Compare commits
	
		
			114 Commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					
						
						
							
						
						adafb49985
	
				 | 
					
					
						||
| 
						 | 
					
						
						
							
						
						78f8b6cc00
	
				 | 
					
					
						||
| 
						 | 
					
						
						
							
						
						c6f718a1d4
	
				 | 
					
					
						||
| 
						 | 
					
						
						
							
						
						1786031b4e
	
				 | 
					
					
						||
| 
						 | 
					
						
						
							
						
						824dfced92
	
				 | 
					
					
						||
| 
						 | 
					d4bf6dbbe9 | ||
| 
						 | 
					c99fdb436c | ||
| 
						 | 
					28ac5f5ed9 | ||
| 
						 | 
					b7f510a9fe | ||
| 
						 | 
					781ef93b06 | ||
| 
						 | 
					072e61b3cd | ||
| 
						 | 
					71167a8f77 | ||
| 
						 | 
					60990f42d2 | ||
| 
						 | 
					1e83c439f7 | ||
| 
						 | 
					cbbbbeda98 | ||
| 
						 | 
					1b5093627e | ||
| 
						 | 
					497da90f9c | ||
| 
						 | 
					2a665e220f | ||
| 
						 | 
					4cd6aee330 | ||
| 
						 | 
					634ef86a2c | ||
| 
						 | 
					72e9587a10 | ||
| 
						 | 
					f5e1edf31f | ||
| 
						 | 
					5e5675d12e | ||
| 
						 | 
					16f410e809 | ||
| 
						 | 
					46dfb82371 | ||
| 
						 | 
					87fa3f0729 | ||
| 
						 | 
					08db94d507 | ||
| 
						 | 
					8ecf9948b2 | ||
| 
						 | 
					c5f0b86114 | ||
| 
						 | 
					7506614ada | ||
| 
						 | 
					fcd944d3ff | ||
| 
						 | 
					054720dd7b | ||
| 
						 | 
					d16a0de202 | ||
| 
						 | 
					76fea3f881 | ||
| 
						 | 
					c00513ae0d | ||
| 
						 | 
					bccef8bef0 | ||
| 
						 | 
					29ee326b85 | ||
| 
						 | 
					055568dc86 | ||
| 
						 | 
					3a7328e290 | ||
| 
						 | 
					d6629c8792 | ||
| 
						 | 
					ef65bd3789 | ||
| 
						 | 
					d096eba2c9 | ||
| 
						 | 
					dd34c57e2e | ||
| 
						 | 
					5911f4dd90 | ||
| 
						 | 
					dbfe315f4f | ||
| 
						 | 
					9c90c902dc | ||
| 
						 | 
					7d3f59e54b | ||
| 
						 | 
					9da47b1dba | ||
| 
						 | 
					41f0e77fc9 | ||
| 
						 | 
					fab786a07e | ||
| 
						 | 
					40bd7ed380 | ||
| 
						 | 
					4941c2b89d | ||
| 
						 | 
					ce14dec7e9 | ||
| 
						 | 
					b31c8cc707 | ||
| 
						 | 
					e21e6c7e02 | ||
| 
						 | 
					dd696ea1e0 | ||
| 
						 | 
					15e7232747 | ||
| 
						 | 
					197b728c63 | ||
| 
						 | 
					98892afee0 | ||
| 
						 | 
					d5855dbe97 | ||
| 
						 | 
					75a39f5b03 | ||
| 
						 | 
					1a0e697b27 | ||
| 
						 | 
					1a17193b35 | ||
| 
						 | 
					aaa3c51e0a | ||
| 
						 | 
					62c5974a85 | ||
| 
						 | 
					1d26226a2f | ||
| 
						 | 
					4232d0ed2a | ||
| 
						 | 
					a9edf06507 | ||
| 
						 | 
					d3bb430104 | ||
| 
						 | 
					6ffd27d12a | ||
| 
						 | 
					859e2cae69 | ||
| 
						 | 
					d7ea89d47e | ||
| 
						 | 
					fa928afe2c | ||
| 
						 | 
					7d4a041df2 | ||
| 
						 | 
					04c51c00c6 | ||
| 
						 | 
					62185b38cf | ||
| 
						 | 
					7b93cd4ad5 | ||
| 
						 | 
					d7834e2cc0 | ||
| 
						 | 
					0af8cf36f8 | ||
| 
						 | 
					f8ad1d83eb | ||
| 
						 | 
					23a3683860 | ||
| 
						 | 
					4be9fb81eb | ||
| 
						 | 
					9d38123114 | ||
| 
						 | 
					0f9f24e36a | ||
| 
						 | 
					09e3ef1d0e | ||
| 
						 | 
					7b9b767113 | ||
| 
						 | 
					f56ec44afe | ||
| 
						 | 
					67a20124e8 | ||
| 
						 | 
					72af03b991 | ||
| 
						 | 
					71602bf38a | ||
| 
						 | 
					a1d9657b91 | ||
| 
						 | 
					4dc11a3737 | ||
| 
						 | 
					2649e3ac31 | ||
| 
						 | 
					2b2e4a5f37 | ||
| 
						 | 
					72404f7c4e | ||
| 
						 | 
					612ee8dc6a | ||
| 
						 | 
					d42693a441 | ||
| 
						 | 
					7eb496110f | ||
| 
						 | 
					4ab0a5a414 | ||
| 
						 | 
					29063dcec4 | ||
| 
						 | 
					a37095409b | ||
| 
						 | 
					1b420c1f6b | ||
| 
						 | 
					7ec5528ade | ||
| 
						 | 
					a44219ee47 | ||
| 
						 | 
					24ebfdc667 | ||
| 
						 | 
					1c658cdc1b | ||
| 
						 | 
					1911d4b33e | ||
| 
						 | 
					6197d7d5d6 | ||
| 
						 | 
					d2856383e2 | ||
| 
						 | 
					4eafe88dc4 | ||
| 
						 | 
					3afced8662 | ||
| 
						 | 
					68034d56f6 | ||
| 
						 | 
					97ec15b76a | ||
| 
						 | 
					69e5ff3243 | 
@@ -1,10 +1,13 @@
 | 
			
		||||
[bumpversion]
 | 
			
		||||
current_version = 0.1.8
 | 
			
		||||
current_version = 0.7.1
 | 
			
		||||
commit = True
 | 
			
		||||
tag = True
 | 
			
		||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
 | 
			
		||||
serialize = {major}.{minor}.{patch}
 | 
			
		||||
message = build: bump version {current_version} → {new_version}
 | 
			
		||||
 | 
			
		||||
[bumpversion:file:setup.py]
 | 
			
		||||
[bumpversion:file:pyproject.toml]
 | 
			
		||||
 | 
			
		||||
[bumpversion:file:./prototorch/models/__init__.py]
 | 
			
		||||
[bumpversion:file:./src/prototorch/models/__init__.py]
 | 
			
		||||
 | 
			
		||||
[bumpversion:file:./docs/source/conf.py]
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										15
									
								
								.codacy.yml
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								.codacy.yml
									
									
									
									
									
								
							@@ -1,15 +0,0 @@
 | 
			
		||||
# To validate the contents of your configuration file
 | 
			
		||||
# run the following command in the folder where the configuration file is located:
 | 
			
		||||
# codacy-analysis-cli validate-configuration --directory `pwd`
 | 
			
		||||
# To analyse, run:
 | 
			
		||||
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
 | 
			
		||||
---
 | 
			
		||||
engines:
 | 
			
		||||
  pylintpython3:
 | 
			
		||||
    exclude_paths:
 | 
			
		||||
      - config/engines.yml
 | 
			
		||||
  remark-lint:
 | 
			
		||||
    exclude_paths:
 | 
			
		||||
      - config/engines.yml
 | 
			
		||||
exclude_paths:
 | 
			
		||||
  - 'tests/**'
 | 
			
		||||
@@ -1,2 +0,0 @@
 | 
			
		||||
comment:
 | 
			
		||||
  require_changes: yes
 | 
			
		||||
							
								
								
									
										38
									
								
								.github/ISSUE_TEMPLATE/bug_report.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								.github/ISSUE_TEMPLATE/bug_report.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,38 @@
 | 
			
		||||
---
 | 
			
		||||
name: Bug report
 | 
			
		||||
about: Create a report to help us improve
 | 
			
		||||
title: ''
 | 
			
		||||
labels: ''
 | 
			
		||||
assignees: ''
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
**Describe the bug**
 | 
			
		||||
A clear and concise description of what the bug is.
 | 
			
		||||
 | 
			
		||||
**Steps to reproduce the behavior**
 | 
			
		||||
1. ...
 | 
			
		||||
2. Run script '...' or this snippet:
 | 
			
		||||
```python
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
 | 
			
		||||
...
 | 
			
		||||
```
 | 
			
		||||
3. See errors
 | 
			
		||||
 | 
			
		||||
**Expected behavior**
 | 
			
		||||
A clear and concise description of what you expected to happen.
 | 
			
		||||
 | 
			
		||||
**Observed behavior**
 | 
			
		||||
A clear and concise description of what actually happened.
 | 
			
		||||
 | 
			
		||||
**Screenshots**
 | 
			
		||||
If applicable, add screenshots to help explain your problem.
 | 
			
		||||
 | 
			
		||||
**System and version information**
 | 
			
		||||
- OS: [e.g. Ubuntu 20.10]
 | 
			
		||||
- ProtoTorch Version: [e.g. 0.4.0]
 | 
			
		||||
- Python Version: [e.g. 3.9.5]
 | 
			
		||||
 | 
			
		||||
**Additional context**
 | 
			
		||||
Add any other context about the problem here.
 | 
			
		||||
							
								
								
									
										20
									
								
								.github/ISSUE_TEMPLATE/feature_request.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										20
									
								
								.github/ISSUE_TEMPLATE/feature_request.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,20 @@
 | 
			
		||||
---
 | 
			
		||||
name: Feature request
 | 
			
		||||
about: Suggest an idea for this project
 | 
			
		||||
title: ''
 | 
			
		||||
labels: ''
 | 
			
		||||
assignees: ''
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
**Is your feature request related to a problem? Please describe.**
 | 
			
		||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
 | 
			
		||||
 | 
			
		||||
**Describe the solution you'd like**
 | 
			
		||||
A clear and concise description of what you want to happen.
 | 
			
		||||
 | 
			
		||||
**Describe alternatives you've considered**
 | 
			
		||||
A clear and concise description of any alternative solutions or features you've considered.
 | 
			
		||||
 | 
			
		||||
**Additional context**
 | 
			
		||||
Add any other context or screenshots about the feature request here.
 | 
			
		||||
							
								
								
									
										25
									
								
								.github/workflows/examples.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										25
									
								
								.github/workflows/examples.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,25 @@
 | 
			
		||||
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
 | 
			
		||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
 | 
			
		||||
 | 
			
		||||
name: examples
 | 
			
		||||
 | 
			
		||||
on:
 | 
			
		||||
  push:
 | 
			
		||||
    paths:
 | 
			
		||||
      - "examples/**.py"
 | 
			
		||||
jobs:
 | 
			
		||||
  cpu:
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
      - uses: actions/checkout@v3
 | 
			
		||||
      - name: Set up Python 3.11
 | 
			
		||||
        uses: actions/setup-python@v4
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: "3.11"
 | 
			
		||||
      - name: Install dependencies
 | 
			
		||||
        run: |
 | 
			
		||||
          python -m pip install --upgrade pip
 | 
			
		||||
          pip install .[all]
 | 
			
		||||
      - name: Run examples
 | 
			
		||||
        run: |
 | 
			
		||||
          ./tests/test_examples.sh examples/
 | 
			
		||||
							
								
								
									
										75
									
								
								.github/workflows/pythonapp.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								.github/workflows/pythonapp.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,75 @@
 | 
			
		||||
# This workflow will install Python dependencies, run tests and lint with a single version of Python
 | 
			
		||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
 | 
			
		||||
 | 
			
		||||
name: tests
 | 
			
		||||
 | 
			
		||||
on:
 | 
			
		||||
  push:
 | 
			
		||||
  pull_request:
 | 
			
		||||
    branches: [master]
 | 
			
		||||
 | 
			
		||||
jobs:
 | 
			
		||||
  style:
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
      - uses: actions/checkout@v3
 | 
			
		||||
      - name: Set up Python 3.11
 | 
			
		||||
        uses: actions/setup-python@v4
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: "3.11"
 | 
			
		||||
      - name: Install dependencies
 | 
			
		||||
        run: |
 | 
			
		||||
          python -m pip install --upgrade pip
 | 
			
		||||
          pip install .[all]
 | 
			
		||||
      - uses: pre-commit/action@v3.0.0
 | 
			
		||||
  compatibility:
 | 
			
		||||
    needs: style
 | 
			
		||||
    strategy:
 | 
			
		||||
      fail-fast: false
 | 
			
		||||
      matrix:
 | 
			
		||||
        python-version: ["3.8", "3.9", "3.10", "3.11"]
 | 
			
		||||
        os: [ubuntu-latest, windows-latest]
 | 
			
		||||
        exclude:
 | 
			
		||||
          - os: windows-latest
 | 
			
		||||
            python-version: "3.8"
 | 
			
		||||
          - os: windows-latest
 | 
			
		||||
            python-version: "3.9"
 | 
			
		||||
          - os: windows-latest
 | 
			
		||||
            python-version: "3.10"
 | 
			
		||||
 | 
			
		||||
    runs-on: ${{ matrix.os }}
 | 
			
		||||
    steps:
 | 
			
		||||
      - uses: actions/checkout@v2
 | 
			
		||||
      - name: Set up Python ${{ matrix.python-version }}
 | 
			
		||||
        uses: actions/setup-python@v4
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: ${{ matrix.python-version }}
 | 
			
		||||
      - name: Install dependencies
 | 
			
		||||
        run: |
 | 
			
		||||
          python -m pip install --upgrade pip
 | 
			
		||||
          pip install .[all]
 | 
			
		||||
      - name: Test with pytest
 | 
			
		||||
        run: |
 | 
			
		||||
          pytest
 | 
			
		||||
  publish_pypi:
 | 
			
		||||
    if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
 | 
			
		||||
    needs: compatibility
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
      - uses: actions/checkout@v3
 | 
			
		||||
      - name: Set up Python 3.11
 | 
			
		||||
        uses: actions/setup-python@v4
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: "3.11"
 | 
			
		||||
      - name: Install dependencies
 | 
			
		||||
        run: |
 | 
			
		||||
          python -m pip install --upgrade pip
 | 
			
		||||
          pip install .[all]
 | 
			
		||||
          pip install build
 | 
			
		||||
      - name: Build package
 | 
			
		||||
        run: python -m build . -C verbose
 | 
			
		||||
      - name: Publish a Python distribution to PyPI
 | 
			
		||||
        uses: pypa/gh-action-pypi-publish@release/v1
 | 
			
		||||
        with:
 | 
			
		||||
          user: __token__
 | 
			
		||||
          password: ${{ secrets.PYPI_API_TOKEN }}
 | 
			
		||||
							
								
								
									
										17
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										17
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -128,14 +128,19 @@ dmypy.json
 | 
			
		||||
# Pyre type checker
 | 
			
		||||
.pyre/
 | 
			
		||||
 | 
			
		||||
# Datasets
 | 
			
		||||
datasets/
 | 
			
		||||
 | 
			
		||||
# PyTorch-Lightning
 | 
			
		||||
lightning_logs/
 | 
			
		||||
 | 
			
		||||
.vscode/
 | 
			
		||||
 | 
			
		||||
# Vim
 | 
			
		||||
*~
 | 
			
		||||
*.swp
 | 
			
		||||
*.swo
 | 
			
		||||
 | 
			
		||||
#  Pytorch Models or Weights
 | 
			
		||||
#  If necessary make exceptions for single pretrained models
 | 
			
		||||
*.pt
 | 
			
		||||
 | 
			
		||||
# Artifacts created by ProtoTorch Models
 | 
			
		||||
datasets/
 | 
			
		||||
lightning_logs/
 | 
			
		||||
examples/_*.py
 | 
			
		||||
examples/_*.ipynb
 | 
			
		||||
 
 | 
			
		||||
@@ -1,54 +1,54 @@
 | 
			
		||||
# See https://pre-commit.com for more information
 | 
			
		||||
# See https://pre-commit.com/hooks.html for more hooks
 | 
			
		||||
 | 
			
		||||
repos:
 | 
			
		||||
-   repo: https://github.com/pre-commit/pre-commit-hooks
 | 
			
		||||
    rev: v4.0.1
 | 
			
		||||
  - repo: https://github.com/pre-commit/pre-commit-hooks
 | 
			
		||||
    rev: v4.4.0
 | 
			
		||||
    hooks:
 | 
			
		||||
    -   id: trailing-whitespace
 | 
			
		||||
    -   id: end-of-file-fixer
 | 
			
		||||
    -   id: check-yaml
 | 
			
		||||
    -   id: check-added-large-files
 | 
			
		||||
    -   id: check-ast
 | 
			
		||||
    -   id: check-case-conflict
 | 
			
		||||
      - id: trailing-whitespace
 | 
			
		||||
      - id: end-of-file-fixer
 | 
			
		||||
      - id: check-yaml
 | 
			
		||||
      - id: check-added-large-files
 | 
			
		||||
      - id: check-ast
 | 
			
		||||
      - id: check-case-conflict
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
- repo: https://github.com/myint/autoflake
 | 
			
		||||
  rev: v1.4
 | 
			
		||||
  hooks:
 | 
			
		||||
  -   id: autoflake
 | 
			
		||||
 | 
			
		||||
- repo: http://github.com/PyCQA/isort
 | 
			
		||||
  rev: 5.8.0
 | 
			
		||||
  hooks:
 | 
			
		||||
  -   id: isort
 | 
			
		||||
 | 
			
		||||
-   repo: https://github.com/pre-commit/mirrors-mypy
 | 
			
		||||
    rev: 'v0.902'
 | 
			
		||||
  - repo: https://github.com/myint/autoflake
 | 
			
		||||
    rev: v2.1.1
 | 
			
		||||
    hooks:
 | 
			
		||||
    -   id: mypy
 | 
			
		||||
      - id: autoflake
 | 
			
		||||
 | 
			
		||||
  - repo: http://github.com/PyCQA/isort
 | 
			
		||||
    rev: 5.12.0
 | 
			
		||||
    hooks:
 | 
			
		||||
      - id: isort
 | 
			
		||||
 | 
			
		||||
  - repo: https://github.com/pre-commit/mirrors-mypy
 | 
			
		||||
    rev: v1.3.0
 | 
			
		||||
    hooks:
 | 
			
		||||
      - id: mypy
 | 
			
		||||
        files: prototorch
 | 
			
		||||
        additional_dependencies: [types-pkg_resources]
 | 
			
		||||
 | 
			
		||||
-   repo: https://github.com/pre-commit/mirrors-yapf
 | 
			
		||||
    rev: 'v0.31.0'  # Use the sha / tag you want to point at
 | 
			
		||||
  - repo: https://github.com/pre-commit/mirrors-yapf
 | 
			
		||||
    rev: v0.32.0
 | 
			
		||||
    hooks:
 | 
			
		||||
    -   id: yapf
 | 
			
		||||
      - id: yapf
 | 
			
		||||
        additional_dependencies: ["toml"]
 | 
			
		||||
 | 
			
		||||
-   repo: https://github.com/pre-commit/pygrep-hooks
 | 
			
		||||
    rev: v1.9.0  # Use the ref you want to point at
 | 
			
		||||
  - repo: https://github.com/pre-commit/pygrep-hooks
 | 
			
		||||
    rev: v1.10.0
 | 
			
		||||
    hooks:
 | 
			
		||||
    -   id: python-use-type-annotations
 | 
			
		||||
    -   id: python-no-log-warn
 | 
			
		||||
    -   id: python-check-blanket-noqa
 | 
			
		||||
      - id: python-use-type-annotations
 | 
			
		||||
      - id: python-no-log-warn
 | 
			
		||||
      - id: python-check-blanket-noqa
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
-   repo: https://github.com/asottile/pyupgrade
 | 
			
		||||
    rev: v2.19.4
 | 
			
		||||
  - repo: https://github.com/asottile/pyupgrade
 | 
			
		||||
    rev: v3.7.0
 | 
			
		||||
    hooks:
 | 
			
		||||
    -   id: pyupgrade
 | 
			
		||||
      - id: pyupgrade
 | 
			
		||||
 | 
			
		||||
-   repo: https://github.com/jorisroovers/gitlint
 | 
			
		||||
    rev: "v0.15.1"
 | 
			
		||||
  - repo: https://github.com/si-cim/gitlint
 | 
			
		||||
    rev: v0.15.2-unofficial
 | 
			
		||||
    hooks:
 | 
			
		||||
    -   id: gitlint
 | 
			
		||||
      - id: gitlint
 | 
			
		||||
        args: [--contrib=CT1, --ignore=B6, --msg-filename]
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										25
									
								
								.travis.yml
									
									
									
									
									
								
							
							
						
						
									
										25
									
								
								.travis.yml
									
									
									
									
									
								
							@@ -1,25 +0,0 @@
 | 
			
		||||
dist: bionic
 | 
			
		||||
sudo: false
 | 
			
		||||
language: python
 | 
			
		||||
python: 3.9
 | 
			
		||||
cache:
 | 
			
		||||
  directories:
 | 
			
		||||
  - "$HOME/.cache/pip"
 | 
			
		||||
  - "./tests/artifacts"
 | 
			
		||||
  - "$HOME/datasets"
 | 
			
		||||
install:
 | 
			
		||||
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
 | 
			
		||||
- pip install .[all] --progress-bar off
 | 
			
		||||
script:
 | 
			
		||||
- coverage run -m pytest
 | 
			
		||||
- ./tests/test_examples.sh examples/
 | 
			
		||||
after_success:
 | 
			
		||||
- bash <(curl -s https://codecov.io/bash)
 | 
			
		||||
deploy:
 | 
			
		||||
  provider: pypi
 | 
			
		||||
  username: __token__
 | 
			
		||||
  password:
 | 
			
		||||
    secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
 | 
			
		||||
  on:
 | 
			
		||||
    tags: true
 | 
			
		||||
    skip_existing: true
 | 
			
		||||
							
								
								
									
										37
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										37
									
								
								README.md
									
									
									
									
									
								
							@@ -1,6 +1,5 @@
 | 
			
		||||
# ProtoTorch Models
 | 
			
		||||
 | 
			
		||||
[](https://travis-ci.com/github/si-cim/prototorch_models)
 | 
			
		||||
[](https://github.com/si-cim/prototorch_models/releases)
 | 
			
		||||
[](https://pypi.org/project/prototorch_models/)
 | 
			
		||||
[](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)
 | 
			
		||||
@@ -20,23 +19,6 @@ pip install prototorch_models
 | 
			
		||||
of** [ProtoTorch](https://github.com/si-cim/prototorch). The plugin should then
 | 
			
		||||
be available for use in your Python environment as `prototorch.models`.
 | 
			
		||||
 | 
			
		||||
## Contribution
 | 
			
		||||
 | 
			
		||||
This repository contains definition for [git hooks](https://githooks.com).
 | 
			
		||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
 | 
			
		||||
dependency with prototorch or you can install it manually with `pip install
 | 
			
		||||
pre-commit`.
 | 
			
		||||
 | 
			
		||||
Please install the hooks by running:
 | 
			
		||||
```bash
 | 
			
		||||
pre-commit install
 | 
			
		||||
pre-commit install --hook-type commit-msg
 | 
			
		||||
```
 | 
			
		||||
before creating the first commit.
 | 
			
		||||
 | 
			
		||||
The commit will fail if the commit message does not follow the specification
 | 
			
		||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
 | 
			
		||||
 | 
			
		||||
## Available models
 | 
			
		||||
 | 
			
		||||
### LVQ Family
 | 
			
		||||
@@ -53,6 +35,7 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
 | 
			
		||||
- Soft Learning Vector Quantization (SLVQ)
 | 
			
		||||
- Robust Soft Learning Vector Quantization (RSLVQ)
 | 
			
		||||
- Probabilistic Learning Vector Quantization (PLVQ)
 | 
			
		||||
- Median-LVQ
 | 
			
		||||
 | 
			
		||||
### Other
 | 
			
		||||
 | 
			
		||||
@@ -68,7 +51,6 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
 | 
			
		||||
 | 
			
		||||
## Planned models
 | 
			
		||||
 | 
			
		||||
- Median-LVQ
 | 
			
		||||
- Generalized Tangent Learning Vector Quantization (GTLVQ)
 | 
			
		||||
- Self-Incremental Learning Vector Quantization (SILVQ)
 | 
			
		||||
 | 
			
		||||
@@ -103,6 +85,23 @@ To assist in the development process, you may also find it useful to install
 | 
			
		||||
please avoid installing Tensorflow in this environment. It is known to cause
 | 
			
		||||
problems with PyTorch-Lightning.**
 | 
			
		||||
 | 
			
		||||
## Contribution
 | 
			
		||||
 | 
			
		||||
This repository contains definition for [git hooks](https://githooks.com).
 | 
			
		||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
 | 
			
		||||
dependency with prototorch or you can install it manually with `pip install
 | 
			
		||||
pre-commit`.
 | 
			
		||||
 | 
			
		||||
Please install the hooks by running:
 | 
			
		||||
```bash
 | 
			
		||||
pre-commit install
 | 
			
		||||
pre-commit install --hook-type commit-msg
 | 
			
		||||
```
 | 
			
		||||
before creating the first commit.
 | 
			
		||||
 | 
			
		||||
The commit will fail if the commit message does not follow the specification
 | 
			
		||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
 | 
			
		||||
 | 
			
		||||
## FAQ
 | 
			
		||||
 | 
			
		||||
### How do I update the plugin?
 | 
			
		||||
 
 | 
			
		||||
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
 | 
			
		||||
 | 
			
		||||
# The full version, including alpha/beta/rc tags
 | 
			
		||||
#
 | 
			
		||||
release = "0.4.4"
 | 
			
		||||
release = "0.7.1"
 | 
			
		||||
 | 
			
		||||
# -- General configuration ---------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							@@ -1,49 +1,68 @@
 | 
			
		||||
"""CBC example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import CBC, VisCBC2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=32)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[2, 2, 2],
 | 
			
		||||
        proto_lr=0.1,
 | 
			
		||||
        distribution=[1, 0, 3],
 | 
			
		||||
        margin=0.1,
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.CBC(
 | 
			
		||||
    model = CBC(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
 | 
			
		||||
        components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
 | 
			
		||||
        reasonings_initializer=pt.initializers.
 | 
			
		||||
        PurePositiveReasoningsInitializer(),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisCBC2D(data=train_ds,
 | 
			
		||||
                             title="CBC Iris Example",
 | 
			
		||||
                             resolution=100,
 | 
			
		||||
                             axis_off=True)
 | 
			
		||||
    vis = VisCBC2D(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        title="CBC Iris Example",
 | 
			
		||||
        resolution=100,
 | 
			
		||||
        axis_off=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
@@ -1,8 +0,0 @@
 | 
			
		||||
# Examples using Lightning CLI
 | 
			
		||||
 | 
			
		||||
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
 | 
			
		||||
 | 
			
		||||
To use the example run
 | 
			
		||||
```
 | 
			
		||||
python gmlvq.py --config gmlvq.yaml
 | 
			
		||||
```
 | 
			
		||||
@@ -1,20 +0,0 @@
 | 
			
		||||
"""GMLVQ example using the MNIST dataset."""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from pytorch_lightning.utilities.cli import LightningCLI
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
from prototorch.models import ImageGMLVQ
 | 
			
		||||
from prototorch.models.abstract import PrototypeModel
 | 
			
		||||
from prototorch.models.data import MNISTDataModule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ExperimentClass(ImageGMLVQ):
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams,
 | 
			
		||||
                         optimizer=torch.optim.Adam,
 | 
			
		||||
                         prototype_initializer=pt.components.zeros(28 * 28),
 | 
			
		||||
                         **kwargs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)
 | 
			
		||||
@@ -1,11 +0,0 @@
 | 
			
		||||
model:
 | 
			
		||||
  hparams:
 | 
			
		||||
    input_dim: 784
 | 
			
		||||
    latent_dim: 784
 | 
			
		||||
    distribution:
 | 
			
		||||
      num_classes: 10
 | 
			
		||||
      prototypes_per_class: 2
 | 
			
		||||
    proto_lr: 0.01
 | 
			
		||||
    bb_lr: 0.01
 | 
			
		||||
data:
 | 
			
		||||
  batch_size: 32
 | 
			
		||||
@@ -1,31 +1,50 @@
 | 
			
		||||
"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    CELVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    num_classes = 4
 | 
			
		||||
    num_features = 2
 | 
			
		||||
    num_clusters = 1
 | 
			
		||||
    train_ds = pt.datasets.Random(num_samples=500,
 | 
			
		||||
                                  num_classes=num_classes,
 | 
			
		||||
                                  num_features=num_features,
 | 
			
		||||
                                  num_clusters=num_clusters,
 | 
			
		||||
                                  separation=3.0,
 | 
			
		||||
                                  seed=42)
 | 
			
		||||
    train_ds = pt.datasets.Random(
 | 
			
		||||
        num_samples=500,
 | 
			
		||||
        num_classes=num_classes,
 | 
			
		||||
        num_features=num_features,
 | 
			
		||||
        num_clusters=num_clusters,
 | 
			
		||||
        separation=3.0,
 | 
			
		||||
        seed=42,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    prototypes_per_class = num_clusters * 5
 | 
			
		||||
@@ -35,27 +54,27 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.CELVQ(
 | 
			
		||||
    model = CELVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototype_initializer=pt.components.Ones(2, scale=3),
 | 
			
		||||
        prototypes_initializer=pt.initializers.FVCI(2, 3.0),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    print(model)
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisGLVQ2D(train_ds)
 | 
			
		||||
    pruning = pt.models.PruneLoserPrototypes(
 | 
			
		||||
    vis = VisGLVQ2D(train_ds)
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,  # prune prototype if it wins less than 1%
 | 
			
		||||
        idle_epochs=20,  # pruning too early may cause problems
 | 
			
		||||
        prune_quota_per_epoch=2,  # prune at most 2 prototypes per epoch
 | 
			
		||||
        frequency=1,  # prune every epoch
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = pl.callbacks.EarlyStopping(
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
@@ -65,17 +84,18 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        progress_bar_refresh_rate=0,
 | 
			
		||||
        terminate_on_nan=True,
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        accelerator="ddp",
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
@@ -1,39 +1,50 @@
 | 
			
		||||
"""GLVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import GLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution={
 | 
			
		||||
            "num_classes": 3,
 | 
			
		||||
            "prototypes_per_class": 4
 | 
			
		||||
            "per_class": 4
 | 
			
		||||
        },
 | 
			
		||||
        lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.GLVQ(
 | 
			
		||||
    model = GLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototype_initializer=pt.components.SMI(train_ds),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
@@ -42,15 +53,30 @@ if __name__ == "__main__":
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisGLVQ2D(data=train_ds)
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        accelerator="ddp",
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
 | 
			
		||||
    # Manual save
 | 
			
		||||
    trainer.save_checkpoint("./glvq_iris.ckpt")
 | 
			
		||||
 | 
			
		||||
    # Load saved model
 | 
			
		||||
    new_model = GLVQ.load_from_checkpoint(
 | 
			
		||||
        checkpoint_path="./glvq_iris.ckpt",
 | 
			
		||||
        strict=False,
 | 
			
		||||
    )
 | 
			
		||||
    logging.info(new_model)
 | 
			
		||||
 
 | 
			
		||||
@@ -1,78 +0,0 @@
 | 
			
		||||
"""GLVQ example using the spiral dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    num_classes = 2
 | 
			
		||||
    prototypes_per_class = 10
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=(num_classes, prototypes_per_class),
 | 
			
		||||
        transfer_function="swish_beta",
 | 
			
		||||
        transfer_beta=10.0,
 | 
			
		||||
        # lr=0.1,
 | 
			
		||||
        proto_lr=0.1,
 | 
			
		||||
        bb_lr=0.1,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=2,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.GMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototype_initializer=pt.components.SSI(train_ds, noise=1e-2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisGLVQ2D(
 | 
			
		||||
        train_ds,
 | 
			
		||||
        show_last_only=False,
 | 
			
		||||
        block=False,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = pt.models.PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.02,
 | 
			
		||||
        idle_epochs=10,
 | 
			
		||||
        prune_quota_per_epoch=5,
 | 
			
		||||
        frequency=2,
 | 
			
		||||
        replace=True,
 | 
			
		||||
        initializer=pt.components.SSI(train_ds, noise=1e-2),
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = pl.callbacks.EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=1.0,
 | 
			
		||||
        patience=5,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            # es,
 | 
			
		||||
            pruning,
 | 
			
		||||
        ],
 | 
			
		||||
        terminate_on_nan=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,59 +1,78 @@
 | 
			
		||||
"""GLVQ example using the Iris dataset."""
 | 
			
		||||
"""GMLVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import GMLVQ, VisGMLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        input_dim=4,
 | 
			
		||||
        latent_dim=3,
 | 
			
		||||
        latent_dim=4,
 | 
			
		||||
        distribution={
 | 
			
		||||
            "num_classes": 3,
 | 
			
		||||
            "prototypes_per_class": 2
 | 
			
		||||
            "per_class": 2
 | 
			
		||||
        },
 | 
			
		||||
        proto_lr=0.0005,
 | 
			
		||||
        bb_lr=0.0005,
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.GMLVQ(
 | 
			
		||||
    model = GMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototype_initializer=pt.components.SSI(train_ds),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
        omega_initializer=pt.components.PCA(train_ds.data)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    #model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 4)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisGMLVQ2D(data=train_ds, border=0.1)
 | 
			
		||||
    vis = VisGMLVQ2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        accelerator="ddp",
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
 | 
			
		||||
    torch.save(model, "iris.pth")
 | 
			
		||||
 
 | 
			
		||||
@@ -1,18 +1,33 @@
 | 
			
		||||
"""GMLVQ example using the MNIST dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    ImageGMLVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisImgComp,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
from torchvision import transforms
 | 
			
		||||
from torchvision.datasets import MNIST
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
@@ -34,12 +49,8 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds,
 | 
			
		||||
                                               num_workers=0,
 | 
			
		||||
                                               batch_size=256)
 | 
			
		||||
    test_loader = torch.utils.data.DataLoader(test_ds,
 | 
			
		||||
                                              num_workers=0,
 | 
			
		||||
                                              batch_size=256)
 | 
			
		||||
    train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
 | 
			
		||||
    test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    num_classes = 10
 | 
			
		||||
@@ -53,14 +64,14 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.ImageGMLVQ(
 | 
			
		||||
    model = ImageGMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototype_initializer=pt.components.SMI(train_ds),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisImgComp(
 | 
			
		||||
    vis = VisImgComp(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        num_columns=10,
 | 
			
		||||
        show=False,
 | 
			
		||||
@@ -70,14 +81,14 @@ if __name__ == "__main__":
 | 
			
		||||
        embedding_data=200,
 | 
			
		||||
        flatten_data=False,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = pt.models.PruneLoserPrototypes(
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=1,
 | 
			
		||||
        prune_quota_per_epoch=10,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = pl.callbacks.EarlyStopping(
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=15,
 | 
			
		||||
@@ -86,16 +97,18 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            # es,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        terminate_on_nan=True,
 | 
			
		||||
        weights_summary=None,
 | 
			
		||||
        accelerator="ddp",
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										97
									
								
								examples/gmlvq_spiral.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										97
									
								
								examples/gmlvq_spiral.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,97 @@
 | 
			
		||||
"""GMLVQ example using the spiral dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    GMLVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    num_classes = 2
 | 
			
		||||
    prototypes_per_class = 10
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=(num_classes, prototypes_per_class),
 | 
			
		||||
        transfer_function="swish_beta",
 | 
			
		||||
        transfer_beta=10.0,
 | 
			
		||||
        proto_lr=0.1,
 | 
			
		||||
        bb_lr=0.1,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=2,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(
 | 
			
		||||
        train_ds,
 | 
			
		||||
        show_last_only=False,
 | 
			
		||||
        block=False,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=10,
 | 
			
		||||
        prune_quota_per_epoch=5,
 | 
			
		||||
        frequency=5,
 | 
			
		||||
        replace=True,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=1.0,
 | 
			
		||||
        patience=5,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
            pruning,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,24 +1,33 @@
 | 
			
		||||
"""Growing Neural Gas example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import GrowingNeuralGas, VisNG2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=42)
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Prepare the data
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
@@ -28,26 +37,31 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.GrowingNeuralGas(
 | 
			
		||||
    model = GrowingNeuralGas(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototype_initializer=pt.components.Zeros(2),
 | 
			
		||||
        prototypes_initializer=pt.initializers.ZCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Model summary
 | 
			
		||||
    print(model)
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisNG2D(data=train_loader)
 | 
			
		||||
    vis = VisNG2D(data=train_loader)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										77
									
								
								examples/grlvq_iris.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										77
									
								
								examples/grlvq_iris.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,77 @@
 | 
			
		||||
"""GMLVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import GRLVQ, VisSiameseGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris([0, 1])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        distribution={
 | 
			
		||||
            "num_classes": 3,
 | 
			
		||||
            "per_class": 2
 | 
			
		||||
        },
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GRLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisSiameseGLVQ2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=5,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
 | 
			
		||||
    torch.save(model, "iris.pth")
 | 
			
		||||
							
								
								
									
										119
									
								
								examples/gtlvq_mnist.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										119
									
								
								examples/gtlvq_mnist.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,119 @@
 | 
			
		||||
"""GTLVQ example using the MNIST dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    ImageGTLVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisImgComp,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
from torchvision import transforms
 | 
			
		||||
from torchvision.datasets import MNIST
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = MNIST(
 | 
			
		||||
        "~/datasets",
 | 
			
		||||
        train=True,
 | 
			
		||||
        download=True,
 | 
			
		||||
        transform=transforms.Compose([
 | 
			
		||||
            transforms.ToTensor(),
 | 
			
		||||
        ]),
 | 
			
		||||
    )
 | 
			
		||||
    test_ds = MNIST(
 | 
			
		||||
        "~/datasets",
 | 
			
		||||
        train=False,
 | 
			
		||||
        download=True,
 | 
			
		||||
        transform=transforms.Compose([
 | 
			
		||||
            transforms.ToTensor(),
 | 
			
		||||
        ]),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
 | 
			
		||||
    test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    num_classes = 10
 | 
			
		||||
    prototypes_per_class = 1
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        input_dim=28 * 28,
 | 
			
		||||
        latent_dim=28,
 | 
			
		||||
        distribution=(num_classes, prototypes_per_class),
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = ImageGTLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        #Use one batch of data for subspace initiator.
 | 
			
		||||
        omega_initializer=pt.initializers.PCALinearTransformInitializer(
 | 
			
		||||
            next(iter(train_loader))[0].reshape(256, 28 * 28)))
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisImgComp(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        num_columns=10,
 | 
			
		||||
        show=False,
 | 
			
		||||
        tensorboard=True,
 | 
			
		||||
        random_data=100,
 | 
			
		||||
        add_embedding=True,
 | 
			
		||||
        embedding_data=200,
 | 
			
		||||
        flatten_data=False,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=1,
 | 
			
		||||
        prune_quota_per_epoch=10,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=15,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    # using GPUs here is strongly recommended!
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
							
								
								
									
										79
									
								
								examples/gtlvq_moons.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								examples/gtlvq_moons.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,79 @@
 | 
			
		||||
"""Localized-GTLVQ example using the Moons dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import GTLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(
 | 
			
		||||
        train_ds,
 | 
			
		||||
        batch_size=256,
 | 
			
		||||
        shuffle=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    # Latent_dim should be lower than input dim.
 | 
			
		||||
    hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GTLVQ(hparams,
 | 
			
		||||
                  prototypes_initializer=pt.initializers.SMCI(train_ds))
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_acc",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
        mode="max",
 | 
			
		||||
        verbose=False,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,52 +1,75 @@
 | 
			
		||||
"""k-NN example using the Iris dataset from scikit-learn."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from sklearn.datasets import load_iris
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import KNN, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from sklearn.datasets import load_iris
 | 
			
		||||
from sklearn.model_selection import train_test_split
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    x_train, y_train = load_iris(return_X_y=True)
 | 
			
		||||
    x_train = x_train[:, [0, 2]]
 | 
			
		||||
    train_ds = pt.datasets.NumpyDataset(x_train, y_train)
 | 
			
		||||
    X, y = load_iris(return_X_y=True)
 | 
			
		||||
    X = X[:, 0:3:2]
 | 
			
		||||
 | 
			
		||||
    X_train, X_test, y_train, y_test = train_test_split(
 | 
			
		||||
        X,
 | 
			
		||||
        y,
 | 
			
		||||
        test_size=0.5,
 | 
			
		||||
        random_state=42,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    train_ds = pt.datasets.NumpyDataset(X_train, y_train)
 | 
			
		||||
    test_ds = pt.datasets.NumpyDataset(X_test, y_test)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=16)
 | 
			
		||||
    test_loader = DataLoader(test_ds, batch_size=16)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(k=5)
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.KNN(hparams, data=train_ds)
 | 
			
		||||
    model = KNN(hparams, data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    print(model)
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisGLVQ2D(
 | 
			
		||||
        data=(x_train, y_train),
 | 
			
		||||
    vis = VisGLVQ2D(
 | 
			
		||||
        data=(X_train, y_train),
 | 
			
		||||
        resolution=200,
 | 
			
		||||
        block=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        max_epochs=1,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
@@ -54,5 +77,8 @@ if __name__ == "__main__":
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
 | 
			
		||||
    # Recall
 | 
			
		||||
    y_pred = model.predict(torch.tensor(x_train))
 | 
			
		||||
    print(y_pred)
 | 
			
		||||
    y_pred = model.predict(torch.tensor(X_train))
 | 
			
		||||
    logging.info(y_pred)
 | 
			
		||||
 | 
			
		||||
    # Test
 | 
			
		||||
    trainer.test(model, dataloaders=test_loader)
 | 
			
		||||
 
 | 
			
		||||
@@ -1,29 +1,25 @@
 | 
			
		||||
"""Kohonen Self Organizing Map."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
from prototorch.models import KohonenSOM
 | 
			
		||||
from prototorch.utils.colors import hex_to_rgb
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader, TensorDataset
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def hex_to_rgb(hex_values):
 | 
			
		||||
    for v in hex_values:
 | 
			
		||||
        v = v.lstrip('#')
 | 
			
		||||
        lv = len(v)
 | 
			
		||||
        c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
 | 
			
		||||
        yield c
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rgb_to_hex(rgb_values):
 | 
			
		||||
    for v in rgb_values:
 | 
			
		||||
        c = "%02x%02x%02x" % tuple(v)
 | 
			
		||||
        yield c
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Vis2DColorSOM(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, data, title="ColorSOMe", pause_time=0.1):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.title = title
 | 
			
		||||
@@ -31,7 +27,7 @@ class Vis2DColorSOM(pl.Callback):
 | 
			
		||||
        self.data = data
 | 
			
		||||
        self.pause_time = pause_time
 | 
			
		||||
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
 | 
			
		||||
        ax = self.fig.gca()
 | 
			
		||||
        ax.cla()
 | 
			
		||||
        ax.set_title(self.title)
 | 
			
		||||
@@ -44,12 +40,14 @@ class Vis2DColorSOM(pl.Callback):
 | 
			
		||||
        d = pl_module.compute_distances(self.data)
 | 
			
		||||
        wp = pl_module.predict_from_distances(d)
 | 
			
		||||
        for i, iloc in enumerate(wp):
 | 
			
		||||
            plt.text(iloc[1],
 | 
			
		||||
                     iloc[0],
 | 
			
		||||
                     cnames[i],
 | 
			
		||||
                     ha="center",
 | 
			
		||||
                     va="center",
 | 
			
		||||
                     bbox=dict(facecolor="white", alpha=0.5, lw=0))
 | 
			
		||||
            plt.text(
 | 
			
		||||
                iloc[1],
 | 
			
		||||
                iloc[0],
 | 
			
		||||
                color_names[i],
 | 
			
		||||
                ha="center",
 | 
			
		||||
                va="center",
 | 
			
		||||
                bbox=dict(facecolor="white", alpha=0.5, lw=0),
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if trainer.current_epoch != trainer.max_epochs - 1:
 | 
			
		||||
            plt.pause(self.pause_time)
 | 
			
		||||
@@ -60,11 +58,12 @@ class Vis2DColorSOM(pl.Callback):
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=42)
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Prepare the data
 | 
			
		||||
    hex_colors = [
 | 
			
		||||
@@ -72,15 +71,15 @@ if __name__ == "__main__":
 | 
			
		||||
        "#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
 | 
			
		||||
        "#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
 | 
			
		||||
    ]
 | 
			
		||||
    cnames = [
 | 
			
		||||
    color_names = [
 | 
			
		||||
        "black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
 | 
			
		||||
        "red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
 | 
			
		||||
        "lightgrey", "olive", "purple", "orange"
 | 
			
		||||
    ]
 | 
			
		||||
    colors = list(hex_to_rgb(hex_colors))
 | 
			
		||||
    data = torch.Tensor(colors) / 255.0
 | 
			
		||||
    train_ds = torch.utils.data.TensorDataset(data)
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
 | 
			
		||||
    train_ds = TensorDataset(data)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=8)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
@@ -91,26 +90,31 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.KohonenSOM(
 | 
			
		||||
    model = KohonenSOM(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototype_initializer=pt.components.Random(3),
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(3),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 3)
 | 
			
		||||
 | 
			
		||||
    # Model summary
 | 
			
		||||
    print(model)
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = Vis2DColorSOM(data=data)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        max_epochs=500,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
@@ -1,28 +1,36 @@
 | 
			
		||||
"""Localized-GMLVQ example using the Moons dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import LGMLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds,
 | 
			
		||||
                                               batch_size=256,
 | 
			
		||||
                                               shuffle=True)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
@@ -32,18 +40,20 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.LGMLVQ(hparams,
 | 
			
		||||
                             prototype_initializer=pt.components.SMI(train_ds))
 | 
			
		||||
    model = LGMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    print(model)
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisGLVQ2D(data=train_ds)
 | 
			
		||||
    es = pl.callbacks.EarlyStopping(
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_acc",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
@@ -53,14 +63,17 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        accelerator="ddp",
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
@@ -1,90 +0,0 @@
 | 
			
		||||
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def plot_matrix(matrix):
 | 
			
		||||
    title = "Lambda matrix"
 | 
			
		||||
    plt.figure(title)
 | 
			
		||||
    plt.title(title)
 | 
			
		||||
    plt.imshow(matrix, cmap="gray")
 | 
			
		||||
    plt.axis("off")
 | 
			
		||||
    plt.colorbar()
 | 
			
		||||
    plt.show(block=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
 | 
			
		||||
    test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=10)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
 | 
			
		||||
    test_loader = torch.utils.data.DataLoader(test_ds, batch_size=32)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution={
 | 
			
		||||
            "num_classes": 2,
 | 
			
		||||
            "prototypes_per_class": 1
 | 
			
		||||
        },
 | 
			
		||||
        input_dim=100,
 | 
			
		||||
        latent_dim=2,
 | 
			
		||||
        proto_lr=0.0001,
 | 
			
		||||
        bb_lr=0.0001,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.SiameseGMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        # optimizer=torch.optim.SGD,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototype_initializer=pt.components.SMI(train_ds),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    print(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
 | 
			
		||||
    es = pl.callbacks.EarlyStopping(monitor="val_loss",
 | 
			
		||||
                                    min_delta=0.001,
 | 
			
		||||
                                    patience=50,
 | 
			
		||||
                                    verbose=False,
 | 
			
		||||
                                    mode="min")
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis, es],
 | 
			
		||||
        weights_summary=None,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader, test_loader)
 | 
			
		||||
 | 
			
		||||
    # Save the model
 | 
			
		||||
    torch.save(model, "liramlvq_tecator.pt")
 | 
			
		||||
 | 
			
		||||
    # Load a saved model
 | 
			
		||||
    saved_model = torch.load("liramlvq_tecator.pt")
 | 
			
		||||
 | 
			
		||||
    # Display the Lambda matrix
 | 
			
		||||
    plot_matrix(saved_model.lambda_matrix)
 | 
			
		||||
 | 
			
		||||
    # Testing
 | 
			
		||||
    trainer.test(model, test_dataloaders=test_loader)
 | 
			
		||||
@@ -1,14 +1,26 @@
 | 
			
		||||
"""LVQMLN example using all four dimensions of the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    LVQMLN,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisSiameseGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Backbone(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, input_size=4, hidden_size=10, latent_size=2):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.input_size = input_size
 | 
			
		||||
@@ -27,21 +39,22 @@ class Backbone(torch.nn.Module):
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=42)
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[1, 2, 2],
 | 
			
		||||
        distribution=[3, 4, 5],
 | 
			
		||||
        proto_lr=0.001,
 | 
			
		||||
        bb_lr=0.001,
 | 
			
		||||
    )
 | 
			
		||||
@@ -50,28 +63,43 @@ if __name__ == "__main__":
 | 
			
		||||
    backbone = Backbone()
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.LVQMLN(
 | 
			
		||||
    model = LVQMLN(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(
 | 
			
		||||
            train_ds,
 | 
			
		||||
            transform=backbone,
 | 
			
		||||
        ),
 | 
			
		||||
        backbone=backbone,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Model summary
 | 
			
		||||
    print(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisSiameseGLVQ2D(
 | 
			
		||||
    vis = VisSiameseGLVQ2D(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        map_protos=False,
 | 
			
		||||
        border=0.1,
 | 
			
		||||
        resolution=500,
 | 
			
		||||
        axis_off=True,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=20,
 | 
			
		||||
        prune_quota_per_epoch=2,
 | 
			
		||||
        frequency=10,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										71
									
								
								examples/median_lvq_iris.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								examples/median_lvq_iris.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,71 @@
 | 
			
		||||
"""Median-LVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import MedianLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(
 | 
			
		||||
        train_ds,
 | 
			
		||||
        batch_size=len(train_ds),  # MedianLVQ cannot handle mini-batches
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = MedianLVQ(
 | 
			
		||||
        hparams=dict(distribution=(3, 2), lr=0.01),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_acc",
 | 
			
		||||
        min_delta=0.01,
 | 
			
		||||
        patience=5,
 | 
			
		||||
        mode="max",
 | 
			
		||||
        verbose=True,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,24 +1,35 @@
 | 
			
		||||
"""Neural Gas example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import NeuralGas, VisNG2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from sklearn.datasets import load_iris
 | 
			
		||||
from sklearn.preprocessing import StandardScaler
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Prepare and pre-process the dataset
 | 
			
		||||
    x_train, y_train = load_iris(return_X_y=True)
 | 
			
		||||
    x_train = x_train[:, [0, 2]]
 | 
			
		||||
    x_train = x_train[:, 0:3:2]
 | 
			
		||||
    scaler = StandardScaler()
 | 
			
		||||
    scaler.fit(x_train)
 | 
			
		||||
    x_train = scaler.transform(x_train)
 | 
			
		||||
@@ -26,7 +37,7 @@ if __name__ == "__main__":
 | 
			
		||||
    train_ds = pt.datasets.NumpyDataset(x_train, y_train)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
@@ -36,9 +47,9 @@ if __name__ == "__main__":
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.NeuralGas(
 | 
			
		||||
    model = NeuralGas(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototype_initializer=pt.components.Zeros(2),
 | 
			
		||||
        prototypes_initializer=pt.core.ZCI(2),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
@@ -46,17 +57,20 @@ if __name__ == "__main__":
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Model summary
 | 
			
		||||
    print(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisNG2D(data=train_ds)
 | 
			
		||||
    vis = VisNG2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
@@ -1,64 +1,70 @@
 | 
			
		||||
"""RSLVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from torchvision.transforms import Lambda
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import RSLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=42)
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[2, 2, 3],
 | 
			
		||||
        proto_lr=0.05,
 | 
			
		||||
        lambd=0.1,
 | 
			
		||||
        variance=1.0,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=2,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.probabilistic.PLVQ(
 | 
			
		||||
    model = RSLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        # prototype_initializer=pt.components.SMI(train_ds),
 | 
			
		||||
        prototype_initializer=pt.components.SSI(train_ds, noise=0.2),
 | 
			
		||||
        # prototype_initializer=pt.components.Zeros(2),
 | 
			
		||||
        # prototype_initializer=pt.components.Ones(2, scale=2.0),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    print(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisSiameseGLVQ2D(data=train_ds)
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
        terminate_on_nan=True,
 | 
			
		||||
        weights_summary="full",
 | 
			
		||||
        accelerator="ddp",
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
@@ -1,14 +1,22 @@
 | 
			
		||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Backbone(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, input_size=4, hidden_size=10, latent_size=2):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.input_size = input_size
 | 
			
		||||
@@ -27,46 +35,50 @@ class Backbone(torch.nn.Module):
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    pl.utilities.seed.seed_everything(seed=2)
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[1, 2, 3],
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
        lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the backbone
 | 
			
		||||
    backbone = Backbone()
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = pt.models.SiameseGLVQ(
 | 
			
		||||
    model = SiameseGLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototype_initializer=pt.components.SMI(train_ds),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        backbone=backbone,
 | 
			
		||||
        both_path_gradients=False,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Model summary
 | 
			
		||||
    print(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
 | 
			
		||||
    vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[vis],
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										87
									
								
								examples/siamese_gtlvq_iris.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										87
									
								
								examples/siamese_gtlvq_iris.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,87 @@
 | 
			
		||||
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Backbone(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, input_size=4, hidden_size=10, latent_size=2):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.input_size = input_size
 | 
			
		||||
        self.hidden_size = hidden_size
 | 
			
		||||
        self.latent_size = latent_size
 | 
			
		||||
        self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
 | 
			
		||||
        self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
 | 
			
		||||
        self.activation = torch.nn.Sigmoid()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.activation(self.dense1(x))
 | 
			
		||||
        out = self.activation(self.dense2(x))
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[1, 2, 3],
 | 
			
		||||
        lr=0.01,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the backbone
 | 
			
		||||
    backbone = Backbone(latent_size=hparams["input_dim"])
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = SiameseGTLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        backbone=backbone,
 | 
			
		||||
        both_path_gradients=False,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
							
								
								
									
										129
									
								
								examples/warm_starting.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								examples/warm_starting.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,129 @@
 | 
			
		||||
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from lightning_fabric.utilities.seed import seed_everything
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    GLVQ,
 | 
			
		||||
    KNN,
 | 
			
		||||
    GrowingNeuralGas,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--gpus", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--fast_dev_run", type=bool, default=False)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Prepare the data
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
 | 
			
		||||
 | 
			
		||||
    # Initialize the gng
 | 
			
		||||
    gng = GrowingNeuralGas(
 | 
			
		||||
        hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
 | 
			
		||||
        prototypes_initializer=pt.initializers.ZCI(2),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        verbose=False,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer for GNG
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cpu",
 | 
			
		||||
        max_epochs=50 if args.fast_dev_run else
 | 
			
		||||
        1000,  # 10 epochs fast dev run reproducible DIV error.
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(gng, train_loader)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[],
 | 
			
		||||
        lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Warm-start prototypes
 | 
			
		||||
    knn = KNN(dict(k=1), data=train_ds)
 | 
			
		||||
    prototypes = gng.prototypes
 | 
			
		||||
    plabels = knn.predict(prototypes)
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.LCI(prototypes),
 | 
			
		||||
        labels_initializer=pt.initializers.LLI(plabels),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.02,
 | 
			
		||||
        idle_epochs=2,
 | 
			
		||||
        prune_quota_per_epoch=5,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=10,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        verbose=True,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        accelerator="cuda" if args.gpus else "cpu",
 | 
			
		||||
        devices=args.gpus if args.gpus else "auto",
 | 
			
		||||
        fast_dev_run=args.fast_dev_run,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,15 +0,0 @@
 | 
			
		||||
"""`models` plugin for the `prototorch` package."""
 | 
			
		||||
 | 
			
		||||
from importlib.metadata import PackageNotFoundError, version
 | 
			
		||||
 | 
			
		||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
 | 
			
		||||
from .cbc import CBC, ImageCBC
 | 
			
		||||
from .glvq import (GLVQ, GLVQ1, GLVQ21, GMLVQ, GRLVQ, LGMLVQ, LVQMLN,
 | 
			
		||||
                   ImageGLVQ, ImageGMLVQ, SiameseGLVQ, SiameseGMLVQ)
 | 
			
		||||
from .knn import KNN
 | 
			
		||||
from .lvq import LVQ1, LVQ21, MedianLVQ
 | 
			
		||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
 | 
			
		||||
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
 | 
			
		||||
from .vis import *
 | 
			
		||||
 | 
			
		||||
__version__ = "0.1.8"
 | 
			
		||||
@@ -1,76 +0,0 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torchmetrics
 | 
			
		||||
 | 
			
		||||
from .abstract import ImagePrototypesMixin
 | 
			
		||||
from .extras import (CosineSimilarity, MarginLoss, ReasoningLayer,
 | 
			
		||||
                     euclidean_similarity, rescaled_cosine_similarity,
 | 
			
		||||
                     shift_activation)
 | 
			
		||||
from .glvq import SiameseGLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CBC(SiameseGLVQ):
 | 
			
		||||
    """Classification-By-Components."""
 | 
			
		||||
    def __init__(self, hparams, margin=0.1, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
        self.margin = margin
 | 
			
		||||
        self.similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
 | 
			
		||||
        num_components = self.components.shape[0]
 | 
			
		||||
        self.reasoning_layer = ReasoningLayer(num_components=num_components,
 | 
			
		||||
                                              num_classes=self.num_classes)
 | 
			
		||||
        self.component_layer = self.proto_layer
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def components(self):
 | 
			
		||||
        return self.prototypes
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def reasonings(self):
 | 
			
		||||
        return self.reasoning_layer.reasonings.cpu()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        components, _ = self.component_layer()
 | 
			
		||||
        latent_x = self.backbone(x)
 | 
			
		||||
        self.backbone.requires_grad_(self.both_path_gradients)
 | 
			
		||||
        latent_components = self.backbone(components)
 | 
			
		||||
        self.backbone.requires_grad_(True)
 | 
			
		||||
        detections = self.similarity_fn(latent_x, latent_components)
 | 
			
		||||
        probs = self.reasoning_layer(detections)
 | 
			
		||||
        return probs
 | 
			
		||||
 | 
			
		||||
    def shared_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        # x = x.view(x.size(0), -1)
 | 
			
		||||
        y_pred = self(x)
 | 
			
		||||
        num_classes = self.reasoning_layer.num_classes
 | 
			
		||||
        y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
 | 
			
		||||
        loss = MarginLoss(self.margin)(y_pred, y_true).mean(dim=0)
 | 
			
		||||
        return y_pred, loss
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
 | 
			
		||||
        preds = torch.argmax(y_pred, dim=1)
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(preds.int(),
 | 
			
		||||
                                                    batch[1].int())
 | 
			
		||||
        self.log("train_acc",
 | 
			
		||||
                 accuracy,
 | 
			
		||||
                 on_step=False,
 | 
			
		||||
                 on_epoch=True,
 | 
			
		||||
                 prog_bar=True,
 | 
			
		||||
                 logger=True)
 | 
			
		||||
        return train_loss
 | 
			
		||||
 | 
			
		||||
    def predict(self, x):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            y_pred = self(x)
 | 
			
		||||
            y_pred = torch.argmax(y_pred, dim=1)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageCBC(ImagePrototypesMixin, CBC):
 | 
			
		||||
    """CBC model that constrains the components to the range [0, 1] by
 | 
			
		||||
    clamping after updates.
 | 
			
		||||
    """
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
        # Namespace hook
 | 
			
		||||
        self.proto_layer = self.component_layer
 | 
			
		||||
@@ -1,124 +0,0 @@
 | 
			
		||||
"""Prototorch Data Modules
 | 
			
		||||
 | 
			
		||||
This allows to store the used dataset inside a Lightning Module.
 | 
			
		||||
Mainly used for PytorchLightningCLI configurations.
 | 
			
		||||
"""
 | 
			
		||||
from typing import Any, Optional, Type
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
from torch.utils.data import DataLoader, Dataset, random_split
 | 
			
		||||
from torchvision import transforms
 | 
			
		||||
from torchvision.datasets import MNIST
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# MNIST
 | 
			
		||||
class MNISTDataModule(pl.LightningDataModule):
 | 
			
		||||
    def __init__(self, batch_size=32):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.batch_size = batch_size
 | 
			
		||||
 | 
			
		||||
    # Download mnist dataset as side-effect, only called on the first cpu
 | 
			
		||||
    def prepare_data(self):
 | 
			
		||||
        MNIST("~/datasets", train=True, download=True)
 | 
			
		||||
        MNIST("~/datasets", train=False, download=True)
 | 
			
		||||
 | 
			
		||||
    # called for every GPU/machine (assigning state is OK)
 | 
			
		||||
    def setup(self, stage=None):
 | 
			
		||||
        # Transforms
 | 
			
		||||
        transform = transforms.Compose([
 | 
			
		||||
            transforms.ToTensor(),
 | 
			
		||||
        ])
 | 
			
		||||
        # Split dataset
 | 
			
		||||
        if stage in (None, "fit"):
 | 
			
		||||
            mnist_train = MNIST("~/datasets", train=True, transform=transform)
 | 
			
		||||
            self.mnist_train, self.mnist_val = random_split(
 | 
			
		||||
                mnist_train,
 | 
			
		||||
                [55000, 5000],
 | 
			
		||||
            )
 | 
			
		||||
        if stage == (None, "test"):
 | 
			
		||||
            self.mnist_test = MNIST(
 | 
			
		||||
                "~/datasets",
 | 
			
		||||
                train=False,
 | 
			
		||||
                transform=transform,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    def train_dataloader(self):
 | 
			
		||||
        mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
 | 
			
		||||
        return mnist_train
 | 
			
		||||
 | 
			
		||||
    def val_dataloader(self):
 | 
			
		||||
        mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
 | 
			
		||||
        return mnist_val
 | 
			
		||||
 | 
			
		||||
    def test_dataloader(self):
 | 
			
		||||
        mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
 | 
			
		||||
        return mnist_test
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# def train_on_mnist(batch_size=256) -> type:
 | 
			
		||||
#     class DataClass(pl.LightningModule):
 | 
			
		||||
#         datamodule = MNISTDataModule(batch_size=batch_size)
 | 
			
		||||
 | 
			
		||||
#         def __init__(self, *args, **kwargs):
 | 
			
		||||
#             prototype_initializer = kwargs.pop(
 | 
			
		||||
#                 "prototype_initializer", pt.components.Zeros((28, 28, 1)))
 | 
			
		||||
#             super().__init__(*args,
 | 
			
		||||
#                              prototype_initializer=prototype_initializer,
 | 
			
		||||
#                              **kwargs)
 | 
			
		||||
 | 
			
		||||
#     dc: Type[DataClass] = DataClass
 | 
			
		||||
#     return dc
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# ABSTRACT
 | 
			
		||||
class GeneralDataModule(pl.LightningDataModule):
 | 
			
		||||
    def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.train_dataset = dataset
 | 
			
		||||
        self.batch_size = batch_size
 | 
			
		||||
 | 
			
		||||
    def train_dataloader(self) -> DataLoader:
 | 
			
		||||
        return DataLoader(self.train_dataset, batch_size=self.batch_size)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
 | 
			
		||||
#     class DataClass(pl.LightningModule):
 | 
			
		||||
#         datamodule = GeneralDataModule(dataset, batch_size)
 | 
			
		||||
#         datashape = dataset[0][0].shape
 | 
			
		||||
#         example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
#         def __init__(self, *args: Any, **kwargs: Any) -> None:
 | 
			
		||||
#             prototype_initializer = kwargs.pop(
 | 
			
		||||
#                 "prototype_initializer",
 | 
			
		||||
#                 pt.components.Zeros(self.datashape),
 | 
			
		||||
#             )
 | 
			
		||||
#             super().__init__(*args,
 | 
			
		||||
#                              prototype_initializer=prototype_initializer,
 | 
			
		||||
#                              **kwargs)
 | 
			
		||||
 | 
			
		||||
#     return DataClass
 | 
			
		||||
 | 
			
		||||
# if __name__ == "__main__":
 | 
			
		||||
#     from prototorch.models import GLVQ
 | 
			
		||||
 | 
			
		||||
#     demo_dataset = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
#     TrainingClass: Type = train_on_dataset(demo_dataset)
 | 
			
		||||
 | 
			
		||||
#     class DemoGLVQ(TrainingClass, GLVQ):
 | 
			
		||||
#         """Model Definition."""
 | 
			
		||||
 | 
			
		||||
#     # Hyperparameters
 | 
			
		||||
#     hparams = dict(
 | 
			
		||||
#         distribution={
 | 
			
		||||
#             "num_classes": 3,
 | 
			
		||||
#             "prototypes_per_class": 4
 | 
			
		||||
#         },
 | 
			
		||||
#         lr=0.01,
 | 
			
		||||
#     )
 | 
			
		||||
 | 
			
		||||
#     initialized = DemoGLVQ(hparams)
 | 
			
		||||
#     print(initialized)
 | 
			
		||||
@@ -1,142 +0,0 @@
 | 
			
		||||
"""prototorch.models.extras
 | 
			
		||||
 | 
			
		||||
Modules not yet available in prototorch go here temporarily.
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.functions.distances import euclidean_distance
 | 
			
		||||
from prototorch.functions.similarities import cosine_similarity
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rescaled_cosine_similarity(x, y):
 | 
			
		||||
    """Cosine Similarity rescaled to [0, 1]."""
 | 
			
		||||
    similarities = cosine_similarity(x, y)
 | 
			
		||||
    return (similarities + 1.0) / 2.0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def shift_activation(x):
 | 
			
		||||
    return (x + 1.0) / 2.0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def euclidean_similarity(x, y, variance=1.0):
 | 
			
		||||
    d = euclidean_distance(x, y)
 | 
			
		||||
    return torch.exp(-(d * d) / (2 * variance))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ConnectionTopology(torch.nn.Module):
 | 
			
		||||
    def __init__(self, agelimit, num_prototypes):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.agelimit = agelimit
 | 
			
		||||
        self.num_prototypes = num_prototypes
 | 
			
		||||
 | 
			
		||||
        self.cmat = torch.zeros((self.num_prototypes, self.num_prototypes))
 | 
			
		||||
        self.age = torch.zeros_like(self.cmat)
 | 
			
		||||
 | 
			
		||||
    def forward(self, d):
 | 
			
		||||
        order = torch.argsort(d, dim=1)
 | 
			
		||||
 | 
			
		||||
        for element in order:
 | 
			
		||||
            i0, i1 = element[0], element[1]
 | 
			
		||||
 | 
			
		||||
            self.cmat[i0][i1] = 1
 | 
			
		||||
            self.cmat[i1][i0] = 1
 | 
			
		||||
 | 
			
		||||
            self.age[i0][i1] = 0
 | 
			
		||||
            self.age[i1][i0] = 0
 | 
			
		||||
 | 
			
		||||
            self.age[i0][self.cmat[i0] == 1] += 1
 | 
			
		||||
            self.age[i1][self.cmat[i1] == 1] += 1
 | 
			
		||||
 | 
			
		||||
            self.cmat[i0][self.age[i0] > self.agelimit] = 0
 | 
			
		||||
            self.cmat[i1][self.age[i1] > self.agelimit] = 0
 | 
			
		||||
 | 
			
		||||
    def get_neighbors(self, position):
 | 
			
		||||
        return torch.where(self.cmat[position])
 | 
			
		||||
 | 
			
		||||
    def add_prototype(self):
 | 
			
		||||
        new_cmat = torch.zeros([dim + 1 for dim in self.cmat.shape])
 | 
			
		||||
        new_cmat[:-1, :-1] = self.cmat
 | 
			
		||||
        self.cmat = new_cmat
 | 
			
		||||
 | 
			
		||||
        new_age = torch.zeros([dim + 1 for dim in self.age.shape])
 | 
			
		||||
        new_age[:-1, :-1] = self.age
 | 
			
		||||
        self.age = new_age
 | 
			
		||||
 | 
			
		||||
    def add_connection(self, a, b):
 | 
			
		||||
        self.cmat[a][b] = 1
 | 
			
		||||
        self.cmat[b][a] = 1
 | 
			
		||||
 | 
			
		||||
        self.age[a][b] = 0
 | 
			
		||||
        self.age[b][a] = 0
 | 
			
		||||
 | 
			
		||||
    def remove_connection(self, a, b):
 | 
			
		||||
        self.cmat[a][b] = 0
 | 
			
		||||
        self.cmat[b][a] = 0
 | 
			
		||||
 | 
			
		||||
        self.age[a][b] = 0
 | 
			
		||||
        self.age[b][a] = 0
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(agelimit): ({self.agelimit})"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CosineSimilarity(torch.nn.Module):
 | 
			
		||||
    def __init__(self, activation=shift_activation):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.activation = activation
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, y):
 | 
			
		||||
        epsilon = torch.finfo(x.dtype).eps
 | 
			
		||||
        normed_x = (x / x.pow(2).sum(dim=tuple(range(
 | 
			
		||||
            1, x.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
 | 
			
		||||
                start_dim=1)
 | 
			
		||||
        normed_y = (y / y.pow(2).sum(dim=tuple(range(
 | 
			
		||||
            1, y.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
 | 
			
		||||
                start_dim=1)
 | 
			
		||||
        # normed_x = (x / torch.linalg.norm(x, dim=1))
 | 
			
		||||
        diss = torch.inner(normed_x, normed_y)
 | 
			
		||||
        return self.activation(diss)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MarginLoss(torch.nn.modules.loss._Loss):
 | 
			
		||||
    def __init__(self,
 | 
			
		||||
                 margin=0.3,
 | 
			
		||||
                 size_average=None,
 | 
			
		||||
                 reduce=None,
 | 
			
		||||
                 reduction="mean"):
 | 
			
		||||
        super().__init__(size_average, reduce, reduction)
 | 
			
		||||
        self.margin = margin
 | 
			
		||||
 | 
			
		||||
    def forward(self, input_, target):
 | 
			
		||||
        dp = torch.sum(target * input_, dim=-1)
 | 
			
		||||
        dm = torch.max(input_ - target, dim=-1).values
 | 
			
		||||
        return torch.nn.functional.relu(dm - dp + self.margin)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ReasoningLayer(torch.nn.Module):
 | 
			
		||||
    def __init__(self, num_components, num_classes, num_replicas=1):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.num_replicas = num_replicas
 | 
			
		||||
        self.num_classes = num_classes
 | 
			
		||||
        probabilities_init = torch.zeros(2, 1, num_components,
 | 
			
		||||
                                         self.num_classes)
 | 
			
		||||
        probabilities_init.uniform_(0.4, 0.6)
 | 
			
		||||
        # TODO Use `self.register_parameter("param", Paramater(param))` instead
 | 
			
		||||
        self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def reasonings(self):
 | 
			
		||||
        pk = self.reasoning_probabilities[0]
 | 
			
		||||
        nk = (1 - pk) * self.reasoning_probabilities[1]
 | 
			
		||||
        ik = 1 - pk - nk
 | 
			
		||||
        img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
 | 
			
		||||
        return img.unsqueeze(1)
 | 
			
		||||
 | 
			
		||||
    def forward(self, detections):
 | 
			
		||||
        pk = self.reasoning_probabilities[0].clamp(0, 1)
 | 
			
		||||
        nk = (1 - pk) * self.reasoning_probabilities[1].clamp(0, 1)
 | 
			
		||||
        numerator = (detections @ (pk - nk)) + nk.sum(1)
 | 
			
		||||
        probs = numerator / (pk + nk).sum(1)
 | 
			
		||||
        probs = probs.squeeze(0)
 | 
			
		||||
        return probs
 | 
			
		||||
@@ -1,38 +0,0 @@
 | 
			
		||||
"""ProtoTorch KNN model."""
 | 
			
		||||
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
from prototorch.components import LabeledComponents
 | 
			
		||||
from prototorch.modules import KNNC
 | 
			
		||||
 | 
			
		||||
from .abstract import SupervisedPrototypeModel
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class KNN(SupervisedPrototypeModel):
 | 
			
		||||
    """K-Nearest-Neighbors classification algorithm."""
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("k", 1)
 | 
			
		||||
 | 
			
		||||
        data = kwargs.get("data", None)
 | 
			
		||||
        if data is None:
 | 
			
		||||
            raise ValueError("KNN requires data, but was not provided!")
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        self.proto_layer = LabeledComponents(initialized_components=data)
 | 
			
		||||
        self.competition_layer = KNNC(k=self.hparams.k)
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        return 1  # skip training step
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_start(self,
 | 
			
		||||
                             train_batch,
 | 
			
		||||
                             batch_idx,
 | 
			
		||||
                             dataloader_idx=None):
 | 
			
		||||
        warnings.warn("k-NN has no training, skipping!")
 | 
			
		||||
        return -1
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        return None
 | 
			
		||||
@@ -1,68 +0,0 @@
 | 
			
		||||
"""LVQ models that are optimized using non-gradient methods."""
 | 
			
		||||
 | 
			
		||||
from prototorch.functions.losses import _get_dp_dm
 | 
			
		||||
 | 
			
		||||
from .abstract import NonGradientMixin
 | 
			
		||||
from .glvq import GLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LVQ1(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Learning Vector Quantization 1."""
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        protos = self.proto_layer.components
 | 
			
		||||
        plabels = self.proto_layer.component_labels
 | 
			
		||||
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
        # TODO Vectorized implementation
 | 
			
		||||
 | 
			
		||||
        for xi, yi in zip(x, y):
 | 
			
		||||
            d = self.compute_distances(xi.view(1, -1))
 | 
			
		||||
            preds = self.competition_layer(d, plabels)
 | 
			
		||||
            w = d.argmin(1)
 | 
			
		||||
            if yi == preds:
 | 
			
		||||
                shift = xi - protos[w]
 | 
			
		||||
            else:
 | 
			
		||||
                shift = protos[w] - xi
 | 
			
		||||
            updated_protos = protos + 0.0
 | 
			
		||||
            updated_protos[w] = protos[w] + (self.hparams.lr * shift)
 | 
			
		||||
            self.proto_layer.load_state_dict({"_components": updated_protos},
 | 
			
		||||
                                             strict=False)
 | 
			
		||||
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LVQ21(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Learning Vector Quantization 2.1."""
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        protos = self.proto_layer.components
 | 
			
		||||
        plabels = self.proto_layer.component_labels
 | 
			
		||||
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
        # TODO Vectorized implementation
 | 
			
		||||
 | 
			
		||||
        for xi, yi in zip(x, y):
 | 
			
		||||
            xi = xi.view(1, -1)
 | 
			
		||||
            yi = yi.view(1, )
 | 
			
		||||
            d = self.compute_distances(xi)
 | 
			
		||||
            (_, wp), (_, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
 | 
			
		||||
            shiftp = xi - protos[wp]
 | 
			
		||||
            shiftn = protos[wn] - xi
 | 
			
		||||
            updated_protos = protos + 0.0
 | 
			
		||||
            updated_protos[wp] = protos[wp] + (self.hparams.lr * shiftp)
 | 
			
		||||
            updated_protos[wn] = protos[wn] + (self.hparams.lr * shiftn)
 | 
			
		||||
            self.proto_layer.load_state_dict({"_components": updated_protos},
 | 
			
		||||
                                             strict=False)
 | 
			
		||||
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MedianLVQ(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Median LVQ"""
 | 
			
		||||
							
								
								
									
										90
									
								
								pyproject.toml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										90
									
								
								pyproject.toml
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,90 @@
 | 
			
		||||
 | 
			
		||||
[project]
 | 
			
		||||
name = "prototorch-models"
 | 
			
		||||
version = "0.7.1"
 | 
			
		||||
description = "Pre-packaged prototype-based machine learning models using ProtoTorch and PyTorch-Lightning."
 | 
			
		||||
authors = [
 | 
			
		||||
    { name = "Jensun Ravichandran", email = "jjensun@gmail.com" },
 | 
			
		||||
    { name = "Alexander Engelsberger", email = "engelsbe@hs-mittweida.de" },
 | 
			
		||||
]
 | 
			
		||||
dependencies = ["lightning>=2.0.0", "prototorch>=0.7.5"]
 | 
			
		||||
requires-python = ">=3.8"
 | 
			
		||||
readme = "README.md"
 | 
			
		||||
license = { text = "MIT" }
 | 
			
		||||
classifiers = [
 | 
			
		||||
    "Development Status :: 2 - Pre-Alpha",
 | 
			
		||||
    "Environment :: Plugins",
 | 
			
		||||
    "Intended Audience :: Developers",
 | 
			
		||||
    "Intended Audience :: Education",
 | 
			
		||||
    "Intended Audience :: Science/Research",
 | 
			
		||||
    "License :: OSI Approved :: MIT License",
 | 
			
		||||
    "Natural Language :: English",
 | 
			
		||||
    "Operating System :: OS Independent",
 | 
			
		||||
    "Programming Language :: Python :: 3",
 | 
			
		||||
    "Programming Language :: Python :: 3.10",
 | 
			
		||||
    "Programming Language :: Python :: 3.11",
 | 
			
		||||
    "Programming Language :: Python :: 3.8",
 | 
			
		||||
    "Programming Language :: Python :: 3.9",
 | 
			
		||||
    "Topic :: Scientific/Engineering :: Artificial Intelligence",
 | 
			
		||||
    "Topic :: Software Development :: Libraries",
 | 
			
		||||
    "Topic :: Software Development :: Libraries :: Python Modules",
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
[project.urls]
 | 
			
		||||
Homepage = "https://github.com/si-cim/prototorch_models"
 | 
			
		||||
Downloads = "https://github.com/si-cim/prototorch_models.git"
 | 
			
		||||
 | 
			
		||||
[project.optional-dependencies]
 | 
			
		||||
dev = ["bumpversion", "pre-commit", "yapf", "toml"]
 | 
			
		||||
examples = ["matplotlib", "scikit-learn"]
 | 
			
		||||
ci = ["pytest", "pre-commit"]
 | 
			
		||||
docs = [
 | 
			
		||||
    "recommonmark",
 | 
			
		||||
    "nbsphinx",
 | 
			
		||||
    "sphinx",
 | 
			
		||||
    "sphinx_rtd_theme",
 | 
			
		||||
    "sphinxcontrib-bibtex",
 | 
			
		||||
    "sphinxcontrib-katex",
 | 
			
		||||
    "ipykernel",
 | 
			
		||||
]
 | 
			
		||||
all = [
 | 
			
		||||
    "bumpversion",
 | 
			
		||||
    "pre-commit",
 | 
			
		||||
    "yapf",
 | 
			
		||||
    "toml",
 | 
			
		||||
    "pytest",
 | 
			
		||||
    "matplotlib",
 | 
			
		||||
    "scikit-learn",
 | 
			
		||||
    "recommonmark",
 | 
			
		||||
    "nbsphinx",
 | 
			
		||||
    "sphinx",
 | 
			
		||||
    "sphinx_rtd_theme",
 | 
			
		||||
    "sphinxcontrib-bibtex",
 | 
			
		||||
    "sphinxcontrib-katex",
 | 
			
		||||
    "ipykernel",
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
[build-system]
 | 
			
		||||
requires = ["setuptools>=61", "wheel"]
 | 
			
		||||
build-backend = "setuptools.build_meta"
 | 
			
		||||
 | 
			
		||||
[tool.yapf]
 | 
			
		||||
based_on_style = "pep8"
 | 
			
		||||
spaces_before_comment = 2
 | 
			
		||||
split_before_logical_operator = true
 | 
			
		||||
 | 
			
		||||
[tool.pylint]
 | 
			
		||||
disable = ["too-many-arguments", "too-few-public-methods", "fixme"]
 | 
			
		||||
 | 
			
		||||
[tool.isort]
 | 
			
		||||
profile = "hug"
 | 
			
		||||
src_paths = ["isort", "test"]
 | 
			
		||||
multi_line_output = 3
 | 
			
		||||
include_trailing_comma = true
 | 
			
		||||
force_grid_wrap = 3
 | 
			
		||||
use_parentheses = true
 | 
			
		||||
line_length = 79
 | 
			
		||||
 | 
			
		||||
[tool.mypy]
 | 
			
		||||
explicit_package_bases = true
 | 
			
		||||
namespace_packages = true
 | 
			
		||||
							
								
								
									
										93
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										93
									
								
								setup.py
									
									
									
									
									
								
							@@ -1,93 +0,0 @@
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
 ######
 | 
			
		||||
 #     # #####   ####  #####  ####  #####  ####  #####   ####  #    #
 | 
			
		||||
 #     # #    # #    #   #   #    #   #   #    # #    # #    # #    #
 | 
			
		||||
 ######  #    # #    #   #   #    #   #   #    # #    # #      ######
 | 
			
		||||
 #       #####  #    #   #   #    #   #   #    # #####  #      #    #
 | 
			
		||||
 #       #   #  #    #   #   #    #   #   #    # #   #  #    # #    #
 | 
			
		||||
 #       #    #  ####    #    ####    #    ####  #    #  ####  #    #Plugin
 | 
			
		||||
 | 
			
		||||
ProtoTorch models Plugin Package
 | 
			
		||||
"""
 | 
			
		||||
from pkg_resources import safe_name
 | 
			
		||||
from setuptools import find_namespace_packages, setup
 | 
			
		||||
 | 
			
		||||
PLUGIN_NAME = "models"
 | 
			
		||||
 | 
			
		||||
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
 | 
			
		||||
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
 | 
			
		||||
 | 
			
		||||
with open("README.md", "r") as fh:
 | 
			
		||||
    long_description = fh.read()
 | 
			
		||||
 | 
			
		||||
INSTALL_REQUIRES = [
 | 
			
		||||
    "prototorch>=0.5.0,<0.6.0",
 | 
			
		||||
    "pytorch_lightning>=1.3.5",
 | 
			
		||||
    "torchmetrics",
 | 
			
		||||
]
 | 
			
		||||
CLI = [
 | 
			
		||||
    "jsonargparse",
 | 
			
		||||
]
 | 
			
		||||
DEV = [
 | 
			
		||||
    "bumpversion",
 | 
			
		||||
    "pre-commit",
 | 
			
		||||
]
 | 
			
		||||
DOCS = [
 | 
			
		||||
    "recommonmark",
 | 
			
		||||
    "sphinx",
 | 
			
		||||
    "nbsphinx",
 | 
			
		||||
    "sphinx_rtd_theme",
 | 
			
		||||
    "sphinxcontrib-katex",
 | 
			
		||||
    "sphinxcontrib-bibtex",
 | 
			
		||||
]
 | 
			
		||||
EXAMPLES = [
 | 
			
		||||
    "matplotlib",
 | 
			
		||||
    "scikit-learn",
 | 
			
		||||
]
 | 
			
		||||
TESTS = [
 | 
			
		||||
    "codecov",
 | 
			
		||||
    "pytest",
 | 
			
		||||
]
 | 
			
		||||
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
 | 
			
		||||
 | 
			
		||||
setup(
 | 
			
		||||
    name=safe_name("prototorch_" + PLUGIN_NAME),
 | 
			
		||||
    version="0.1.8",
 | 
			
		||||
    description="Pre-packaged prototype-based "
 | 
			
		||||
    "machine learning models using ProtoTorch and PyTorch-Lightning.",
 | 
			
		||||
    long_description=long_description,
 | 
			
		||||
    long_description_content_type="text/markdown",
 | 
			
		||||
    author="Alexander Engelsberger",
 | 
			
		||||
    author_email="engelsbe@hs-mittweida.de",
 | 
			
		||||
    url=PROJECT_URL,
 | 
			
		||||
    download_url=DOWNLOAD_URL,
 | 
			
		||||
    license="MIT",
 | 
			
		||||
    python_requires=">=3.9",
 | 
			
		||||
    install_requires=INSTALL_REQUIRES,
 | 
			
		||||
    extras_require={
 | 
			
		||||
        "dev": DEV,
 | 
			
		||||
        "examples": EXAMPLES,
 | 
			
		||||
        "tests": TESTS,
 | 
			
		||||
        "all": ALL,
 | 
			
		||||
    },
 | 
			
		||||
    classifiers=[
 | 
			
		||||
        "Development Status :: 2 - Pre-Alpha",
 | 
			
		||||
        "Environment :: Plugins",
 | 
			
		||||
        "Intended Audience :: Developers",
 | 
			
		||||
        "Intended Audience :: Education",
 | 
			
		||||
        "Intended Audience :: Science/Research",
 | 
			
		||||
        "License :: OSI Approved :: MIT License",
 | 
			
		||||
        "Natural Language :: English",
 | 
			
		||||
        "Programming Language :: Python :: 3.9",
 | 
			
		||||
        "Operating System :: OS Independent",
 | 
			
		||||
        "Topic :: Scientific/Engineering :: Artificial Intelligence",
 | 
			
		||||
        "Topic :: Software Development :: Libraries",
 | 
			
		||||
        "Topic :: Software Development :: Libraries :: Python Modules",
 | 
			
		||||
    ],
 | 
			
		||||
    entry_points={
 | 
			
		||||
        "prototorch.plugins": f"{PLUGIN_NAME} = prototorch.{PLUGIN_NAME}"
 | 
			
		||||
    },
 | 
			
		||||
    packages=find_namespace_packages(include=["prototorch.*"]),
 | 
			
		||||
    zip_safe=False,
 | 
			
		||||
)
 | 
			
		||||
							
								
								
									
										39
									
								
								src/prototorch/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										39
									
								
								src/prototorch/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,39 @@
 | 
			
		||||
"""`models` plugin for the `prototorch` package."""
 | 
			
		||||
 | 
			
		||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
 | 
			
		||||
from .cbc import CBC, ImageCBC
 | 
			
		||||
from .glvq import (
 | 
			
		||||
    GLVQ,
 | 
			
		||||
    GLVQ1,
 | 
			
		||||
    GLVQ21,
 | 
			
		||||
    GMLVQ,
 | 
			
		||||
    GRLVQ,
 | 
			
		||||
    GTLVQ,
 | 
			
		||||
    LGMLVQ,
 | 
			
		||||
    LVQMLN,
 | 
			
		||||
    ImageGLVQ,
 | 
			
		||||
    ImageGMLVQ,
 | 
			
		||||
    ImageGTLVQ,
 | 
			
		||||
    SiameseGLVQ,
 | 
			
		||||
    SiameseGMLVQ,
 | 
			
		||||
    SiameseGTLVQ,
 | 
			
		||||
)
 | 
			
		||||
from .knn import KNN
 | 
			
		||||
from .lvq import (
 | 
			
		||||
    LVQ1,
 | 
			
		||||
    LVQ21,
 | 
			
		||||
    MedianLVQ,
 | 
			
		||||
)
 | 
			
		||||
from .probabilistic import (
 | 
			
		||||
    CELVQ,
 | 
			
		||||
    RSLVQ,
 | 
			
		||||
    SLVQ,
 | 
			
		||||
)
 | 
			
		||||
from .unsupervised import (
 | 
			
		||||
    GrowingNeuralGas,
 | 
			
		||||
    KohonenSOM,
 | 
			
		||||
    NeuralGas,
 | 
			
		||||
)
 | 
			
		||||
from .vis import *
 | 
			
		||||
 | 
			
		||||
__version__ = "0.7.1"
 | 
			
		||||
@@ -1,29 +1,29 @@
 | 
			
		||||
"""Abstract classes to be inherited by prototorch models."""
 | 
			
		||||
 | 
			
		||||
from typing import Final, final
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torchmetrics
 | 
			
		||||
from prototorch.components import Components, LabeledComponents
 | 
			
		||||
from prototorch.functions.distances import euclidean_distance
 | 
			
		||||
from prototorch.modules import WTAC, LambdaLayer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProtoTorchMixin(object):
 | 
			
		||||
    pass
 | 
			
		||||
from prototorch.core.competitions import WTAC
 | 
			
		||||
from prototorch.core.components import (
 | 
			
		||||
    AbstractComponents,
 | 
			
		||||
    Components,
 | 
			
		||||
    LabeledComponents,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.distances import euclidean_distance
 | 
			
		||||
from prototorch.core.initializers import (
 | 
			
		||||
    LabelsInitializer,
 | 
			
		||||
    ZerosCompInitializer,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.pooling import stratified_min_pooling
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProtoTorchBolt(pl.LightningModule):
 | 
			
		||||
    """All ProtoTorch models are ProtoTorch Bolts."""
 | 
			
		||||
    def __repr__(self):
 | 
			
		||||
        surep = super().__repr__()
 | 
			
		||||
        indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
 | 
			
		||||
        wrapped = f"ProtoTorch Bolt(\n{indented})"
 | 
			
		||||
        return wrapped
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PrototypeModel(ProtoTorchBolt):
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
@@ -38,8 +38,40 @@ class PrototypeModel(ProtoTorchBolt):
 | 
			
		||||
        self.lr_scheduler = kwargs.get("lr_scheduler", None)
 | 
			
		||||
        self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
 | 
			
		||||
        if self.lr_scheduler is not None:
 | 
			
		||||
            scheduler = self.lr_scheduler(optimizer,
 | 
			
		||||
                                          **self.lr_scheduler_kwargs)
 | 
			
		||||
            sch = {
 | 
			
		||||
                "scheduler": scheduler,
 | 
			
		||||
                "interval": "step",
 | 
			
		||||
            }  # called after each training step
 | 
			
		||||
            return [optimizer], [sch]
 | 
			
		||||
        else:
 | 
			
		||||
            return optimizer
 | 
			
		||||
 | 
			
		||||
    def reconfigure_optimizers(self):
 | 
			
		||||
        if self.trainer:
 | 
			
		||||
            self.trainer.strategy.setup_optimizers(self.trainer)
 | 
			
		||||
        else:
 | 
			
		||||
            logging.warning("No trainer to reconfigure optimizers!")
 | 
			
		||||
 | 
			
		||||
    def __repr__(self):
 | 
			
		||||
        surep = super().__repr__()
 | 
			
		||||
        indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
 | 
			
		||||
        wrapped = f"ProtoTorch Bolt(\n{indented})"
 | 
			
		||||
        return wrapped
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PrototypeModel(ProtoTorchBolt):
 | 
			
		||||
    proto_layer: AbstractComponents
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        distance_fn = kwargs.get("distance_fn", euclidean_distance)
 | 
			
		||||
        self.distance_layer = LambdaLayer(distance_fn)
 | 
			
		||||
        self.distance_layer = LambdaLayer(distance_fn, name="distance_fn")
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def num_prototypes(self):
 | 
			
		||||
@@ -54,48 +86,33 @@ class PrototypeModel(ProtoTorchBolt):
 | 
			
		||||
        """Only an alias for the prototypes."""
 | 
			
		||||
        return self.prototypes
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
 | 
			
		||||
        if self.lr_scheduler is not None:
 | 
			
		||||
            scheduler = self.lr_scheduler(optimizer,
 | 
			
		||||
                                          **self.lr_scheduler_kwargs)
 | 
			
		||||
            sch = {
 | 
			
		||||
                "scheduler": scheduler,
 | 
			
		||||
                "interval": "step",
 | 
			
		||||
            }  # called after each training step
 | 
			
		||||
            return [optimizer], [sch]
 | 
			
		||||
        else:
 | 
			
		||||
            return optimizer
 | 
			
		||||
 | 
			
		||||
    @final
 | 
			
		||||
    def reconfigure_optimizers(self):
 | 
			
		||||
        self.trainer.accelerator_backend.setup_optimizers(self.trainer)
 | 
			
		||||
 | 
			
		||||
    def add_prototypes(self, *args, **kwargs):
 | 
			
		||||
        self.proto_layer.add_components(*args, **kwargs)
 | 
			
		||||
        self.hparams["distribution"] = self.proto_layer.distribution
 | 
			
		||||
        self.reconfigure_optimizers()
 | 
			
		||||
 | 
			
		||||
    def remove_prototypes(self, indices):
 | 
			
		||||
        self.proto_layer.remove_components(indices)
 | 
			
		||||
        self.hparams["distribution"] = self.proto_layer.distribution
 | 
			
		||||
        self.reconfigure_optimizers()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class UnsupervisedPrototypeModel(PrototypeModel):
 | 
			
		||||
    proto_layer: Components
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        prototype_initializer = kwargs.get("prototype_initializer", None)
 | 
			
		||||
        initialized_prototypes = kwargs.get("initialized_prototypes", None)
 | 
			
		||||
        if prototype_initializer is not None or initialized_prototypes is not None:
 | 
			
		||||
        prototypes_initializer = kwargs.get("prototypes_initializer", None)
 | 
			
		||||
        if prototypes_initializer is not None:
 | 
			
		||||
            self.proto_layer = Components(
 | 
			
		||||
                self.hparams.num_prototypes,
 | 
			
		||||
                initializer=prototype_initializer,
 | 
			
		||||
                initialized_components=initialized_prototypes,
 | 
			
		||||
                self.hparams["num_prototypes"],
 | 
			
		||||
                initializer=prototypes_initializer,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos = self.proto_layer()
 | 
			
		||||
        protos = self.proto_layer().type_as(x)
 | 
			
		||||
        distances = self.distance_layer(x, protos)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
@@ -105,27 +122,43 @@ class UnsupervisedPrototypeModel(PrototypeModel):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SupervisedPrototypeModel(PrototypeModel):
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
    proto_layer: LabeledComponents
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, skip_proto_layer=False, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        prototype_initializer = kwargs.get("prototype_initializer", None)
 | 
			
		||||
        initialized_prototypes = kwargs.get("initialized_prototypes", None)
 | 
			
		||||
        if prototype_initializer is not None or initialized_prototypes is not None:
 | 
			
		||||
            self.proto_layer = LabeledComponents(
 | 
			
		||||
                distribution=self.hparams.distribution,
 | 
			
		||||
                initializer=prototype_initializer,
 | 
			
		||||
                initialized_components=initialized_prototypes,
 | 
			
		||||
            )
 | 
			
		||||
        distribution = hparams.get("distribution", None)
 | 
			
		||||
        prototypes_initializer = kwargs.get("prototypes_initializer", None)
 | 
			
		||||
        labels_initializer = kwargs.get("labels_initializer",
 | 
			
		||||
                                        LabelsInitializer())
 | 
			
		||||
        if not skip_proto_layer:
 | 
			
		||||
            # when subclasses do not need a customized prototype layer
 | 
			
		||||
            if prototypes_initializer is not None:
 | 
			
		||||
                # when building a new model
 | 
			
		||||
                self.proto_layer = LabeledComponents(
 | 
			
		||||
                    distribution=distribution,
 | 
			
		||||
                    components_initializer=prototypes_initializer,
 | 
			
		||||
                    labels_initializer=labels_initializer,
 | 
			
		||||
                )
 | 
			
		||||
                proto_shape = self.proto_layer.components.shape[1:]
 | 
			
		||||
                self.hparams["initialized_proto_shape"] = proto_shape
 | 
			
		||||
            else:
 | 
			
		||||
                # when restoring a checkpointed model
 | 
			
		||||
                self.proto_layer = LabeledComponents(
 | 
			
		||||
                    distribution=distribution,
 | 
			
		||||
                    components_initializer=ZerosCompInitializer(
 | 
			
		||||
                        self.hparams["initialized_proto_shape"]),
 | 
			
		||||
                )
 | 
			
		||||
        self.competition_layer = WTAC()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def prototype_labels(self):
 | 
			
		||||
        return self.proto_layer.component_labels.detach().cpu()
 | 
			
		||||
        return self.proto_layer.labels.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def num_classes(self):
 | 
			
		||||
        return len(self.proto_layer.distribution)
 | 
			
		||||
        return self.proto_layer.num_classes
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos, _ = self.proto_layer()
 | 
			
		||||
@@ -134,15 +167,14 @@ class SupervisedPrototypeModel(PrototypeModel):
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        distances = self.compute_distances(x)
 | 
			
		||||
        y_pred = self.predict_from_distances(distances)
 | 
			
		||||
        # TODO
 | 
			
		||||
        y_pred = torch.eye(self.num_classes, device=self.device)[
 | 
			
		||||
            y_pred.long()]  # depends on labels {0,...,num_classes}
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        winning = stratified_min_pooling(distances, plabels)
 | 
			
		||||
        y_pred = F.softmin(winning, dim=1)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
    def predict_from_distances(self, distances):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            plabels = self.proto_layer.component_labels
 | 
			
		||||
            _, plabels = self.proto_layer()
 | 
			
		||||
            y_pred = self.competition_layer(distances, plabels)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
@@ -154,31 +186,57 @@ class SupervisedPrototypeModel(PrototypeModel):
 | 
			
		||||
 | 
			
		||||
    def log_acc(self, distances, targets, tag):
 | 
			
		||||
        preds = self.predict_from_distances(distances)
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
 | 
			
		||||
        # `.int()` because FloatTensors are assumed to be class probabilities
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(
 | 
			
		||||
            preds.int(),
 | 
			
		||||
            targets.int(),
 | 
			
		||||
            "multiclass",
 | 
			
		||||
            num_classes=self.num_classes,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.log(tag,
 | 
			
		||||
                 accuracy,
 | 
			
		||||
                 on_step=False,
 | 
			
		||||
                 on_epoch=True,
 | 
			
		||||
                 prog_bar=True,
 | 
			
		||||
                 logger=True)
 | 
			
		||||
        self.log(
 | 
			
		||||
            tag,
 | 
			
		||||
            accuracy,
 | 
			
		||||
            on_step=False,
 | 
			
		||||
            on_epoch=True,
 | 
			
		||||
            prog_bar=True,
 | 
			
		||||
            logger=True,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def test_step(self, batch, batch_idx):
 | 
			
		||||
        x, targets = batch
 | 
			
		||||
 | 
			
		||||
        preds = self.predict(x)
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(
 | 
			
		||||
            preds.int(),
 | 
			
		||||
            targets.int(),
 | 
			
		||||
            "multiclass",
 | 
			
		||||
            num_classes=self.num_classes,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.log("test_acc", accuracy)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProtoTorchMixin:
 | 
			
		||||
    """All mixins are ProtoTorchMixins."""
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class NonGradientMixin(ProtoTorchMixin):
 | 
			
		||||
    """Mixin for custom non-gradient optimization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        self.automatic_optimization: Final = False
 | 
			
		||||
        self.automatic_optimization = False
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        raise NotImplementedError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImagePrototypesMixin(ProtoTorchMixin):
 | 
			
		||||
    """Mixin for models with image prototypes."""
 | 
			
		||||
    @final
 | 
			
		||||
    def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
 | 
			
		||||
    proto_layer: Components
 | 
			
		||||
    components: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_end(self, outputs, batch, batch_idx):
 | 
			
		||||
        """Constrain the components to the range [0, 1] by clamping after updates."""
 | 
			
		||||
        self.proto_layer.components.data.clamp_(0.0, 1.0)
 | 
			
		||||
 | 
			
		||||
@@ -1,32 +1,39 @@
 | 
			
		||||
"""Lightning Callbacks."""
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
from typing import TYPE_CHECKING
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.components import Components
 | 
			
		||||
from prototorch.core.initializers import LiteralCompInitializer
 | 
			
		||||
 | 
			
		||||
from .extras import ConnectionTopology
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from prototorch.models import GLVQ, GrowingNeuralGas
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PruneLoserPrototypes(pl.Callback):
 | 
			
		||||
    def __init__(self,
 | 
			
		||||
                 threshold=0.01,
 | 
			
		||||
                 idle_epochs=10,
 | 
			
		||||
                 prune_quota_per_epoch=-1,
 | 
			
		||||
                 frequency=1,
 | 
			
		||||
                 replace=False,
 | 
			
		||||
                 initializer=None,
 | 
			
		||||
                 verbose=False):
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=10,
 | 
			
		||||
        prune_quota_per_epoch=-1,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        replace=False,
 | 
			
		||||
        prototypes_initializer=None,
 | 
			
		||||
        verbose=False,
 | 
			
		||||
    ):
 | 
			
		||||
        self.threshold = threshold  # minimum win ratio
 | 
			
		||||
        self.idle_epochs = idle_epochs  # epochs to wait before pruning
 | 
			
		||||
        self.prune_quota_per_epoch = prune_quota_per_epoch
 | 
			
		||||
        self.frequency = frequency
 | 
			
		||||
        self.replace = replace
 | 
			
		||||
        self.verbose = verbose
 | 
			
		||||
        self.initializer = initializer
 | 
			
		||||
        self.prototypes_initializer = prototypes_initializer
 | 
			
		||||
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
 | 
			
		||||
        if (trainer.current_epoch + 1) < self.idle_epochs:
 | 
			
		||||
            return None
 | 
			
		||||
        if (trainer.current_epoch + 1) % self.frequency:
 | 
			
		||||
@@ -41,40 +48,44 @@ class PruneLoserPrototypes(pl.Callback):
 | 
			
		||||
            prune_labels = prune_labels[:self.prune_quota_per_epoch]
 | 
			
		||||
 | 
			
		||||
        if len(to_prune) > 0:
 | 
			
		||||
            if self.verbose:
 | 
			
		||||
                print(f"\nPrototype win ratios: {ratios}")
 | 
			
		||||
                print(f"Pruning prototypes at: {to_prune}")
 | 
			
		||||
                print(f"Corresponding labels are: {prune_labels.tolist()}")
 | 
			
		||||
            logging.debug(f"\nPrototype win ratios: {ratios}")
 | 
			
		||||
            logging.debug(f"Pruning prototypes at: {to_prune}")
 | 
			
		||||
            logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
 | 
			
		||||
 | 
			
		||||
            cur_num_protos = pl_module.num_prototypes
 | 
			
		||||
            pl_module.remove_prototypes(indices=to_prune)
 | 
			
		||||
 | 
			
		||||
            if self.replace:
 | 
			
		||||
                labels, counts = torch.unique(prune_labels,
 | 
			
		||||
                                              sorted=True,
 | 
			
		||||
                                              return_counts=True)
 | 
			
		||||
                distribution = dict(zip(labels.tolist(), counts.tolist()))
 | 
			
		||||
                if self.verbose:
 | 
			
		||||
                    print(f"Re-adding pruned prototypes...")
 | 
			
		||||
                    print(f"{distribution=}")
 | 
			
		||||
                pl_module.add_prototypes(distribution=distribution,
 | 
			
		||||
                                         initializer=self.initializer)
 | 
			
		||||
 | 
			
		||||
                logging.info(f"Re-adding pruned prototypes...")
 | 
			
		||||
                logging.debug(f"distribution={distribution}")
 | 
			
		||||
 | 
			
		||||
                pl_module.add_prototypes(
 | 
			
		||||
                    distribution=distribution,
 | 
			
		||||
                    components_initializer=self.prototypes_initializer)
 | 
			
		||||
            new_num_protos = pl_module.num_prototypes
 | 
			
		||||
            if self.verbose:
 | 
			
		||||
                print(f"`num_prototypes` changed from {cur_num_protos} "
 | 
			
		||||
                      f"to {new_num_protos}.")
 | 
			
		||||
 | 
			
		||||
            logging.info(f"`num_prototypes` changed from {cur_num_protos} "
 | 
			
		||||
                         f"to {new_num_protos}.")
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PrototypeConvergence(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
 | 
			
		||||
        self.min_delta = min_delta
 | 
			
		||||
        self.idle_epochs = idle_epochs  # epochs to wait
 | 
			
		||||
        self.verbose = verbose
 | 
			
		||||
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if (trainer.current_epoch + 1) < self.idle_epochs:
 | 
			
		||||
            return None
 | 
			
		||||
        if self.verbose:
 | 
			
		||||
            print("Stopping...")
 | 
			
		||||
 | 
			
		||||
        logging.info("Stopping...")
 | 
			
		||||
        # TODO
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
@@ -87,16 +98,21 @@ class GNGCallback(pl.Callback):
 | 
			
		||||
    Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, reduction=0.1, freq=10):
 | 
			
		||||
        self.reduction = reduction
 | 
			
		||||
        self.freq = freq
 | 
			
		||||
 | 
			
		||||
    def on_epoch_end(self, trainer: pl.Trainer, pl_module):
 | 
			
		||||
    def on_train_epoch_end(
 | 
			
		||||
        self,
 | 
			
		||||
        trainer: pl.Trainer,
 | 
			
		||||
        pl_module: "GrowingNeuralGas",
 | 
			
		||||
    ):
 | 
			
		||||
        if (trainer.current_epoch + 1) % self.freq == 0:
 | 
			
		||||
            # Get information
 | 
			
		||||
            errors = pl_module.errors
 | 
			
		||||
            topology: ConnectionTopology = pl_module.topology_layer
 | 
			
		||||
            components: Components = pl_module.proto_layer.components
 | 
			
		||||
            components = pl_module.proto_layer.components
 | 
			
		||||
 | 
			
		||||
            # Insertion point
 | 
			
		||||
            worst = torch.argmax(errors)
 | 
			
		||||
@@ -116,7 +132,9 @@ class GNGCallback(pl.Callback):
 | 
			
		||||
 | 
			
		||||
            # Add component
 | 
			
		||||
            pl_module.proto_layer.add_components(
 | 
			
		||||
                initialized_components=new_component.unsqueeze(0))
 | 
			
		||||
                1,
 | 
			
		||||
                initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            # Adjust Topology
 | 
			
		||||
            topology.add_prototype()
 | 
			
		||||
@@ -131,4 +149,4 @@ class GNGCallback(pl.Callback):
 | 
			
		||||
            pl_module.errors[
 | 
			
		||||
                worst_neighbor] = errors[worst_neighbor] * self.reduction
 | 
			
		||||
 | 
			
		||||
            trainer.accelerator_backend.setup_optimizers(trainer)
 | 
			
		||||
            trainer.strategy.setup_optimizers(trainer)
 | 
			
		||||
							
								
								
									
										84
									
								
								src/prototorch/models/cbc.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								src/prototorch/models/cbc.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,84 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torchmetrics
 | 
			
		||||
from prototorch.core.competitions import CBCC
 | 
			
		||||
from prototorch.core.components import ReasoningComponents
 | 
			
		||||
from prototorch.core.initializers import RandomReasoningsInitializer
 | 
			
		||||
from prototorch.core.losses import MarginLoss
 | 
			
		||||
from prototorch.core.similarities import euclidean_similarity
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer
 | 
			
		||||
 | 
			
		||||
from .abstract import ImagePrototypesMixin
 | 
			
		||||
from .glvq import SiameseGLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CBC(SiameseGLVQ):
 | 
			
		||||
    """Classification-By-Components."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, skip_proto_layer=True, **kwargs)
 | 
			
		||||
 | 
			
		||||
        similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
 | 
			
		||||
        components_initializer = kwargs.get("components_initializer", None)
 | 
			
		||||
        reasonings_initializer = kwargs.get("reasonings_initializer",
 | 
			
		||||
                                            RandomReasoningsInitializer())
 | 
			
		||||
        self.components_layer = ReasoningComponents(
 | 
			
		||||
            self.hparams.distribution,
 | 
			
		||||
            components_initializer=components_initializer,
 | 
			
		||||
            reasonings_initializer=reasonings_initializer,
 | 
			
		||||
        )
 | 
			
		||||
        self.similarity_layer = LambdaLayer(similarity_fn)
 | 
			
		||||
        self.competition_layer = CBCC()
 | 
			
		||||
 | 
			
		||||
        # Namespace hook
 | 
			
		||||
        self.proto_layer = self.components_layer
 | 
			
		||||
 | 
			
		||||
        self.loss = MarginLoss(self.hparams.margin)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        components, reasonings = self.components_layer()
 | 
			
		||||
        latent_x = self.backbone(x)
 | 
			
		||||
        self.backbone.requires_grad_(self.both_path_gradients)
 | 
			
		||||
        latent_components = self.backbone(components)
 | 
			
		||||
        self.backbone.requires_grad_(True)
 | 
			
		||||
        detections = self.similarity_layer(latent_x, latent_components)
 | 
			
		||||
        probs = self.competition_layer(detections, reasonings)
 | 
			
		||||
        return probs
 | 
			
		||||
 | 
			
		||||
    def shared_step(self, batch, batch_idx):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        y_pred = self(x)
 | 
			
		||||
        num_classes = self.num_classes
 | 
			
		||||
        y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
 | 
			
		||||
        loss = self.loss(y_pred, y_true).mean()
 | 
			
		||||
        return y_pred, loss
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx):
 | 
			
		||||
        y_pred, train_loss = self.shared_step(batch, batch_idx)
 | 
			
		||||
        preds = torch.argmax(y_pred, dim=1)
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(
 | 
			
		||||
            preds.int(),
 | 
			
		||||
            batch[1].int(),
 | 
			
		||||
            "multiclass",
 | 
			
		||||
            num_classes=self.num_classes,
 | 
			
		||||
        )
 | 
			
		||||
        self.log(
 | 
			
		||||
            "train_acc",
 | 
			
		||||
            accuracy,
 | 
			
		||||
            on_step=False,
 | 
			
		||||
            on_epoch=True,
 | 
			
		||||
            prog_bar=True,
 | 
			
		||||
            logger=True,
 | 
			
		||||
        )
 | 
			
		||||
        return train_loss
 | 
			
		||||
 | 
			
		||||
    def predict(self, x):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            y_pred = self(x)
 | 
			
		||||
            y_pred = torch.argmax(y_pred, dim=1)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageCBC(ImagePrototypesMixin, CBC):
 | 
			
		||||
    """CBC model that constrains the components to the range [0, 1] by
 | 
			
		||||
    clamping after updates.
 | 
			
		||||
    """
 | 
			
		||||
							
								
								
									
										130
									
								
								src/prototorch/models/extras.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										130
									
								
								src/prototorch/models/extras.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,130 @@
 | 
			
		||||
"""prototorch.models.extras
 | 
			
		||||
 | 
			
		||||
Modules not yet available in prototorch go here temporarily.
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.similarities import gaussian
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rank_scaled_gaussian(distances, lambd):
 | 
			
		||||
    order = torch.argsort(distances, dim=1)
 | 
			
		||||
    ranks = torch.argsort(order, dim=1)
 | 
			
		||||
    return torch.exp(-torch.exp(-ranks / lambd) * distances)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def orthogonalization(tensors):
 | 
			
		||||
    """Orthogonalization via polar decomposition """
 | 
			
		||||
    u, _, v = torch.svd(tensors, compute_uv=True)
 | 
			
		||||
    u_shape = tuple(list(u.shape))
 | 
			
		||||
    v_shape = tuple(list(v.shape))
 | 
			
		||||
 | 
			
		||||
    # reshape to (num x N x M)
 | 
			
		||||
    u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
 | 
			
		||||
    v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
 | 
			
		||||
 | 
			
		||||
    out = u @ v.permute([0, 2, 1])
 | 
			
		||||
 | 
			
		||||
    out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
 | 
			
		||||
 | 
			
		||||
    return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def ltangent_distance(x, y, omegas):
 | 
			
		||||
    r"""Localized Tangent distance.
 | 
			
		||||
    Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
 | 
			
		||||
    Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
 | 
			
		||||
 | 
			
		||||
    :param `torch.tensor` omegas: Three dimensional matrix
 | 
			
		||||
    :rtype: `torch.tensor`
 | 
			
		||||
    """
 | 
			
		||||
    x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
 | 
			
		||||
    p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
 | 
			
		||||
        omegas, omegas.permute([0, 2, 1]))
 | 
			
		||||
    projected_x = x @ p
 | 
			
		||||
    projected_y = torch.diagonal(y @ p).T
 | 
			
		||||
    expanded_y = torch.unsqueeze(projected_y, dim=1)
 | 
			
		||||
    batchwise_difference = expanded_y - projected_x
 | 
			
		||||
    differences_squared = batchwise_difference**2
 | 
			
		||||
    distances = torch.sqrt(torch.sum(differences_squared, dim=2))
 | 
			
		||||
    distances = distances.permute(1, 0)
 | 
			
		||||
    return distances
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GaussianPrior(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, variance):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.variance = variance
 | 
			
		||||
 | 
			
		||||
    def forward(self, distances):
 | 
			
		||||
        return gaussian(distances, self.variance)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RankScaledGaussianPrior(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, lambd):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.lambd = lambd
 | 
			
		||||
 | 
			
		||||
    def forward(self, distances):
 | 
			
		||||
        return rank_scaled_gaussian(distances, self.lambd)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ConnectionTopology(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, agelimit, num_prototypes):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.agelimit = agelimit
 | 
			
		||||
        self.num_prototypes = num_prototypes
 | 
			
		||||
 | 
			
		||||
        self.cmat = torch.zeros((self.num_prototypes, self.num_prototypes))
 | 
			
		||||
        self.age = torch.zeros_like(self.cmat)
 | 
			
		||||
 | 
			
		||||
    def forward(self, d):
 | 
			
		||||
        order = torch.argsort(d, dim=1)
 | 
			
		||||
 | 
			
		||||
        for element in order:
 | 
			
		||||
            i0, i1 = element[0], element[1]
 | 
			
		||||
 | 
			
		||||
            self.cmat[i0][i1] = 1
 | 
			
		||||
            self.cmat[i1][i0] = 1
 | 
			
		||||
 | 
			
		||||
            self.age[i0][i1] = 0
 | 
			
		||||
            self.age[i1][i0] = 0
 | 
			
		||||
 | 
			
		||||
            self.age[i0][self.cmat[i0] == 1] += 1
 | 
			
		||||
            self.age[i1][self.cmat[i1] == 1] += 1
 | 
			
		||||
 | 
			
		||||
            self.cmat[i0][self.age[i0] > self.agelimit] = 0
 | 
			
		||||
            self.cmat[i1][self.age[i1] > self.agelimit] = 0
 | 
			
		||||
 | 
			
		||||
    def get_neighbors(self, position):
 | 
			
		||||
        return torch.where(self.cmat[position])
 | 
			
		||||
 | 
			
		||||
    def add_prototype(self):
 | 
			
		||||
        new_cmat = torch.zeros([dim + 1 for dim in self.cmat.shape])
 | 
			
		||||
        new_cmat[:-1, :-1] = self.cmat
 | 
			
		||||
        self.cmat = new_cmat
 | 
			
		||||
 | 
			
		||||
        new_age = torch.zeros([dim + 1 for dim in self.age.shape])
 | 
			
		||||
        new_age[:-1, :-1] = self.age
 | 
			
		||||
        self.age = new_age
 | 
			
		||||
 | 
			
		||||
    def add_connection(self, a, b):
 | 
			
		||||
        self.cmat[a][b] = 1
 | 
			
		||||
        self.cmat[b][a] = 1
 | 
			
		||||
 | 
			
		||||
        self.age[a][b] = 0
 | 
			
		||||
        self.age[b][a] = 0
 | 
			
		||||
 | 
			
		||||
    def remove_connection(self, a, b):
 | 
			
		||||
        self.cmat[a][b] = 0
 | 
			
		||||
        self.cmat[b][a] = 0
 | 
			
		||||
 | 
			
		||||
        self.age[a][b] = 0
 | 
			
		||||
        self.age[b][a] = 0
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(agelimit): ({self.agelimit})"
 | 
			
		||||
@@ -1,72 +1,84 @@
 | 
			
		||||
"""Models based on the GLVQ framework."""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.functions.activations import get_activation
 | 
			
		||||
from prototorch.functions.competitions import wtac
 | 
			
		||||
from prototorch.functions.distances import (lomega_distance, omega_distance,
 | 
			
		||||
                                            squared_euclidean_distance)
 | 
			
		||||
from prototorch.functions.helper import get_flat
 | 
			
		||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
 | 
			
		||||
from prototorch.components import LinearMapping
 | 
			
		||||
from prototorch.modules import LambdaLayer, LossLayer
 | 
			
		||||
from torch.nn.parameter import Parameter
 | 
			
		||||
from numpy.typing import NDArray
 | 
			
		||||
from prototorch.core.competitions import wtac
 | 
			
		||||
from prototorch.core.distances import (
 | 
			
		||||
    ML_omega_distance,
 | 
			
		||||
    lomega_distance,
 | 
			
		||||
    omega_distance,
 | 
			
		||||
    squared_euclidean_distance,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.initializers import LLTI, EyeLinearTransformInitializer
 | 
			
		||||
from prototorch.core.losses import (
 | 
			
		||||
    GLVQLoss,
 | 
			
		||||
    lvq1_loss,
 | 
			
		||||
    lvq21_loss,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.transforms import LinearTransform
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer, LossLayer
 | 
			
		||||
from torch.nn import Parameter, ParameterList
 | 
			
		||||
 | 
			
		||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
 | 
			
		||||
from .extras import ltangent_distance, orthogonalization
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GLVQ(SupervisedPrototypeModel):
 | 
			
		||||
    """Generalized Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("margin", 0.0)
 | 
			
		||||
        self.hparams.setdefault("transfer_fn", "identity")
 | 
			
		||||
        self.hparams.setdefault("transfer_beta", 10.0)
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        transfer_fn = get_activation(self.hparams.transfer_fn)
 | 
			
		||||
        self.transfer_layer = LambdaLayer(transfer_fn)
 | 
			
		||||
 | 
			
		||||
        # Loss
 | 
			
		||||
        self.loss = LossLayer(glvq_loss)
 | 
			
		||||
        self.loss = GLVQLoss(
 | 
			
		||||
            margin=self.hparams["margin"],
 | 
			
		||||
            transfer_fn=self.hparams["transfer_fn"],
 | 
			
		||||
            beta=self.hparams["transfer_beta"],
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # Prototype metrics
 | 
			
		||||
        self.initialize_prototype_win_ratios()
 | 
			
		||||
    # def on_save_checkpoint(self, checkpoint):
 | 
			
		||||
    #     if "prototype_win_ratios" in checkpoint["state_dict"]:
 | 
			
		||||
    #         del checkpoint["state_dict"]["prototype_win_ratios"]
 | 
			
		||||
 | 
			
		||||
    def initialize_prototype_win_ratios(self):
 | 
			
		||||
        self.register_buffer(
 | 
			
		||||
            "prototype_win_ratios",
 | 
			
		||||
            torch.zeros(self.num_prototypes, device=self.device))
 | 
			
		||||
            "prototype_win_ratios", torch.zeros(self.num_prototypes, device=self.device)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def on_epoch_start(self):
 | 
			
		||||
    def on_train_epoch_start(self):
 | 
			
		||||
        self.initialize_prototype_win_ratios()
 | 
			
		||||
 | 
			
		||||
    def log_prototype_win_ratios(self, distances):
 | 
			
		||||
        batch_size = len(distances)
 | 
			
		||||
        prototype_wc = torch.zeros(self.num_prototypes,
 | 
			
		||||
                                   dtype=torch.long,
 | 
			
		||||
                                   device=self.device)
 | 
			
		||||
        wi, wc = torch.unique(distances.min(dim=-1).indices,
 | 
			
		||||
                              sorted=True,
 | 
			
		||||
                              return_counts=True)
 | 
			
		||||
        prototype_wc = torch.zeros(
 | 
			
		||||
            self.num_prototypes, dtype=torch.long, device=self.device
 | 
			
		||||
        )
 | 
			
		||||
        wi, wc = torch.unique(
 | 
			
		||||
            distances.min(dim=-1).indices, sorted=True, return_counts=True
 | 
			
		||||
        )
 | 
			
		||||
        prototype_wc[wi] = wc
 | 
			
		||||
        prototype_wr = prototype_wc / batch_size
 | 
			
		||||
        self.prototype_win_ratios = torch.vstack([
 | 
			
		||||
            self.prototype_win_ratios,
 | 
			
		||||
            prototype_wr,
 | 
			
		||||
        ])
 | 
			
		||||
        self.prototype_win_ratios = torch.vstack(
 | 
			
		||||
            [
 | 
			
		||||
                self.prototype_win_ratios,
 | 
			
		||||
                prototype_wr,
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def shared_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
    def shared_step(self, batch, batch_idx):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        out = self.compute_distances(x)
 | 
			
		||||
        plabels = self.proto_layer.component_labels
 | 
			
		||||
        mu = self.loss(out, y, prototype_labels=plabels)
 | 
			
		||||
        batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
 | 
			
		||||
        loss = batch_loss.sum(dim=0)
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        loss = self.loss(out, y, plabels)
 | 
			
		||||
        return out, loss
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
 | 
			
		||||
    def training_step(self, batch, batch_idx):
 | 
			
		||||
        out, train_loss = self.shared_step(batch, batch_idx)
 | 
			
		||||
        self.log_prototype_win_ratios(out)
 | 
			
		||||
        self.log("train_loss", train_loss)
 | 
			
		||||
        self.log_acc(out, batch[-1], tag="train_acc")
 | 
			
		||||
@@ -91,10 +103,6 @@ class GLVQ(SupervisedPrototypeModel):
 | 
			
		||||
            test_loss += batch_loss.item()
 | 
			
		||||
        self.log("test_loss", test_loss)
 | 
			
		||||
 | 
			
		||||
    # TODO
 | 
			
		||||
    # def predict_step(self, batch, batch_idx, dataloader_idx=None):
 | 
			
		||||
    #     pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SiameseGLVQ(GLVQ):
 | 
			
		||||
    """GLVQ in a Siamese setting.
 | 
			
		||||
@@ -104,42 +112,26 @@ class SiameseGLVQ(GLVQ):
 | 
			
		||||
    transformation pipeline are only learned from the inputs.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    def __init__(self,
 | 
			
		||||
                 hparams,
 | 
			
		||||
                 backbone=torch.nn.Identity(),
 | 
			
		||||
                 both_path_gradients=False,
 | 
			
		||||
                 **kwargs):
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self, hparams, backbone=torch.nn.Identity(), both_path_gradients=False, **kwargs
 | 
			
		||||
    ):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
        self.backbone = backbone
 | 
			
		||||
        self.both_path_gradients = both_path_gradients
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        proto_opt = self.optimizer(self.proto_layer.parameters(),
 | 
			
		||||
                                   lr=self.hparams.proto_lr)
 | 
			
		||||
        # Only add a backbone optimizer if backbone has trainable parameters
 | 
			
		||||
        if (bb_params := list(self.backbone.parameters())):
 | 
			
		||||
            bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
 | 
			
		||||
            optimizers = [proto_opt, bb_opt]
 | 
			
		||||
        else:
 | 
			
		||||
            optimizers = [proto_opt]
 | 
			
		||||
        if self.lr_scheduler is not None:
 | 
			
		||||
            schedulers = []
 | 
			
		||||
            for optimizer in optimizers:
 | 
			
		||||
                scheduler = self.lr_scheduler(optimizer,
 | 
			
		||||
                                              **self.lr_scheduler_kwargs)
 | 
			
		||||
                schedulers.append(scheduler)
 | 
			
		||||
            return optimizers, schedulers
 | 
			
		||||
        else:
 | 
			
		||||
            return optimizers
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos, _ = self.proto_layer()
 | 
			
		||||
        x, protos = get_flat(x, protos)
 | 
			
		||||
        x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
 | 
			
		||||
        latent_x = self.backbone(x)
 | 
			
		||||
        self.backbone.requires_grad_(self.both_path_gradients)
 | 
			
		||||
 | 
			
		||||
        bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
 | 
			
		||||
 | 
			
		||||
        self.backbone.requires_grad_(bb_grad and self.both_path_gradients)
 | 
			
		||||
        latent_protos = self.backbone(protos)
 | 
			
		||||
        self.backbone.requires_grad_(True)
 | 
			
		||||
        self.backbone.requires_grad_(bb_grad)
 | 
			
		||||
 | 
			
		||||
        distances = self.distance_layer(latent_x, latent_protos)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
@@ -169,6 +161,7 @@ class LVQMLN(SiameseGLVQ):
 | 
			
		||||
    rather in the embedding space.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        latent_protos, _ = self.proto_layer()
 | 
			
		||||
        latent_x = self.backbone(x)
 | 
			
		||||
@@ -184,16 +177,21 @@ class GRLVQ(SiameseGLVQ):
 | 
			
		||||
    TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    _relevances: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Additional parameters
 | 
			
		||||
        relevances = torch.ones(self.hparams.input_dim, device=self.device)
 | 
			
		||||
        relevances = torch.ones(self.hparams["input_dim"], device=self.device)
 | 
			
		||||
        self.register_parameter("_relevances", Parameter(relevances))
 | 
			
		||||
 | 
			
		||||
        # Override the backbone
 | 
			
		||||
        self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances),
 | 
			
		||||
                                    name="relevance scaling")
 | 
			
		||||
        self.backbone = LambdaLayer(self._apply_relevances, name="relevance scaling")
 | 
			
		||||
 | 
			
		||||
    def _apply_relevances(self, x):
 | 
			
		||||
        return x @ torch.diag(self._relevances)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def relevance_profile(self):
 | 
			
		||||
@@ -209,25 +207,74 @@ class SiameseGMLVQ(SiameseGLVQ):
 | 
			
		||||
    Implemented as a Siamese network with a linear transformation backbone.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Override the backbone
 | 
			
		||||
        self.backbone = torch.nn.Linear(self.hparams.input_dim,
 | 
			
		||||
                                        self.hparams.latent_dim,
 | 
			
		||||
                                        bias=False)
 | 
			
		||||
        omega_initializer = kwargs.get(
 | 
			
		||||
            "omega_initializer", EyeLinearTransformInitializer()
 | 
			
		||||
        )
 | 
			
		||||
        self.backbone = LinearTransform(
 | 
			
		||||
            self.hparams["input_dim"],
 | 
			
		||||
            self.hparams["latent_dim"],
 | 
			
		||||
            initializer=omega_initializer,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def omega_matrix(self):
 | 
			
		||||
        return self.backbone.weight.detach().cpu()
 | 
			
		||||
        return self.backbone.weights
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def lambda_matrix(self):
 | 
			
		||||
        omega = self.backbone.weight  # (latent_dim, input_dim)
 | 
			
		||||
        lam = omega.T @ omega
 | 
			
		||||
        omega = self.backbone.weights  # (input_dim, latent_dim)
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        return lam.detach().cpu()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GMLMLVQ(GLVQ):
 | 
			
		||||
    """Generalized Multi-Layer Matrix Learning Vector Quantization.
 | 
			
		||||
    Masks are applied to the omega layers to achieve sparsity and constrain
 | 
			
		||||
    learning to certain items of each omega.
 | 
			
		||||
 | 
			
		||||
    Implemented as a regular GLVQ network that simply uses a different distance
 | 
			
		||||
    function. This makes it easier to implement a localized variant.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # Parameters
 | 
			
		||||
    _omegas: list[torch.Tensor]
 | 
			
		||||
    masks: list[torch.Tensor]
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", ML_omega_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Additional parameters
 | 
			
		||||
        self._masks = ParameterList(
 | 
			
		||||
            [Parameter(mask, requires_grad=False) for mask in kwargs.get("masks")]
 | 
			
		||||
        )
 | 
			
		||||
        self._omegas = ParameterList([LLTI(mask).generate(1, 1) for mask in self._masks])
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def omega_matrices(self):
 | 
			
		||||
        return [_omega.detach().cpu() for _omega in self._omegas]
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def lambda_matrix(self):
 | 
			
		||||
        # TODO update to respective lambda calculation rules.
 | 
			
		||||
        omega = self._omega.detach()  # (input_dim, latent_dim)
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        return lam.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos, _ = self.proto_layer()
 | 
			
		||||
        distances = self.distance_layer(x, protos, self._omegas, self._masks)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(omegas): (shapes: {[tuple(_omega.shape) for _omega in self._omegas]})"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GMLVQ(GLVQ):
 | 
			
		||||
    """Generalized Matrix Learning Vector Quantization.
 | 
			
		||||
 | 
			
		||||
@@ -235,27 +282,33 @@ class GMLVQ(GLVQ):
 | 
			
		||||
    function. This makes it easier to implement a localized variant.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # Parameters
 | 
			
		||||
    _omega: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", omega_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Additional parameters
 | 
			
		||||
        omega_initializer = kwargs.get("omega_initializer", None)
 | 
			
		||||
        initialized_omega = kwargs.get("initialized_omega", None)
 | 
			
		||||
        if omega_initializer is not None or initialized_omega is not None:
 | 
			
		||||
            self.omega_layer = LinearMapping(
 | 
			
		||||
                mapping_shape=(self.hparams.input_dim, self.hparams.latent_dim),
 | 
			
		||||
                initializer=omega_initializer,
 | 
			
		||||
                initialized_linearmapping=initialized_omega,
 | 
			
		||||
            )
 | 
			
		||||
        omega_initializer = kwargs.get(
 | 
			
		||||
            "omega_initializer", EyeLinearTransformInitializer()
 | 
			
		||||
        )
 | 
			
		||||
        omega = omega_initializer.generate(
 | 
			
		||||
            self.hparams["input_dim"], self.hparams["latent_dim"]
 | 
			
		||||
        )
 | 
			
		||||
        self.register_parameter("_omega", Parameter(omega))
 | 
			
		||||
 | 
			
		||||
        self.register_parameter("_omega", Parameter(self.omega_layer.mapping))
 | 
			
		||||
        self.backbone = LambdaLayer(lambda x: x @ self._omega, name = "omega matrix")
 | 
			
		||||
       
 | 
			
		||||
    @property
 | 
			
		||||
    def omega_matrix(self):
 | 
			
		||||
        return self._omega.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def lambda_matrix(self):
 | 
			
		||||
        omega = self._omega.detach()  # (input_dim, latent_dim)
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        return lam.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos, _ = self.proto_layer()
 | 
			
		||||
        distances = self.distance_layer(x, protos, self._omega)
 | 
			
		||||
@@ -264,27 +317,10 @@ class GMLVQ(GLVQ):
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(omega): (shape: {tuple(self._omega.shape)})"
 | 
			
		||||
 | 
			
		||||
    def predict_latent(self, x, map_protos=True):
 | 
			
		||||
        """Predict `x` assuming it is already embedded in the latent space.
 | 
			
		||||
 | 
			
		||||
        Only the prototypes are embedded in the latent space using the
 | 
			
		||||
        backbone.
 | 
			
		||||
 
 | 
			
		||||
        """
 | 
			
		||||
        self.eval()
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            protos, plabels = self.proto_layer()
 | 
			
		||||
            if map_protos:
 | 
			
		||||
                protos = self.backbone(protos)
 | 
			
		||||
            d = squared_euclidean_distance(x, protos)
 | 
			
		||||
            y_pred = wtac(d, plabels)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LGMLVQ(GMLVQ):
 | 
			
		||||
    """Localized and Generalized Matrix Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", lomega_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
@@ -292,15 +328,59 @@ class LGMLVQ(GMLVQ):
 | 
			
		||||
        # Re-register `_omega` to override the one from the super class.
 | 
			
		||||
        omega = torch.randn(
 | 
			
		||||
            self.num_prototypes,
 | 
			
		||||
            self.hparams.input_dim,
 | 
			
		||||
            self.hparams.latent_dim,
 | 
			
		||||
            self.hparams["input_dim"],
 | 
			
		||||
            self.hparams["latent_dim"],
 | 
			
		||||
            device=self.device,
 | 
			
		||||
        )
 | 
			
		||||
        self.register_parameter("_omega", Parameter(omega))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GTLVQ(LGMLVQ):
 | 
			
		||||
    """Localized and Generalized Tangent Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", ltangent_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
 | 
			
		||||
        omega_initializer = kwargs.get("omega_initializer")
 | 
			
		||||
 | 
			
		||||
        if omega_initializer is not None:
 | 
			
		||||
            subspace = omega_initializer.generate(
 | 
			
		||||
                self.hparams["input_dim"],
 | 
			
		||||
                self.hparams["latent_dim"],
 | 
			
		||||
            )
 | 
			
		||||
            omega = torch.repeat_interleave(
 | 
			
		||||
                subspace.unsqueeze(0),
 | 
			
		||||
                self.num_prototypes,
 | 
			
		||||
                dim=0,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            omega = torch.rand(
 | 
			
		||||
                self.num_prototypes,
 | 
			
		||||
                self.hparams["input_dim"],
 | 
			
		||||
                self.hparams["latent_dim"],
 | 
			
		||||
                device=self.device,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        # Re-register `_omega` to override the one from the super class.
 | 
			
		||||
        self.register_parameter("_omega", Parameter(omega))
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_end(self, outputs, batch, batch_idx):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            self._omega.copy_(orthogonalization(self._omega))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
 | 
			
		||||
    """Generalized Tangent Learning Vector Quantization.
 | 
			
		||||
 | 
			
		||||
    Implemented as a Siamese network with a linear transformation backbone.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GLVQ1(GLVQ):
 | 
			
		||||
    """Generalized Learning Vector Quantization 1."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
        self.loss = LossLayer(lvq1_loss)
 | 
			
		||||
@@ -309,6 +389,7 @@ class GLVQ1(GLVQ):
 | 
			
		||||
 | 
			
		||||
class GLVQ21(GLVQ):
 | 
			
		||||
    """Generalized Learning Vector Quantization 2.1."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
        self.loss = LossLayer(lvq21_loss)
 | 
			
		||||
@@ -331,3 +412,18 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
 | 
			
		||||
    after updates.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
 | 
			
		||||
    """GTLVQ for training on image data.
 | 
			
		||||
 | 
			
		||||
    GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
 | 
			
		||||
    after updates.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_end(self, outputs, batch, batch_idx):
 | 
			
		||||
        """Constrain the components to the range [0, 1] by clamping after updates."""
 | 
			
		||||
        self.proto_layer.components.data.clamp_(0.0, 1.0)
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            self._omega.copy_(orthogonalization(self._omega))
 | 
			
		||||
							
								
								
									
										45
									
								
								src/prototorch/models/knn.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										45
									
								
								src/prototorch/models/knn.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,45 @@
 | 
			
		||||
"""ProtoTorch KNN model."""
 | 
			
		||||
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
from prototorch.core.competitions import KNNC
 | 
			
		||||
from prototorch.core.components import LabeledComponents
 | 
			
		||||
from prototorch.core.initializers import (
 | 
			
		||||
    LiteralCompInitializer,
 | 
			
		||||
    LiteralLabelsInitializer,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.utils.utils import parse_data_arg
 | 
			
		||||
 | 
			
		||||
from .abstract import SupervisedPrototypeModel
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class KNN(SupervisedPrototypeModel):
 | 
			
		||||
    """K-Nearest-Neighbors classification algorithm."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, skip_proto_layer=True, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("k", 1)
 | 
			
		||||
 | 
			
		||||
        data = kwargs.get("data", None)
 | 
			
		||||
        if data is None:
 | 
			
		||||
            raise ValueError("KNN requires data, but was not provided!")
 | 
			
		||||
        data, targets = parse_data_arg(data)
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        self.proto_layer = LabeledComponents(
 | 
			
		||||
            distribution=len(data) * [1],
 | 
			
		||||
            components_initializer=LiteralCompInitializer(data),
 | 
			
		||||
            labels_initializer=LiteralLabelsInitializer(targets))
 | 
			
		||||
        self.competition_layer = KNNC(k=self.hparams.k)
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        return 1  # skip training step
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_start(self, train_batch, batch_idx):
 | 
			
		||||
        warnings.warn("k-NN has no training, skipping!")
 | 
			
		||||
        return -1
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        return None
 | 
			
		||||
							
								
								
									
										128
									
								
								src/prototorch/models/lvq.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								src/prototorch/models/lvq.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,128 @@
 | 
			
		||||
"""LVQ models that are optimized using non-gradient methods."""
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
from prototorch.core.losses import _get_dp_dm
 | 
			
		||||
from prototorch.nn.activations import get_activation
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer
 | 
			
		||||
 | 
			
		||||
from .abstract import NonGradientMixin
 | 
			
		||||
from .glvq import GLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LVQ1(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Learning Vector Quantization 1."""
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        protos, plables = self.proto_layer()
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
        # TODO Vectorized implementation
 | 
			
		||||
 | 
			
		||||
        for xi, yi in zip(x, y):
 | 
			
		||||
            d = self.compute_distances(xi.view(1, -1))
 | 
			
		||||
            preds = self.competition_layer(d, plabels)
 | 
			
		||||
            w = d.argmin(1)
 | 
			
		||||
            if yi == preds:
 | 
			
		||||
                shift = xi - protos[w]
 | 
			
		||||
            else:
 | 
			
		||||
                shift = protos[w] - xi
 | 
			
		||||
            updated_protos = protos + 0.0
 | 
			
		||||
            updated_protos[w] = protos[w] + (self.hparams.lr * shift)
 | 
			
		||||
            self.proto_layer.load_state_dict({"_components": updated_protos},
 | 
			
		||||
                                             strict=False)
 | 
			
		||||
 | 
			
		||||
        logging.debug(f"dis={dis}")
 | 
			
		||||
        logging.debug(f"y={y}")
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LVQ21(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Learning Vector Quantization 2.1."""
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        protos, plabels = self.proto_layer()
 | 
			
		||||
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
        # TODO Vectorized implementation
 | 
			
		||||
 | 
			
		||||
        for xi, yi in zip(x, y):
 | 
			
		||||
            xi = xi.view(1, -1)
 | 
			
		||||
            yi = yi.view(1, )
 | 
			
		||||
            d = self.compute_distances(xi)
 | 
			
		||||
            (_, wp), (_, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
 | 
			
		||||
            shiftp = xi - protos[wp]
 | 
			
		||||
            shiftn = protos[wn] - xi
 | 
			
		||||
            updated_protos = protos + 0.0
 | 
			
		||||
            updated_protos[wp] = protos[wp] + (self.hparams.lr * shiftp)
 | 
			
		||||
            updated_protos[wn] = protos[wn] + (self.hparams.lr * shiftn)
 | 
			
		||||
            self.proto_layer.load_state_dict({"_components": updated_protos},
 | 
			
		||||
                                             strict=False)
 | 
			
		||||
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MedianLVQ(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Median LVQ
 | 
			
		||||
 | 
			
		||||
    # TODO Avoid computing distances over and over
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        self.transfer_layer = LambdaLayer(
 | 
			
		||||
            get_activation(self.hparams.transfer_fn))
 | 
			
		||||
 | 
			
		||||
    def _f(self, x, y, protos, plabels):
 | 
			
		||||
        d = self.distance_layer(x, protos)
 | 
			
		||||
        dp, dm = _get_dp_dm(d, y, plabels)
 | 
			
		||||
        mu = (dp - dm) / (dp + dm)
 | 
			
		||||
        invmu = -1.0 * mu
 | 
			
		||||
        f = self.transfer_layer(invmu, beta=self.hparams.transfer_beta) + 1.0
 | 
			
		||||
        return f
 | 
			
		||||
 | 
			
		||||
    def expectation(self, x, y, protos, plabels):
 | 
			
		||||
        f = self._f(x, y, protos, plabels)
 | 
			
		||||
        gamma = f / f.sum()
 | 
			
		||||
        return gamma
 | 
			
		||||
 | 
			
		||||
    def lower_bound(self, x, y, protos, plabels, gamma):
 | 
			
		||||
        f = self._f(x, y, protos, plabels)
 | 
			
		||||
        lower_bound = (gamma * f.log()).sum()
 | 
			
		||||
        return lower_bound
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        protos, plabels = self.proto_layer()
 | 
			
		||||
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
 | 
			
		||||
        for i, _ in enumerate(protos):
 | 
			
		||||
            # Expectation step
 | 
			
		||||
            gamma = self.expectation(x, y, protos, plabels)
 | 
			
		||||
            lower_bound = self.lower_bound(x, y, protos, plabels, gamma)
 | 
			
		||||
 | 
			
		||||
            # Maximization step
 | 
			
		||||
            _protos = protos + 0
 | 
			
		||||
            for k, xk in enumerate(x):
 | 
			
		||||
                _protos[i] = xk
 | 
			
		||||
                _lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
 | 
			
		||||
                if _lower_bound > lower_bound:
 | 
			
		||||
                    logging.debug(f"Updating prototype {i} to data {k}...")
 | 
			
		||||
                    self.proto_layer.load_state_dict({"_components": _protos},
 | 
			
		||||
                                                     strict=False)
 | 
			
		||||
                    break
 | 
			
		||||
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
@@ -1,50 +1,60 @@
 | 
			
		||||
"""Probabilistic GLVQ methods"""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.functions.losses import nllr_loss, rslvq_loss
 | 
			
		||||
from prototorch.functions.pooling import (stratified_min_pooling,
 | 
			
		||||
                                          stratified_sum_pooling)
 | 
			
		||||
from prototorch.functions.transforms import (GaussianPrior,
 | 
			
		||||
                                             RankScaledGaussianPrior)
 | 
			
		||||
from prototorch.modules import LambdaLayer, LossLayer
 | 
			
		||||
from prototorch.core.losses import nllr_loss, rslvq_loss
 | 
			
		||||
from prototorch.core.pooling import (
 | 
			
		||||
    stratified_min_pooling,
 | 
			
		||||
    stratified_sum_pooling,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.nn.wrappers import LossLayer
 | 
			
		||||
 | 
			
		||||
from .extras import GaussianPrior, RankScaledGaussianPrior
 | 
			
		||||
from .glvq import GLVQ, SiameseGMLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CELVQ(GLVQ):
 | 
			
		||||
    """Cross-Entropy Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Loss
 | 
			
		||||
        self.loss = torch.nn.CrossEntropyLoss()
 | 
			
		||||
 | 
			
		||||
    def shared_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
    def shared_step(self, batch, batch_idx):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        out = self.compute_distances(x)  # [None, num_protos]
 | 
			
		||||
        plabels = self.proto_layer.component_labels
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        winning = stratified_min_pooling(out, plabels)  # [None, num_classes]
 | 
			
		||||
        probs = -1.0 * winning
 | 
			
		||||
        batch_loss = self.loss(probs, y.long())
 | 
			
		||||
        loss = batch_loss.sum(dim=0)
 | 
			
		||||
        loss = batch_loss.sum()
 | 
			
		||||
        return out, loss
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProbabilisticLVQ(GLVQ):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        self.conditional_distribution = None
 | 
			
		||||
        self.rejection_confidence = rejection_confidence
 | 
			
		||||
        self._conditional_distribution = None
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        distances = self.compute_distances(x)
 | 
			
		||||
 | 
			
		||||
        conditional = self.conditional_distribution(distances)
 | 
			
		||||
        prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
 | 
			
		||||
                                                        device=self.device)
 | 
			
		||||
        posterior = conditional * prior
 | 
			
		||||
 | 
			
		||||
        plabels = self.proto_layer._labels
 | 
			
		||||
        y_pred = stratified_sum_pooling(posterior, plabels)
 | 
			
		||||
        if isinstance(plabels, torch.LongTensor) or isinstance(
 | 
			
		||||
                plabels, torch.cuda.LongTensor):  # type: ignore
 | 
			
		||||
            y_pred = stratified_sum_pooling(posterior, plabels)  # type: ignore
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError("Labels must be LongTensor.")
 | 
			
		||||
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
    def predict(self, x):
 | 
			
		||||
@@ -53,29 +63,47 @@ class ProbabilisticLVQ(GLVQ):
 | 
			
		||||
        prediction[confidence < self.rejection_confidence] = -1
 | 
			
		||||
        return prediction
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
    def training_step(self, batch, batch_idx):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        out = self.forward(x)
 | 
			
		||||
        plabels = self.proto_layer.component_labels
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        batch_loss = self.loss(out, y, plabels)
 | 
			
		||||
        loss = batch_loss.sum(dim=0)
 | 
			
		||||
        loss = batch_loss.sum()
 | 
			
		||||
        return loss
 | 
			
		||||
 | 
			
		||||
    def conditional_distribution(self, distances):
 | 
			
		||||
        """Conditional distribution of distances."""
 | 
			
		||||
        if self._conditional_distribution is None:
 | 
			
		||||
            raise ValueError("Conditional distribution is not set.")
 | 
			
		||||
        return self._conditional_distribution(distances)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SLVQ(ProbabilisticLVQ):
 | 
			
		||||
    """Soft Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("variance", 1.0)
 | 
			
		||||
        variance = self.hparams.get("variance")
 | 
			
		||||
 | 
			
		||||
        self._conditional_distribution = GaussianPrior(variance)
 | 
			
		||||
        self.loss = LossLayer(nllr_loss)
 | 
			
		||||
        self.conditional_distribution = GaussianPrior(self.hparams.variance)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RSLVQ(ProbabilisticLVQ):
 | 
			
		||||
    """Robust Soft Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("variance", 1.0)
 | 
			
		||||
        variance = self.hparams.get("variance")
 | 
			
		||||
 | 
			
		||||
        self._conditional_distribution = GaussianPrior(variance)
 | 
			
		||||
        self.loss = LossLayer(rslvq_loss)
 | 
			
		||||
        self.conditional_distribution = GaussianPrior(self.hparams.variance)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
 | 
			
		||||
@@ -83,17 +111,21 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
 | 
			
		||||
 | 
			
		||||
    TODO: Use Backbone LVQ instead
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        self.conditional_distribution = RankScaledGaussianPrior(
 | 
			
		||||
            self.hparams.lambd)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("lambda", 1.0)
 | 
			
		||||
        lam = self.hparams.get("lambda", 1.0)
 | 
			
		||||
 | 
			
		||||
        self.conditional_distribution = RankScaledGaussianPrior(lam)
 | 
			
		||||
        self.loss = torch.nn.KLDivLoss()
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        out = self.forward(x)
 | 
			
		||||
        y_dist = torch.nn.functional.one_hot(
 | 
			
		||||
            y.long(), num_classes=self.num_classes).float()
 | 
			
		||||
        batch_loss = self.loss(out, y_dist)
 | 
			
		||||
        loss = batch_loss.sum(dim=0)
 | 
			
		||||
        return loss
 | 
			
		||||
    # FIXME
 | 
			
		||||
    # def training_step(self, batch, batch_idx):
 | 
			
		||||
    #     x, y = batch
 | 
			
		||||
    #     y_pred = self(x)
 | 
			
		||||
    #     batch_loss = self.loss(y_pred, y)
 | 
			
		||||
    #     loss = batch_loss.sum()
 | 
			
		||||
    #     return loss
 | 
			
		||||
@@ -2,10 +2,9 @@
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.functions.competitions import wtac
 | 
			
		||||
from prototorch.functions.distances import squared_euclidean_distance
 | 
			
		||||
from prototorch.modules import LambdaLayer
 | 
			
		||||
from prototorch.modules.losses import NeuralGasEnergy
 | 
			
		||||
from prototorch.core.competitions import wtac
 | 
			
		||||
from prototorch.core.distances import squared_euclidean_distance
 | 
			
		||||
from prototorch.core.losses import NeuralGasEnergy
 | 
			
		||||
 | 
			
		||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
 | 
			
		||||
from .callbacks import GNGCallback
 | 
			
		||||
@@ -18,6 +17,8 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
 | 
			
		||||
    TODO Allow non-2D grids
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    _grid: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        h, w = hparams.get("shape")
 | 
			
		||||
        # Ignore `num_prototypes`
 | 
			
		||||
@@ -34,7 +35,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
 | 
			
		||||
 | 
			
		||||
        # Additional parameters
 | 
			
		||||
        x, y = torch.arange(h), torch.arange(w)
 | 
			
		||||
        grid = torch.stack(torch.meshgrid(x, y), dim=-1)
 | 
			
		||||
        grid = torch.stack(torch.meshgrid(x, y, indexing="ij"), dim=-1)
 | 
			
		||||
        self.register_buffer("_grid", grid)
 | 
			
		||||
        self._sigma = self.hparams.sigma
 | 
			
		||||
        self._lr = self.hparams.lr
 | 
			
		||||
@@ -53,14 +54,16 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
 | 
			
		||||
        grid = self._grid.view(-1, 2)
 | 
			
		||||
        gd = squared_euclidean_distance(wp, grid)
 | 
			
		||||
        nh = torch.exp(-gd / self._sigma**2)
 | 
			
		||||
        protos = self.proto_layer.components
 | 
			
		||||
        protos = self.proto_layer()
 | 
			
		||||
        diff = x.unsqueeze(dim=1) - protos
 | 
			
		||||
        delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
 | 
			
		||||
        updated_protos = protos + delta.sum(dim=0)
 | 
			
		||||
        self.proto_layer.load_state_dict({"_components": updated_protos},
 | 
			
		||||
                                         strict=False)
 | 
			
		||||
        self.proto_layer.load_state_dict(
 | 
			
		||||
            {"_components": updated_protos},
 | 
			
		||||
            strict=False,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def training_epoch_end(self, training_step_outputs):
 | 
			
		||||
    def on_training_epoch_end(self, training_step_outputs):
 | 
			
		||||
        self._sigma = self.hparams.sigma * np.exp(
 | 
			
		||||
            -self.current_epoch / self.trainer.max_epochs)
 | 
			
		||||
 | 
			
		||||
@@ -69,6 +72,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class HeskesSOM(UnsupervisedPrototypeModel):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
@@ -78,6 +82,7 @@ class HeskesSOM(UnsupervisedPrototypeModel):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class NeuralGas(UnsupervisedPrototypeModel):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
@@ -85,13 +90,13 @@ class NeuralGas(UnsupervisedPrototypeModel):
 | 
			
		||||
        self.save_hyperparameters(hparams)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("agelimit", 10)
 | 
			
		||||
        self.hparams.setdefault("age_limit", 10)
 | 
			
		||||
        self.hparams.setdefault("lm", 1)
 | 
			
		||||
 | 
			
		||||
        self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
 | 
			
		||||
        self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
 | 
			
		||||
        self.topology_layer = ConnectionTopology(
 | 
			
		||||
            agelimit=self.hparams.agelimit,
 | 
			
		||||
            num_prototypes=self.hparams.num_prototypes,
 | 
			
		||||
            agelimit=self.hparams["age_limit"],
 | 
			
		||||
            num_prototypes=self.hparams["num_prototypes"],
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
@@ -104,12 +109,10 @@ class NeuralGas(UnsupervisedPrototypeModel):
 | 
			
		||||
        self.log("loss", loss)
 | 
			
		||||
        return loss
 | 
			
		||||
 | 
			
		||||
    # def training_epoch_end(self, training_step_outputs):
 | 
			
		||||
    #     print(f"{self.trainer.lr_schedulers}")
 | 
			
		||||
    #     print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GrowingNeuralGas(NeuralGas):
 | 
			
		||||
    errors: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
@@ -118,7 +121,10 @@ class GrowingNeuralGas(NeuralGas):
 | 
			
		||||
        self.hparams.setdefault("insert_reduction", 0.1)
 | 
			
		||||
        self.hparams.setdefault("insert_freq", 10)
 | 
			
		||||
 | 
			
		||||
        errors = torch.zeros(self.hparams.num_prototypes, device=self.device)
 | 
			
		||||
        errors = torch.zeros(
 | 
			
		||||
            self.hparams["num_prototypes"],
 | 
			
		||||
            device=self.device,
 | 
			
		||||
        )
 | 
			
		||||
        self.register_buffer("errors", errors)
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, _batch_idx):
 | 
			
		||||
@@ -132,8 +138,8 @@ class GrowingNeuralGas(NeuralGas):
 | 
			
		||||
        mask[torch.arange(len(mask)), winner] = 1.0
 | 
			
		||||
        dp = d * mask
 | 
			
		||||
 | 
			
		||||
        self.errors += torch.sum(dp * dp, dim=0)
 | 
			
		||||
        self.errors *= self.hparams.step_reduction
 | 
			
		||||
        self.errors += torch.sum(dp * dp)
 | 
			
		||||
        self.errors *= self.hparams["step_reduction"]
 | 
			
		||||
 | 
			
		||||
        self.topology_layer(d)
 | 
			
		||||
        self.log("loss", loss)
 | 
			
		||||
@@ -141,6 +147,8 @@ class GrowingNeuralGas(NeuralGas):
 | 
			
		||||
 | 
			
		||||
    def configure_callbacks(self):
 | 
			
		||||
        return [
 | 
			
		||||
            GNGCallback(reduction=self.hparams.insert_reduction,
 | 
			
		||||
                        freq=self.hparams.insert_freq)
 | 
			
		||||
            GNGCallback(
 | 
			
		||||
                reduction=self.hparams["insert_reduction"],
 | 
			
		||||
                freq=self.hparams["insert_freq"],
 | 
			
		||||
            )
 | 
			
		||||
        ]
 | 
			
		||||
@@ -1,18 +1,28 @@
 | 
			
		||||
"""Visualization Callbacks."""
 | 
			
		||||
 | 
			
		||||
import warnings
 | 
			
		||||
from typing import Sized
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import torchvision
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
from prototorch.utils.colors import get_colors, get_legend_handles
 | 
			
		||||
from prototorch.utils.utils import mesh2d
 | 
			
		||||
from pytorch_lightning.loggers import TensorBoardLogger
 | 
			
		||||
from torch.utils.data import DataLoader, Dataset
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Vis2DAbstract(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(self,
 | 
			
		||||
                 data,
 | 
			
		||||
                 data=None,
 | 
			
		||||
                 title="Prototype Visualization",
 | 
			
		||||
                 cmap="viridis",
 | 
			
		||||
                 xlabel="Data dimension 1",
 | 
			
		||||
                 ylabel="Data dimension 2",
 | 
			
		||||
                 legend_labels=None,
 | 
			
		||||
                 border=0.1,
 | 
			
		||||
                 resolution=100,
 | 
			
		||||
                 flatten_data=True,
 | 
			
		||||
@@ -25,24 +35,36 @@ class Vis2DAbstract(pl.Callback):
 | 
			
		||||
                 block=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        if isinstance(data, Dataset):
 | 
			
		||||
            x, y = next(iter(DataLoader(data, batch_size=len(data))))
 | 
			
		||||
        elif isinstance(data, torch.utils.data.DataLoader):
 | 
			
		||||
            x = torch.tensor([])
 | 
			
		||||
            y = torch.tensor([])
 | 
			
		||||
            for x_b, y_b in data:
 | 
			
		||||
                x = torch.cat([x, x_b])
 | 
			
		||||
                y = torch.cat([y, y_b])
 | 
			
		||||
        if data:
 | 
			
		||||
            if isinstance(data, Dataset):
 | 
			
		||||
                if isinstance(data, Sized):
 | 
			
		||||
                    x, y = next(iter(DataLoader(data, batch_size=len(data))))
 | 
			
		||||
                else:
 | 
			
		||||
                    # TODO: Add support for non-sized datasets
 | 
			
		||||
                    raise NotImplementedError(
 | 
			
		||||
                        "Data must be a dataset with a __len__ method.")
 | 
			
		||||
            elif isinstance(data, DataLoader):
 | 
			
		||||
                x = torch.tensor([])
 | 
			
		||||
                y = torch.tensor([])
 | 
			
		||||
                for x_b, y_b in data:
 | 
			
		||||
                    x = torch.cat([x, x_b])
 | 
			
		||||
                    y = torch.cat([y, y_b])
 | 
			
		||||
            else:
 | 
			
		||||
                x, y = data
 | 
			
		||||
 | 
			
		||||
            if flatten_data:
 | 
			
		||||
                x = x.reshape(len(x), -1)
 | 
			
		||||
 | 
			
		||||
            self.x_train = x
 | 
			
		||||
            self.y_train = y
 | 
			
		||||
        else:
 | 
			
		||||
            x, y = data
 | 
			
		||||
 | 
			
		||||
        if flatten_data:
 | 
			
		||||
            x = x.reshape(len(x), -1)
 | 
			
		||||
 | 
			
		||||
        self.x_train = x
 | 
			
		||||
        self.y_train = y
 | 
			
		||||
            self.x_train = None
 | 
			
		||||
            self.y_train = None
 | 
			
		||||
 | 
			
		||||
        self.title = title
 | 
			
		||||
        self.xlabel = xlabel
 | 
			
		||||
        self.ylabel = ylabel
 | 
			
		||||
        self.legend_labels = legend_labels
 | 
			
		||||
        self.fig = plt.figure(self.title)
 | 
			
		||||
        self.cmap = cmap
 | 
			
		||||
        self.border = border
 | 
			
		||||
@@ -61,35 +83,17 @@ class Vis2DAbstract(pl.Callback):
 | 
			
		||||
                return False
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    def setup_ax(self, xlabel=None, ylabel=None):
 | 
			
		||||
    def setup_ax(self):
 | 
			
		||||
        ax = self.fig.gca()
 | 
			
		||||
        ax.cla()
 | 
			
		||||
        ax.set_title(self.title)
 | 
			
		||||
        if xlabel:
 | 
			
		||||
            ax.set_xlabel("Data dimension 1")
 | 
			
		||||
        if ylabel:
 | 
			
		||||
            ax.set_ylabel("Data dimension 2")
 | 
			
		||||
        ax.set_xlabel(self.xlabel)
 | 
			
		||||
        ax.set_ylabel(self.ylabel)
 | 
			
		||||
        if self.axis_off:
 | 
			
		||||
            ax.axis("off")
 | 
			
		||||
        return ax
 | 
			
		||||
 | 
			
		||||
    def get_mesh_input(self, x):
 | 
			
		||||
        x_shift = self.border * np.ptp(x[:, 0])
 | 
			
		||||
        y_shift = self.border * np.ptp(x[:, 1])
 | 
			
		||||
        x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
 | 
			
		||||
        y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
 | 
			
		||||
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, self.resolution),
 | 
			
		||||
                             np.linspace(y_min, y_max, self.resolution))
 | 
			
		||||
        mesh_input = np.c_[xx.ravel(), yy.ravel()]
 | 
			
		||||
        return mesh_input, xx, yy
 | 
			
		||||
 | 
			
		||||
    def perform_pca_2D(self, data):
 | 
			
		||||
        (_, eigVal, eigVec) = torch.pca_lowrank(data, q=2)
 | 
			
		||||
        return data @ eigVec
 | 
			
		||||
 | 
			
		||||
    def plot_data(self, ax, x, y, pca=False):
 | 
			
		||||
        if pca:
 | 
			
		||||
            x = self.perform_pca_2D(x)
 | 
			
		||||
    def plot_data(self, ax, x, y):
 | 
			
		||||
        ax.scatter(
 | 
			
		||||
            x[:, 0],
 | 
			
		||||
            x[:, 1],
 | 
			
		||||
@@ -100,9 +104,7 @@ class Vis2DAbstract(pl.Callback):
 | 
			
		||||
            s=30,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def plot_protos(self, ax, protos, plabels, pca=False):
 | 
			
		||||
        if pca:
 | 
			
		||||
            protos = self.perform_pca_2D(protos)
 | 
			
		||||
    def plot_protos(self, ax, protos, plabels):
 | 
			
		||||
        ax.scatter(
 | 
			
		||||
            protos[:, 0],
 | 
			
		||||
            protos[:, 1],
 | 
			
		||||
@@ -129,42 +131,47 @@ class Vis2DAbstract(pl.Callback):
 | 
			
		||||
            else:
 | 
			
		||||
                plt.show(block=self.block)
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if not self.precheck(trainer):
 | 
			
		||||
            return True
 | 
			
		||||
        self.visualize(pl_module)
 | 
			
		||||
        self.log_and_display(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
    def on_train_end(self, trainer, pl_module):
 | 
			
		||||
        plt.close()
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        raise NotImplementedError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisGLVQ2D(Vis2DAbstract):
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if not self.precheck(trainer):
 | 
			
		||||
            return True
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        protos = pl_module.prototypes
 | 
			
		||||
        plabels = pl_module.prototype_labels
 | 
			
		||||
        x_train, y_train = self.x_train, self.y_train
 | 
			
		||||
        ax = self.setup_ax(xlabel="Data dimension 1",
 | 
			
		||||
                           ylabel="Data dimension 2")
 | 
			
		||||
        self.plot_data(ax, x_train, y_train)
 | 
			
		||||
        ax = self.setup_ax()
 | 
			
		||||
        self.plot_protos(ax, protos, plabels)
 | 
			
		||||
        x = np.vstack((x_train, protos))
 | 
			
		||||
        mesh_input, xx, yy = self.get_mesh_input(x)
 | 
			
		||||
        if x_train is not None:
 | 
			
		||||
            self.plot_data(ax, x_train, y_train)
 | 
			
		||||
            mesh_input, xx, yy = mesh2d(np.vstack([x_train, protos]),
 | 
			
		||||
                                        self.border, self.resolution)
 | 
			
		||||
        else:
 | 
			
		||||
            mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
 | 
			
		||||
        _components = pl_module.proto_layer._components
 | 
			
		||||
        mesh_input = torch.from_numpy(mesh_input).type_as(_components)
 | 
			
		||||
        y_pred = pl_module.predict(mesh_input)
 | 
			
		||||
        y_pred = y_pred.cpu().reshape(xx.shape)
 | 
			
		||||
        ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
 | 
			
		||||
 | 
			
		||||
        self.log_and_display(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisSiameseGLVQ2D(Vis2DAbstract):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, map_protos=True, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        self.map_protos = map_protos
 | 
			
		||||
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if not self.precheck(trainer):
 | 
			
		||||
            return True
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        protos = pl_module.prototypes
 | 
			
		||||
        plabels = pl_module.prototype_labels
 | 
			
		||||
        x_train, y_train = self.x_train, self.y_train
 | 
			
		||||
@@ -181,9 +188,9 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
 | 
			
		||||
        if self.show_protos:
 | 
			
		||||
            self.plot_protos(ax, protos, plabels)
 | 
			
		||||
            x = np.vstack((x_train, protos))
 | 
			
		||||
            mesh_input, xx, yy = self.get_mesh_input(x)
 | 
			
		||||
            mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
 | 
			
		||||
        else:
 | 
			
		||||
            mesh_input, xx, yy = self.get_mesh_input(x_train)
 | 
			
		||||
            mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
 | 
			
		||||
        _components = pl_module.proto_layer._components
 | 
			
		||||
        mesh_input = torch.Tensor(mesh_input).type_as(_components)
 | 
			
		||||
        y_pred = pl_module.predict_latent(mesh_input,
 | 
			
		||||
@@ -191,87 +198,62 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
 | 
			
		||||
        y_pred = y_pred.cpu().reshape(xx.shape)
 | 
			
		||||
        ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
 | 
			
		||||
 | 
			
		||||
        self.log_and_display(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisGMLVQ2D(Vis2DAbstract):
 | 
			
		||||
    def __init__(self, *args, map_protos=True, **kwargs):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, ev_proj=True, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        self.map_protos = map_protos
 | 
			
		||||
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if not self.precheck(trainer):
 | 
			
		||||
            return True
 | 
			
		||||
        self.ev_proj = ev_proj
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        protos = pl_module.prototypes
 | 
			
		||||
        plabels = pl_module.prototype_labels
 | 
			
		||||
        x_train, y_train = self.x_train, self.y_train
 | 
			
		||||
        device = pl_module.device
 | 
			
		||||
        omega = pl_module._omega.detach()
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        u, _, _ = torch.pca_lowrank(lam, q=2)
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            x_train = pl_module.backbone(torch.Tensor(x_train).to(device))
 | 
			
		||||
            x_train = torch.Tensor(x_train).to(device)
 | 
			
		||||
            x_train = x_train @ u
 | 
			
		||||
            x_train = x_train.cpu().detach()
 | 
			
		||||
        if self.map_protos:
 | 
			
		||||
        if self.show_protos:
 | 
			
		||||
            with torch.no_grad():
 | 
			
		||||
                protos = pl_module.backbone(torch.Tensor(protos).to(device))
 | 
			
		||||
                protos = torch.Tensor(protos).to(device)
 | 
			
		||||
                protos = protos @ u
 | 
			
		||||
                protos = protos.cpu().detach()
 | 
			
		||||
        ax = self.setup_ax()
 | 
			
		||||
        if x_train.shape[1] > 2:
 | 
			
		||||
            self.plot_data(ax, x_train, y_train, pca=True)
 | 
			
		||||
        else:
 | 
			
		||||
            self.plot_data(ax, x_train, y_train, pca=False)
 | 
			
		||||
        self.plot_data(ax, x_train, y_train)
 | 
			
		||||
        if self.show_protos:
 | 
			
		||||
            if protos.shape[1] > 2:
 | 
			
		||||
                self.plot_protos(ax, protos, plabels, pca=True)
 | 
			
		||||
            else:
 | 
			
		||||
                self.plot_protos(ax, protos, plabels, pca=False)
 | 
			
		||||
        ### something to work on: meshgrid with pca
 | 
			
		||||
        #    x = np.vstack((x_train, protos))
 | 
			
		||||
        #    mesh_input, xx, yy = self.get_mesh_input(x)
 | 
			
		||||
        #else:
 | 
			
		||||
        #    mesh_input, xx, yy = self.get_mesh_input(x_train)
 | 
			
		||||
        #_components = pl_module.proto_layer._components
 | 
			
		||||
        #mesh_input = torch.Tensor(mesh_input).type_as(_components)
 | 
			
		||||
        #y_pred = pl_module.predict_latent(mesh_input,
 | 
			
		||||
        #                                  map_protos=self.map_protos)
 | 
			
		||||
        #y_pred = y_pred.cpu().reshape(xx.shape)
 | 
			
		||||
        #ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
 | 
			
		||||
        self.log_and_display(trainer, pl_module)
 | 
			
		||||
            self.plot_protos(ax, protos, plabels)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisCBC2D(Vis2DAbstract):
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if not self.precheck(trainer):
 | 
			
		||||
            return True
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        x_train, y_train = self.x_train, self.y_train
 | 
			
		||||
        protos = pl_module.components
 | 
			
		||||
        ax = self.setup_ax(xlabel="Data dimension 1",
 | 
			
		||||
                           ylabel="Data dimension 2")
 | 
			
		||||
        ax = self.setup_ax()
 | 
			
		||||
        self.plot_data(ax, x_train, y_train)
 | 
			
		||||
        self.plot_protos(ax, protos, "w")
 | 
			
		||||
        x = np.vstack((x_train, protos))
 | 
			
		||||
        mesh_input, xx, yy = self.get_mesh_input(x)
 | 
			
		||||
        _components = pl_module.component_layer._components
 | 
			
		||||
        mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
 | 
			
		||||
        _components = pl_module.components_layer._components
 | 
			
		||||
        y_pred = pl_module.predict(
 | 
			
		||||
            torch.Tensor(mesh_input).type_as(_components))
 | 
			
		||||
        y_pred = y_pred.cpu().reshape(xx.shape)
 | 
			
		||||
 | 
			
		||||
        ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
 | 
			
		||||
 | 
			
		||||
        self.log_and_display(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisNG2D(Vis2DAbstract):
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if not self.precheck(trainer):
 | 
			
		||||
            return True
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        x_train, y_train = self.x_train, self.y_train
 | 
			
		||||
        protos = pl_module.prototypes
 | 
			
		||||
        cmat = pl_module.topology_layer.cmat.cpu().numpy()
 | 
			
		||||
 | 
			
		||||
        ax = self.setup_ax(xlabel="Data dimension 1",
 | 
			
		||||
                           ylabel="Data dimension 2")
 | 
			
		||||
        ax = self.setup_ax()
 | 
			
		||||
        self.plot_data(ax, x_train, y_train)
 | 
			
		||||
        self.plot_protos(ax, protos, "w")
 | 
			
		||||
 | 
			
		||||
@@ -285,10 +267,27 @@ class VisNG2D(Vis2DAbstract):
 | 
			
		||||
                        "k-",
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
        self.log_and_display(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
class VisSpectralProtos(Vis2DAbstract):
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        protos = pl_module.prototypes
 | 
			
		||||
        plabels = pl_module.prototype_labels
 | 
			
		||||
        ax = self.setup_ax()
 | 
			
		||||
        colors = get_colors(vmax=max(plabels), vmin=min(plabels))
 | 
			
		||||
        for p, pl in zip(protos, plabels):
 | 
			
		||||
            ax.plot(p, c=colors[int(pl)])
 | 
			
		||||
        if self.legend_labels:
 | 
			
		||||
            handles = get_legend_handles(
 | 
			
		||||
                colors,
 | 
			
		||||
                self.legend_labels,
 | 
			
		||||
                marker="lines",
 | 
			
		||||
            )
 | 
			
		||||
            ax.legend(handles=handles)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisImgComp(Vis2DAbstract):
 | 
			
		||||
 | 
			
		||||
    def __init__(self,
 | 
			
		||||
                 *args,
 | 
			
		||||
                 random_data=0,
 | 
			
		||||
@@ -304,32 +303,45 @@ class VisImgComp(Vis2DAbstract):
 | 
			
		||||
        self.add_embedding = add_embedding
 | 
			
		||||
        self.embedding_data = embedding_data
 | 
			
		||||
 | 
			
		||||
    def on_train_start(self, trainer, pl_module):
 | 
			
		||||
        tb = pl_module.logger.experiment
 | 
			
		||||
        if self.add_embedding:
 | 
			
		||||
            ind = np.random.choice(len(self.x_train),
 | 
			
		||||
                                   size=self.embedding_data,
 | 
			
		||||
                                   replace=False)
 | 
			
		||||
            data = self.x_train[ind]
 | 
			
		||||
            # print(f"{data.shape=}")
 | 
			
		||||
            # print(f"{self.y_train[ind].shape=}")
 | 
			
		||||
            tb.add_embedding(data.view(len(ind), -1),
 | 
			
		||||
                             label_img=data,
 | 
			
		||||
                             global_step=None,
 | 
			
		||||
                             tag="Data Embedding",
 | 
			
		||||
                             metadata=self.y_train[ind],
 | 
			
		||||
                             metadata_header=None)
 | 
			
		||||
    def on_train_start(self, _, pl_module):
 | 
			
		||||
        if isinstance(pl_module.logger, TensorBoardLogger):
 | 
			
		||||
            tb = pl_module.logger.experiment
 | 
			
		||||
 | 
			
		||||
        if self.random_data:
 | 
			
		||||
            ind = np.random.choice(len(self.x_train),
 | 
			
		||||
                                   size=self.random_data,
 | 
			
		||||
                                   replace=False)
 | 
			
		||||
            data = self.x_train[ind]
 | 
			
		||||
            grid = torchvision.utils.make_grid(data, nrow=self.num_columns)
 | 
			
		||||
            tb.add_image(tag="Data",
 | 
			
		||||
                         img_tensor=grid,
 | 
			
		||||
                         global_step=None,
 | 
			
		||||
                         dataformats=self.dataformats)
 | 
			
		||||
            # Add embedding
 | 
			
		||||
            if self.add_embedding:
 | 
			
		||||
                if self.x_train is not None and self.y_train is not None:
 | 
			
		||||
                    ind = np.random.choice(len(self.x_train),
 | 
			
		||||
                                           size=self.embedding_data,
 | 
			
		||||
                                           replace=False)
 | 
			
		||||
                    data = self.x_train[ind]
 | 
			
		||||
                    tb.add_embedding(data.view(len(ind), -1),
 | 
			
		||||
                                     label_img=data,
 | 
			
		||||
                                     global_step=None,
 | 
			
		||||
                                     tag="Data Embedding",
 | 
			
		||||
                                     metadata=self.y_train[ind],
 | 
			
		||||
                                     metadata_header=None)
 | 
			
		||||
                else:
 | 
			
		||||
                    raise ValueError("No data for add embedding flag")
 | 
			
		||||
 | 
			
		||||
            # Random Data
 | 
			
		||||
            if self.random_data:
 | 
			
		||||
                if self.x_train is not None:
 | 
			
		||||
                    ind = np.random.choice(len(self.x_train),
 | 
			
		||||
                                           size=self.random_data,
 | 
			
		||||
                                           replace=False)
 | 
			
		||||
                    data = self.x_train[ind]
 | 
			
		||||
                    grid = torchvision.utils.make_grid(data,
 | 
			
		||||
                                                       nrow=self.num_columns)
 | 
			
		||||
                    tb.add_image(tag="Data",
 | 
			
		||||
                                 img_tensor=grid,
 | 
			
		||||
                                 global_step=None,
 | 
			
		||||
                                 dataformats=self.dataformats)
 | 
			
		||||
                else:
 | 
			
		||||
                    raise ValueError("No data for random data flag")
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            warnings.warn(
 | 
			
		||||
                f"TensorBoardLogger is required, got {type(pl_module.logger)}")
 | 
			
		||||
 | 
			
		||||
    def add_to_tensorboard(self, trainer, pl_module):
 | 
			
		||||
        tb = pl_module.logger.experiment
 | 
			
		||||
@@ -343,14 +355,9 @@ class VisImgComp(Vis2DAbstract):
 | 
			
		||||
            dataformats=self.dataformats,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def on_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if not self.precheck(trainer):
 | 
			
		||||
            return True
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        if self.show:
 | 
			
		||||
            components = pl_module.components
 | 
			
		||||
            grid = torchvision.utils.make_grid(components,
 | 
			
		||||
                                               nrow=self.num_columns)
 | 
			
		||||
            plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
 | 
			
		||||
 | 
			
		||||
        self.log_and_display(trainer, pl_module)
 | 
			
		||||
@@ -1,14 +0,0 @@
 | 
			
		||||
"""prototorch.models test suite."""
 | 
			
		||||
 | 
			
		||||
import unittest
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestDummy(unittest.TestCase):
 | 
			
		||||
    def setUp(self):
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    def test_dummy(self):
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    def tearDown(self):
 | 
			
		||||
        pass
 | 
			
		||||
@@ -1,17 +1,35 @@
 | 
			
		||||
#! /bin/bash
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Read Flags
 | 
			
		||||
gpu=0
 | 
			
		||||
while [ -n "$1" ]; do
 | 
			
		||||
	case "$1" in
 | 
			
		||||
	    --gpu) gpu=1;;
 | 
			
		||||
	    -g) gpu=1;;
 | 
			
		||||
        *) path=$1;;
 | 
			
		||||
	esac
 | 
			
		||||
	shift
 | 
			
		||||
done
 | 
			
		||||
 | 
			
		||||
python --version
 | 
			
		||||
echo "Using GPU: " $gpu
 | 
			
		||||
 | 
			
		||||
# Loop
 | 
			
		||||
failed=0
 | 
			
		||||
 | 
			
		||||
for example in $(find $1 -maxdepth 1 -name "*.py")
 | 
			
		||||
for example in $(find $path -maxdepth 1 -name "*.py")
 | 
			
		||||
do
 | 
			
		||||
    echo  -n "$x" $example '... '
 | 
			
		||||
    export DISPLAY= && python $example --fast_dev_run 1 &> /dev/null
 | 
			
		||||
    export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
 | 
			
		||||
    if [[ $? -ne 0 ]]; then
 | 
			
		||||
        echo "FAILED!!"
 | 
			
		||||
        cat run_log.txt
 | 
			
		||||
        failed=1
 | 
			
		||||
    else
 | 
			
		||||
        echo "SUCCESS!"
 | 
			
		||||
    fi
 | 
			
		||||
    rm run_log.txt
 | 
			
		||||
done
 | 
			
		||||
 | 
			
		||||
exit $failed
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										193
									
								
								tests/test_models.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										193
									
								
								tests/test_models.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,193 @@
 | 
			
		||||
"""prototorch.models test suite."""
 | 
			
		||||
 | 
			
		||||
import prototorch.models
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_glvq_model_build():
 | 
			
		||||
    model = prototorch.models.GLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_glvq1_model_build():
 | 
			
		||||
    model = prototorch.models.GLVQ1(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_glvq21_model_build():
 | 
			
		||||
    model = prototorch.models.GLVQ1(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_gmlvq_model_build():
 | 
			
		||||
    model = prototorch.models.GMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 2,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_grlvq_model_build():
 | 
			
		||||
    model = prototorch.models.GRLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_gtlvq_model_build():
 | 
			
		||||
    model = prototorch.models.GTLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_lgmlvq_model_build():
 | 
			
		||||
    model = prototorch.models.LGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_image_glvq_model_build():
 | 
			
		||||
    model = prototorch.models.ImageGLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(16),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_image_gmlvq_model_build():
 | 
			
		||||
    model = prototorch.models.ImageGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 16,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(16),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_image_gtlvq_model_build():
 | 
			
		||||
    model = prototorch.models.ImageGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 16,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(16),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_siamese_glvq_model_build():
 | 
			
		||||
    model = prototorch.models.SiameseGLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(4),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_siamese_gmlvq_model_build():
 | 
			
		||||
    model = prototorch.models.SiameseGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(4),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_siamese_gtlvq_model_build():
 | 
			
		||||
    model = prototorch.models.SiameseGTLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(4),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_knn_model_build():
 | 
			
		||||
    train_ds = prototorch.datasets.Iris(dims=[0, 2])
 | 
			
		||||
    model = prototorch.models.KNN(dict(k=3), data=train_ds)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_lvq1_model_build():
 | 
			
		||||
    model = prototorch.models.LVQ1(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_lvq21_model_build():
 | 
			
		||||
    model = prototorch.models.LVQ21(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_median_lvq_model_build():
 | 
			
		||||
    model = prototorch.models.MedianLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_celvq_model_build():
 | 
			
		||||
    model = prototorch.models.CELVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_rslvq_model_build():
 | 
			
		||||
    model = prototorch.models.RSLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_slvq_model_build():
 | 
			
		||||
    model = prototorch.models.SLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_growing_neural_gas_model_build():
 | 
			
		||||
    model = prototorch.models.GrowingNeuralGas(
 | 
			
		||||
        {"num_prototypes": 5},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_kohonen_som_model_build():
 | 
			
		||||
    model = prototorch.models.KohonenSOM(
 | 
			
		||||
        {"shape": (3, 2)},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_neural_gas_model_build():
 | 
			
		||||
    model = prototorch.models.NeuralGas(
 | 
			
		||||
        {"num_prototypes": 5},
 | 
			
		||||
        prototypes_initializer=prototorch.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
		Reference in New Issue
	
	Block a user