTensor
|
||||
from prototorch.models.clcc.clcc_glvq import GLVQ, GLVQhparams
|
||||
from prototorch.models.vis import Visualize2DVoronoiCallback
|
||||
|
||||
plt.gray()
|
||||
# NEW STUFF
|
||||
# ##############################################################################
|
||||
# ##############################################################################
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
@ -29,7 +29,8 @@ if __name__ == "__main__":
|
||||
|
||||
print(model)
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
vis = Visualize2DVoronoiCallback(data=train_ds, resolution=500)
|
||||
|
||||
# Train
|
||||
trainer = pl.Trainer(callbacks=[vis], gpus=1)
|
||||
trainer = pl.Trainer(callbacks=[vis], gpus=1, max_epochs=100)
|
||||
trainer.fit(model, train_loader)
|
@ -1 +0,0 @@
|
||||
from .glvq import GLVQ
|
@ -1,164 +0,0 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.core.competitions import WTAC, wtac
|
||||
from prototorch.core.components import Components, LabeledComponents
|
||||
from prototorch.core.distances import (
|
||||
euclidean_distance,
|
||||
lomega_distance,
|
||||
omega_distance,
|
||||
squared_euclidean_distance,
|
||||
)
|
||||
from prototorch.core.initializers import EyeTransformInitializer, LabelsInitializer
|
||||
from prototorch.core.losses import GLVQLoss, lvq1_loss, lvq21_loss
|
||||
from prototorch.core.pooling import stratified_min_pooling
|
||||
from prototorch.core.transforms import LinearTransform
|
||||
from prototorch.nn.wrappers import LambdaLayer, LossLayer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class GLVQ(pl.LightningModule):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
# Hyperparameters
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
# TODO: Manage by an HPARAMS Object
|
||||
self.hparams.setdefault("lr", 0.01)
|
||||
self.hparams.setdefault("margin", 0.0)
|
||||
self.hparams.setdefault("transfer_fn", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
# Default config
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
self.lr_scheduler = kwargs.get("lr_scheduler", None)
|
||||
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
||||
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
labels_initializer = kwargs.get("labels_initializer",
|
||||
LabelsInitializer())
|
||||
|
||||
if prototypes_initializer is not None:
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
components_initializer=prototypes_initializer,
|
||||
labels_initializer=labels_initializer,
|
||||
)
|
||||
|
||||
self.distance_layer = LambdaLayer(distance_fn)
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
self.loss = GLVQLoss(
|
||||
margin=self.hparams.margin,
|
||||
transfer_fn=self.hparams.transfer_fn,
|
||||
beta=self.hparams.transfer_beta,
|
||||
)
|
||||
|
||||
def log_acc(self, distances, targets, tag):
|
||||
preds = self.predict_from_distances(distances)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||
self.log(tag,
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
if self.lr_scheduler is not None:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
_, plabels = self.proto_layer()
|
||||
loss = self.loss(out, y, plabels)
|
||||
return out, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
|
||||
self.log_prototype_win_ratios(out)
|
||||
self.log("train_loss", train_loss)
|
||||
self.log_acc(out, batch[-1], tag="train_acc")
|
||||
return train_loss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
out, val_loss = self.shared_step(batch, batch_idx)
|
||||
self.log("val_loss", val_loss)
|
||||
self.log_acc(out, batch[-1], tag="val_acc")
|
||||
return val_loss
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
out, test_loss = self.shared_step(batch, batch_idx)
|
||||
self.log_acc(out, batch[-1], tag="test_acc")
|
||||
return test_loss
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
test_loss = 0.0
|
||||
for batch_loss in outputs:
|
||||
test_loss += batch_loss.item()
|
||||
self.log("test_loss", test_loss)
|
||||
|
||||
# API
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = torch.nn.functional.softmin(winning)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
_, plabels = self.proto_layer()
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
def predict(self, x):
|
||||
with torch.no_grad():
|
||||
distances = self.compute_distances(x)
|
||||
y_pred = self.predict_from_distances(distances)
|
||||
return y_pred
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.labels.detach().cpu()
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return self.proto_layer.num_classes
|
||||
|
||||
@property
|
||||
def num_prototypes(self):
|
||||
return len(self.proto_layer.components)
|
||||
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
"""Only an alias for the prototypes."""
|
||||
return self.prototypes
|
||||
|
||||
# Python overwrites
|
||||
def __repr__(self):
|
||||
surep = super().__repr__()
|
||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||
return wrapped
|
@ -5,14 +5,18 @@ import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.utils.utils import mesh2d
|
||||
from prototorch.utils.utils import generate_mesh, mesh2d
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
COLOR_UNLABELED = 'w'
|
||||
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
def __init__(self,
|
||||
data,
|
||||
title="Prototype Visualization",
|
||||
title=None,
|
||||
x_label=None,
|
||||
y_label=None,
|
||||
cmap="viridis",
|
||||
border=0.1,
|
||||
resolution=100,
|
||||
@ -44,6 +48,8 @@ class Vis2DAbstract(pl.Callback):
|
||||
self.y_train = y
|
||||
|
||||
self.title = title
|
||||
self.x_label = x_label
|
||||
self.y_label = y_label
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.border = border
|
||||
@ -56,20 +62,19 @@ class Vis2DAbstract(pl.Callback):
|
||||
self.pause_time = pause_time
|
||||
self.block = block
|
||||
|
||||
def precheck(self, trainer):
|
||||
if self.show_last_only:
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
return False
|
||||
def show_on_current_epoch(self, trainer):
|
||||
if self.show_last_only and trainer.current_epoch != trainer.max_epochs - 1:
|
||||
return False
|
||||
return True
|
||||
|
||||
def setup_ax(self, xlabel=None, ylabel=None):
|
||||
def setup_ax(self):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
if xlabel:
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
if ylabel:
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
if self.x_label:
|
||||
ax.set_xlabel(self.x_label)
|
||||
if self.x_label:
|
||||
ax.set_ylabel(self.y_label)
|
||||
if self.axis_off:
|
||||
ax.axis("off")
|
||||
return ax
|
||||
@ -116,27 +121,64 @@ class Vis2DAbstract(pl.Callback):
|
||||
plt.close()
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
class Visualize2DVoronoiCallback(Vis2DAbstract):
|
||||
def __init__(self, data, **kwargs):
|
||||
super().__init__(data, **kwargs)
|
||||
|
||||
self.data_min = torch.min(self.x_train, axis=0).values
|
||||
self.data_max = torch.max(self.x_train, axis=0).values
|
||||
|
||||
def current_span(self, proto_values):
|
||||
proto_min = torch.min(proto_values, axis=0).values
|
||||
proto_max = torch.max(proto_values, axis=0).values
|
||||
|
||||
overall_min = torch.minimum(proto_min, self.data_min)
|
||||
overall_max = torch.maximum(proto_max, self.data_max)
|
||||
|
||||
return overall_min, overall_max
|
||||
|
||||
def get_voronoi_diagram(self, min, max, model):
|
||||
mesh_input, (xx, yy) = generate_mesh(
|
||||
min,
|
||||
max,
|
||||
border=self.border,
|
||||
resolution=self.resolution,
|
||||
device=model.device,
|
||||
)
|
||||
|
||||
y_pred = model.predict(mesh_input)
|
||||
return xx, yy, y_pred.reshape(xx.shape)
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = mesh2d(x,
|
||||
self.border,
|
||||
self.resolution,
|
||||
device=pl_module.device)
|
||||
mesh_input = (mesh_input, None)
|
||||
y_pred = pl_module(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx.cpu(), yy.cpu(), y_pred, cmap=self.cmap, alpha=0.35)
|
||||
# Extract Prototypes
|
||||
proto_values = pl_module.prototypes
|
||||
if hasattr(pl_module, "prototype_labels"):
|
||||
proto_labels = pl_module.prototype_labels
|
||||
else:
|
||||
proto_labels = COLOR_UNLABELED
|
||||
|
||||
# Calculate Voronoi Diagram
|
||||
overall_min, overall_max = self.current_span(proto_values)
|
||||
xx, yy, y_pred = self.get_voronoi_diagram(
|
||||
overall_min,
|
||||
overall_max,
|
||||
pl_module,
|
||||
)
|
||||
|
||||
ax = self.setup_ax()
|
||||
ax.contourf(
|
||||
xx.cpu(),
|
||||
yy.cpu(),
|
||||
y_pred.cpu(),
|
||||
cmap=self.cmap,
|
||||
alpha=0.35,
|
||||
)
|
||||
|
||||
self.plot_data(ax, self.x_train, self.y_train)
|
||||
self.plot_protos(ax, proto_values, proto_labels)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
@ -147,7 +189,7 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
@ -185,7 +227,7 @@ class VisGMLVQ2D(Vis2DAbstract):
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
@ -212,40 +254,16 @@ class VisGMLVQ2D(Vis2DAbstract):
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.components
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.components_layer._components
|
||||
y_pred = pl_module.predict(
|
||||
torch.Tensor(mesh_input).type_as(_components))
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
return True
|
||||
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.prototypes
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
|
||||
@ -316,7 +334,7 @@ class VisImgComp(Vis2DAbstract):
|
||||
)
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
return True
|
||||
|
||||
if self.show:
|
||||
|
Loading…
Reference in New Issue
Block a user