Compare commits
10 Commits
feature/je
...
feature/ux
Author | SHA1 | Date | |
---|---|---|---|
|
5ce326ce62 | ||
|
d1985571b3 | ||
|
967953442b | ||
|
d4448f2bc9 | ||
|
a8829945f5 | ||
|
a8336ee213 | ||
|
6ffd27d12a | ||
|
859e2cae69 | ||
|
d7ea89d47e | ||
|
fa928afe2c |
@@ -1,5 +0,0 @@
|
|||||||
FROM nvcr.io/nvidia/pytorch:21.10-py3
|
|
||||||
|
|
||||||
RUN adduser --uid 1000 jenkins
|
|
||||||
|
|
||||||
USER jenkins
|
|
@@ -1,5 +0,0 @@
|
|||||||
FROM python:3.9
|
|
||||||
|
|
||||||
RUN adduser --uid 1000 jenkins
|
|
||||||
|
|
||||||
USER jenkins
|
|
@@ -1,5 +0,0 @@
|
|||||||
FROM python:3.6
|
|
||||||
|
|
||||||
RUN adduser --uid 1000 jenkins
|
|
||||||
|
|
||||||
USER jenkins
|
|
@@ -1,5 +0,0 @@
|
|||||||
FROM python:3.7
|
|
||||||
|
|
||||||
RUN adduser --uid 1000 jenkins
|
|
||||||
|
|
||||||
USER jenkins
|
|
@@ -1,5 +0,0 @@
|
|||||||
FROM python:3.8
|
|
||||||
|
|
||||||
RUN adduser --uid 1000 jenkins
|
|
||||||
|
|
||||||
USER jenkins
|
|
@@ -1,5 +0,0 @@
|
|||||||
FROM python:3.9
|
|
||||||
|
|
||||||
RUN adduser --uid 1000 jenkins
|
|
||||||
|
|
||||||
USER jenkins
|
|
@@ -18,12 +18,12 @@ repos:
|
|||||||
- id: autoflake
|
- id: autoflake
|
||||||
|
|
||||||
- repo: http://github.com/PyCQA/isort
|
- repo: http://github.com/PyCQA/isort
|
||||||
rev: 5.8.0
|
rev: 5.9.3
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: isort
|
||||||
|
|
||||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||||
rev: v0.902
|
rev: v0.910-1
|
||||||
hooks:
|
hooks:
|
||||||
- id: mypy
|
- id: mypy
|
||||||
files: prototorch
|
files: prototorch
|
||||||
@@ -42,9 +42,10 @@ repos:
|
|||||||
- id: python-check-blanket-noqa
|
- id: python-check-blanket-noqa
|
||||||
|
|
||||||
- repo: https://github.com/asottile/pyupgrade
|
- repo: https://github.com/asottile/pyupgrade
|
||||||
rev: v2.19.4
|
rev: v2.29.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: pyupgrade
|
- id: pyupgrade
|
||||||
|
args: [--py36-plus]
|
||||||
|
|
||||||
- repo: https://github.com/si-cim/gitlint
|
- repo: https://github.com/si-cim/gitlint
|
||||||
rev: v0.15.2-unofficial
|
rev: v0.15.2-unofficial
|
||||||
|
118
Jenkinsfile
vendored
118
Jenkinsfile
vendored
@@ -1,118 +0,0 @@
|
|||||||
pipeline {
|
|
||||||
agent none
|
|
||||||
stages {
|
|
||||||
stage('Unit Tests') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
filename 'python310.Dockerfile'
|
|
||||||
dir '.ci'
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
steps {
|
|
||||||
sh 'pip install pip --upgrade --progress-bar off'
|
|
||||||
sh 'pip install .[all] --progress-bar off'
|
|
||||||
sh '~/.local/bin/pytest -v --junitxml=reports/result.xml --cov=prototorch/ --cov-report=xml:reports/coverage.xml'
|
|
||||||
cobertura coberturaReportFile: 'reports/coverage.xml'
|
|
||||||
junit 'reports/**/*.xml'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('CPU Examples') {
|
|
||||||
parallel {
|
|
||||||
stage('3.10') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
filename 'python310.Dockerfile'
|
|
||||||
dir '.ci'
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
steps {
|
|
||||||
sh 'pip install pip --upgrade --progress-bar off'
|
|
||||||
sh 'pip install .[all] --progress-bar off'
|
|
||||||
sh './tests/test_examples.sh examples'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('3.9') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
filename 'python39.Dockerfile'
|
|
||||||
dir '.ci'
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
steps {
|
|
||||||
sh 'pip install pip --upgrade --progress-bar off'
|
|
||||||
sh 'pip install .[all] --progress-bar off'
|
|
||||||
sh './tests/test_examples.sh examples'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('3.8') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
filename 'python38.Dockerfile'
|
|
||||||
dir '.ci'
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
steps {
|
|
||||||
sh 'pip install pip --upgrade --progress-bar off'
|
|
||||||
sh 'pip install .[all] --progress-bar off'
|
|
||||||
sh './tests/test_examples.sh examples'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('3.7') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
filename 'python37.Dockerfile'
|
|
||||||
dir '.ci'
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
steps {
|
|
||||||
sh 'pip install pip --upgrade --progress-bar off'
|
|
||||||
sh 'pip install .[all] --progress-bar off'
|
|
||||||
sh './tests/test_examples.sh examples'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('3.6') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
filename 'python36.Dockerfile'
|
|
||||||
dir '.ci'
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
steps {
|
|
||||||
sh 'pip install pip --upgrade --progress-bar off'
|
|
||||||
sh 'pip install .[all] --progress-bar off'
|
|
||||||
sh './tests/test_examples.sh examples'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('GPU Examples') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
filename 'gpu.Dockerfile'
|
|
||||||
dir '.ci'
|
|
||||||
args '--gpus 1'
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
steps {
|
|
||||||
sh 'pip install -U pip --progress-bar off'
|
|
||||||
sh 'pip install .[all] --progress-bar off'
|
|
||||||
sh './tests/test_examples.sh examples --gpu'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
@@ -38,10 +38,12 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Callbacks
|
# Callbacks
|
||||||
vis = pt.models.VisCBC2D(data=train_ds,
|
vis = pt.models.Visualize2DVoronoiCallback(
|
||||||
|
data=train_ds,
|
||||||
title="CBC Iris Example",
|
title="CBC Iris Example",
|
||||||
resolution=100,
|
resolution=100,
|
||||||
axis_off=True)
|
axis_off=True,
|
||||||
|
)
|
||||||
|
|
||||||
# Setup trainer
|
# Setup trainer
|
||||||
trainer = pl.Trainer.from_argparse_args(
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
@@ -1,8 +0,0 @@
|
|||||||
# Examples using Lightning CLI
|
|
||||||
|
|
||||||
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
|
|
||||||
|
|
||||||
To use the example run
|
|
||||||
```
|
|
||||||
python gmlvq.py --config gmlvq.yaml
|
|
||||||
```
|
|
@@ -1,19 +0,0 @@
|
|||||||
"""GMLVQ example using the MNIST dataset."""
|
|
||||||
|
|
||||||
import prototorch as pt
|
|
||||||
import torch
|
|
||||||
from prototorch.models import ImageGMLVQ
|
|
||||||
from prototorch.models.abstract import PrototypeModel
|
|
||||||
from prototorch.models.data import MNISTDataModule
|
|
||||||
from pytorch_lightning.utilities.cli import LightningCLI
|
|
||||||
|
|
||||||
|
|
||||||
class ExperimentClass(ImageGMLVQ):
|
|
||||||
def __init__(self, hparams, **kwargs):
|
|
||||||
super().__init__(hparams,
|
|
||||||
optimizer=torch.optim.Adam,
|
|
||||||
prototype_initializer=pt.components.zeros(28 * 28),
|
|
||||||
**kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)
|
|
@@ -1,11 +0,0 @@
|
|||||||
model:
|
|
||||||
hparams:
|
|
||||||
input_dim: 784
|
|
||||||
latent_dim: 784
|
|
||||||
distribution:
|
|
||||||
num_classes: 10
|
|
||||||
prototypes_per_class: 2
|
|
||||||
proto_lr: 0.01
|
|
||||||
bb_lr: 0.01
|
|
||||||
data:
|
|
||||||
batch_size: 32
|
|
@@ -3,6 +3,7 @@
|
|||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
import prototorch as pt
|
import prototorch as pt
|
||||||
|
import prototorch.models.clcc
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
from torch.optim.lr_scheduler import ExponentialLR
|
from torch.optim.lr_scheduler import ExponentialLR
|
||||||
@@ -29,7 +30,7 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Initialize the model
|
# Initialize the model
|
||||||
model = pt.models.GLVQ(
|
model = prototorch.models.GLVQ(
|
||||||
hparams,
|
hparams,
|
||||||
optimizer=torch.optim.Adam,
|
optimizer=torch.optim.Adam,
|
||||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||||
@@ -41,7 +42,13 @@ if __name__ == "__main__":
|
|||||||
model.example_input_array = torch.zeros(4, 2)
|
model.example_input_array = torch.zeros(4, 2)
|
||||||
|
|
||||||
# Callbacks
|
# Callbacks
|
||||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
vis = pt.models.Visualize2DVoronoiCallback(
|
||||||
|
data=train_ds,
|
||||||
|
resolution=200,
|
||||||
|
title="Example: GLVQ on Iris",
|
||||||
|
x_label="sepal length",
|
||||||
|
y_label="petal length",
|
||||||
|
)
|
||||||
|
|
||||||
# Setup trainer
|
# Setup trainer
|
||||||
trainer = pl.Trainer.from_argparse_args(
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
58
examples/gmlvq_iris.py
Normal file
58
examples/gmlvq_iris.py
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
"""GMLVQ example using the Iris dataset."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from torch.optim.lr_scheduler import ExponentialLR
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
train_ds = pt.datasets.Iris()
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
input_dim=4,
|
||||||
|
latent_dim=4,
|
||||||
|
distribution={
|
||||||
|
"num_classes": 3,
|
||||||
|
"per_class": 2
|
||||||
|
},
|
||||||
|
proto_lr=0.01,
|
||||||
|
bb_lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.GMLVQ(
|
||||||
|
hparams,
|
||||||
|
optimizer=torch.optim.Adam,
|
||||||
|
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||||
|
lr_scheduler=ExponentialLR,
|
||||||
|
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Compute intermediate input and output sizes
|
||||||
|
model.example_input_array = torch.zeros(4, 4)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisGMLVQ2D(data=train_ds)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
callbacks=[vis],
|
||||||
|
weights_summary="full",
|
||||||
|
accelerator="ddp",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@@ -6,6 +6,7 @@ import prototorch as pt
|
|||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
from sklearn.datasets import load_iris
|
from sklearn.datasets import load_iris
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Command-line arguments
|
# Command-line arguments
|
||||||
@@ -14,12 +15,20 @@ if __name__ == "__main__":
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Dataset
|
# Dataset
|
||||||
x_train, y_train = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
x_train = x_train[:, [0, 2]]
|
X = X[:, [0, 2]]
|
||||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X,
|
||||||
|
y,
|
||||||
|
test_size=0.5,
|
||||||
|
random_state=42)
|
||||||
|
|
||||||
|
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
|
||||||
|
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
|
||||||
|
|
||||||
# Dataloaders
|
# Dataloaders
|
||||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
|
||||||
|
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
|
||||||
|
|
||||||
# Hyperparameters
|
# Hyperparameters
|
||||||
hparams = dict(k=5)
|
hparams = dict(k=5)
|
||||||
@@ -35,7 +44,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# Callbacks
|
# Callbacks
|
||||||
vis = pt.models.VisGLVQ2D(
|
vis = pt.models.VisGLVQ2D(
|
||||||
data=(x_train, y_train),
|
data=(X_train, y_train),
|
||||||
resolution=200,
|
resolution=200,
|
||||||
block=True,
|
block=True,
|
||||||
)
|
)
|
||||||
@@ -53,5 +62,8 @@ if __name__ == "__main__":
|
|||||||
trainer.fit(model, train_loader)
|
trainer.fit(model, train_loader)
|
||||||
|
|
||||||
# Recall
|
# Recall
|
||||||
y_pred = model.predict(torch.tensor(x_train))
|
y_pred = model.predict(torch.tensor(X_train))
|
||||||
print(y_pred)
|
print(y_pred)
|
||||||
|
|
||||||
|
# Test
|
||||||
|
trainer.test(model, dataloaders=test_loader)
|
||||||
|
@@ -3,13 +3,12 @@
|
|||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
import torchmetrics
|
import torchmetrics
|
||||||
|
from prototorch.core.competitions import WTAC
|
||||||
from ..core.competitions import WTAC
|
from prototorch.core.components import Components, LabeledComponents
|
||||||
from ..core.components import Components, LabeledComponents
|
from prototorch.core.distances import euclidean_distance
|
||||||
from ..core.distances import euclidean_distance
|
from prototorch.core.initializers import LabelsInitializer
|
||||||
from ..core.initializers import LabelsInitializer
|
from prototorch.core.pooling import stratified_min_pooling
|
||||||
from ..core.pooling import stratified_min_pooling
|
from prototorch.nn.wrappers import LambdaLayer
|
||||||
from ..nn.wrappers import LambdaLayer
|
|
||||||
|
|
||||||
|
|
||||||
class ProtoTorchBolt(pl.LightningModule):
|
class ProtoTorchBolt(pl.LightningModule):
|
||||||
@@ -162,31 +161,10 @@ class SupervisedPrototypeModel(PrototypeModel):
|
|||||||
prog_bar=True,
|
prog_bar=True,
|
||||||
logger=True)
|
logger=True)
|
||||||
|
|
||||||
|
def test_step(self, batch, batch_idx):
|
||||||
|
x, targets = batch
|
||||||
|
|
||||||
class ProtoTorchMixin(object):
|
preds = self.predict(x)
|
||||||
"""All mixins are ProtoTorchMixins."""
|
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||||
pass
|
|
||||||
|
|
||||||
|
self.log("test_acc", accuracy)
|
||||||
class NonGradientMixin(ProtoTorchMixin):
|
|
||||||
"""Mixin for custom non-gradient optimization."""
|
|
||||||
def __init__(self, *args, **kwargs):
|
|
||||||
super().__init__(*args, **kwargs)
|
|
||||||
self.automatic_optimization = False
|
|
||||||
|
|
||||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
|
|
||||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
|
||||||
"""Mixin for models with image prototypes."""
|
|
||||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
||||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
|
||||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
|
||||||
|
|
||||||
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
|
|
||||||
from torchvision.utils import make_grid
|
|
||||||
grid = make_grid(self.components, nrow=num_columns)
|
|
||||||
if return_channels_last:
|
|
||||||
grid = grid.permute((1, 2, 0))
|
|
||||||
return grid.cpu()
|
|
||||||
|
@@ -4,9 +4,9 @@ import logging
|
|||||||
|
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
|
from prototorch.core.components import Components
|
||||||
|
from prototorch.core.initializers import LiteralCompInitializer
|
||||||
|
|
||||||
from ..core.components import Components
|
|
||||||
from ..core.initializers import LiteralCompInitializer
|
|
||||||
from .extras import ConnectionTopology
|
from .extras import ConnectionTopology
|
||||||
|
|
||||||
|
|
||||||
|
@@ -1,14 +1,14 @@
|
|||||||
import torch
|
import torch
|
||||||
import torchmetrics
|
import torchmetrics
|
||||||
|
from prototorch.core.competitions import CBCC
|
||||||
|
from prototorch.core.components import ReasoningComponents
|
||||||
|
from prototorch.core.initializers import RandomReasoningsInitializer
|
||||||
|
from prototorch.core.losses import MarginLoss
|
||||||
|
from prototorch.core.similarities import euclidean_similarity
|
||||||
|
from prototorch.nn.wrappers import LambdaLayer
|
||||||
|
|
||||||
from ..core.competitions import CBCC
|
|
||||||
from ..core.components import ReasoningComponents
|
|
||||||
from ..core.initializers import RandomReasoningsInitializer
|
|
||||||
from ..core.losses import MarginLoss
|
|
||||||
from ..core.similarities import euclidean_similarity
|
|
||||||
from ..nn.wrappers import LambdaLayer
|
|
||||||
from .abstract import ImagePrototypesMixin
|
|
||||||
from .glvq import SiameseGLVQ
|
from .glvq import SiameseGLVQ
|
||||||
|
from .mixin import ImagePrototypesMixin
|
||||||
|
|
||||||
|
|
||||||
class CBC(SiameseGLVQ):
|
class CBC(SiameseGLVQ):
|
||||||
|
0
prototorch/models/clcc/__init__.py
Normal file
0
prototorch/models/clcc/__init__.py
Normal file
86
prototorch/models/clcc/clcc_glvq.py
Normal file
86
prototorch/models/clcc/clcc_glvq.py
Normal file
@@ -0,0 +1,86 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Callable
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from prototorch.core.competitions import WTAC
|
||||||
|
from prototorch.core.components import LabeledComponents
|
||||||
|
from prototorch.core.distances import euclidean_distance
|
||||||
|
from prototorch.core.initializers import AbstractComponentsInitializer, LabelsInitializer
|
||||||
|
from prototorch.core.losses import GLVQLoss
|
||||||
|
from prototorch.models.clcc.clcc_scheme import CLCCScheme
|
||||||
|
from prototorch.nn.wrappers import LambdaLayer
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class GLVQhparams:
|
||||||
|
distribution: dict
|
||||||
|
component_initializer: AbstractComponentsInitializer
|
||||||
|
distance_fn: Callable = euclidean_distance
|
||||||
|
lr: float = 0.01
|
||||||
|
margin: float = 0.0
|
||||||
|
# TODO: make nicer
|
||||||
|
transfer_fn: str = "identity"
|
||||||
|
transfer_beta: float = 10.0
|
||||||
|
optimizer: torch.optim.Optimizer = torch.optim.Adam
|
||||||
|
|
||||||
|
|
||||||
|
class GLVQ(CLCCScheme):
|
||||||
|
def __init__(self, hparams: GLVQhparams) -> None:
|
||||||
|
super().__init__(hparams)
|
||||||
|
self.lr = hparams.lr
|
||||||
|
self.optimizer = hparams.optimizer
|
||||||
|
|
||||||
|
# Initializers
|
||||||
|
def init_components(self, hparams):
|
||||||
|
# initialize Component Layer
|
||||||
|
self.components_layer = LabeledComponents(
|
||||||
|
distribution=hparams.distribution,
|
||||||
|
components_initializer=hparams.component_initializer,
|
||||||
|
labels_initializer=LabelsInitializer(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def init_comparison(self, hparams):
|
||||||
|
# initialize Distance Layer
|
||||||
|
self.comparison_layer = LambdaLayer(hparams.distance_fn)
|
||||||
|
|
||||||
|
def init_inference(self, hparams):
|
||||||
|
self.competition_layer = WTAC()
|
||||||
|
|
||||||
|
def init_loss(self, hparams):
|
||||||
|
self.loss_layer = GLVQLoss(
|
||||||
|
margin=hparams.margin,
|
||||||
|
transfer_fn=hparams.transfer_fn,
|
||||||
|
beta=hparams.transfer_beta,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Steps
|
||||||
|
def comparison(self, batch, components):
|
||||||
|
comp_tensor, _ = components
|
||||||
|
batch_tensor, _ = batch
|
||||||
|
|
||||||
|
comp_tensor = comp_tensor.unsqueeze(1)
|
||||||
|
|
||||||
|
distances = self.comparison_layer(batch_tensor, comp_tensor)
|
||||||
|
|
||||||
|
return distances
|
||||||
|
|
||||||
|
def inference(self, comparisonmeasures, components):
|
||||||
|
comp_labels = components[1]
|
||||||
|
return self.competition_layer(comparisonmeasures, comp_labels)
|
||||||
|
|
||||||
|
def loss(self, comparisonmeasures, batch, components):
|
||||||
|
target = batch[1]
|
||||||
|
comp_labels = components[1]
|
||||||
|
return self.loss_layer(comparisonmeasures, target, comp_labels)
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
return self.optimizer(self.parameters(), lr=self.lr)
|
||||||
|
|
||||||
|
# Properties
|
||||||
|
@property
|
||||||
|
def prototypes(self):
|
||||||
|
return self.components_layer.components.detach().cpu()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def prototype_labels(self):
|
||||||
|
return self.components_layer.labels.detach().cpu()
|
192
prototorch/models/clcc/clcc_scheme.py
Normal file
192
prototorch/models/clcc/clcc_scheme.py
Normal file
@@ -0,0 +1,192 @@
|
|||||||
|
"""
|
||||||
|
CLCC Scheme
|
||||||
|
|
||||||
|
CLCC is a LVQ scheme containing 4 steps
|
||||||
|
- Components
|
||||||
|
- Latent Space
|
||||||
|
- Comparison
|
||||||
|
- Competition
|
||||||
|
|
||||||
|
"""
|
||||||
|
from typing import Dict, Set, Type
|
||||||
|
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
import torchmetrics
|
||||||
|
|
||||||
|
|
||||||
|
class CLCCScheme(pl.LightningModule):
|
||||||
|
registered_metrics: Dict[Type[torchmetrics.Metric],
|
||||||
|
torchmetrics.Metric] = {}
|
||||||
|
registered_metric_names: Dict[Type[torchmetrics.Metric], Set[str]] = {}
|
||||||
|
|
||||||
|
def __init__(self, hparams) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# Common Steps
|
||||||
|
self.init_components(hparams)
|
||||||
|
self.init_latent(hparams)
|
||||||
|
self.init_comparison(hparams)
|
||||||
|
self.init_competition(hparams)
|
||||||
|
|
||||||
|
# Train Steps
|
||||||
|
self.init_loss(hparams)
|
||||||
|
|
||||||
|
# Inference Steps
|
||||||
|
self.init_inference(hparams)
|
||||||
|
|
||||||
|
# Initialize Model Metrics
|
||||||
|
self.init_model_metrics()
|
||||||
|
|
||||||
|
# internal API, called by models and callbacks
|
||||||
|
def register_torchmetric(self, name: str, metric: torchmetrics.Metric):
|
||||||
|
if metric not in self.registered_metrics:
|
||||||
|
self.registered_metrics[metric] = metric()
|
||||||
|
self.registered_metric_names[metric] = {name}
|
||||||
|
else:
|
||||||
|
self.registered_metric_names[metric].add(name)
|
||||||
|
|
||||||
|
# external API
|
||||||
|
def get_competion(self, batch, components):
|
||||||
|
latent_batch, latent_components = self.latent(batch, components)
|
||||||
|
# TODO: => Latent Hook
|
||||||
|
comparison_tensor = self.comparison(latent_batch, latent_components)
|
||||||
|
# TODO: => Comparison Hook
|
||||||
|
return comparison_tensor
|
||||||
|
|
||||||
|
def forward(self, batch):
|
||||||
|
if isinstance(batch, torch.Tensor):
|
||||||
|
batch = (batch, None)
|
||||||
|
# TODO: manage different datatypes?
|
||||||
|
components = self.components_layer()
|
||||||
|
# TODO: => Component Hook
|
||||||
|
comparison_tensor = self.get_competion(batch, components)
|
||||||
|
# TODO: => Competition Hook
|
||||||
|
return self.inference(comparison_tensor, components)
|
||||||
|
|
||||||
|
def predict(self, batch):
|
||||||
|
"""
|
||||||
|
Alias for forward
|
||||||
|
"""
|
||||||
|
return self.forward(batch)
|
||||||
|
|
||||||
|
def loss_forward(self, batch):
|
||||||
|
# TODO: manage different datatypes?
|
||||||
|
components = self.components_layer()
|
||||||
|
# TODO: => Component Hook
|
||||||
|
comparison_tensor = self.get_competion(batch, components)
|
||||||
|
# TODO: => Competition Hook
|
||||||
|
return self.loss(comparison_tensor, batch, components)
|
||||||
|
|
||||||
|
# Empty Initialization
|
||||||
|
# TODO: Type hints
|
||||||
|
# TODO: Docs
|
||||||
|
def init_components(self, hparams):
|
||||||
|
...
|
||||||
|
|
||||||
|
def init_latent(self, hparams):
|
||||||
|
...
|
||||||
|
|
||||||
|
def init_comparison(self, hparams):
|
||||||
|
...
|
||||||
|
|
||||||
|
def init_competition(self, hparams):
|
||||||
|
...
|
||||||
|
|
||||||
|
def init_loss(self, hparams):
|
||||||
|
...
|
||||||
|
|
||||||
|
def init_inference(self, hparams):
|
||||||
|
...
|
||||||
|
|
||||||
|
def init_model_metrics(self):
|
||||||
|
self.register_torchmetric('train_accuracy', torchmetrics.Accuracy)
|
||||||
|
|
||||||
|
# Empty Steps
|
||||||
|
# TODO: Type hints
|
||||||
|
def components(self):
|
||||||
|
"""
|
||||||
|
This step has no input.
|
||||||
|
|
||||||
|
It returns the components.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError(
|
||||||
|
"The components step has no reasonable default.")
|
||||||
|
|
||||||
|
def latent(self, batch, components):
|
||||||
|
"""
|
||||||
|
The latent step receives the data batch and the components.
|
||||||
|
It can transform both by an arbitrary function.
|
||||||
|
|
||||||
|
It returns the transformed batch and components, each of the same length as the original input.
|
||||||
|
"""
|
||||||
|
return batch, components
|
||||||
|
|
||||||
|
def comparison(self, batch, components):
|
||||||
|
"""
|
||||||
|
Takes a batch of size N and the componentsset of size M.
|
||||||
|
|
||||||
|
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError(
|
||||||
|
"The comparison step has no reasonable default.")
|
||||||
|
|
||||||
|
def competition(self, comparisonmeasures, components):
|
||||||
|
"""
|
||||||
|
Takes the tensor of comparison measures.
|
||||||
|
|
||||||
|
Assigns a competition vector to each class.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError(
|
||||||
|
"The competition step has no reasonable default.")
|
||||||
|
|
||||||
|
def loss(self, comparisonmeasures, batch, components):
|
||||||
|
"""
|
||||||
|
Takes the tensor of competition measures.
|
||||||
|
|
||||||
|
Calculates a single loss value
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("The loss step has no reasonable default.")
|
||||||
|
|
||||||
|
def inference(self, comparisonmeasures, components):
|
||||||
|
"""
|
||||||
|
Takes the tensor of competition measures.
|
||||||
|
|
||||||
|
Returns the inferred vector.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError(
|
||||||
|
"The inference step has no reasonable default.")
|
||||||
|
|
||||||
|
def update_metrics_step(self, batch):
|
||||||
|
x, y = batch
|
||||||
|
preds = self(x)
|
||||||
|
|
||||||
|
for metric in self.registered_metrics:
|
||||||
|
instance = self.registered_metrics[metric].to(self.device)
|
||||||
|
value = instance(y, preds)
|
||||||
|
|
||||||
|
for name in self.registered_metric_names[metric]:
|
||||||
|
self.log(name, value)
|
||||||
|
|
||||||
|
def update_metrics_epoch(self):
|
||||||
|
for metric in self.registered_metrics:
|
||||||
|
instance = self.registered_metrics[metric].to(self.device)
|
||||||
|
value = instance.compute()
|
||||||
|
|
||||||
|
for name in self.registered_metric_names[metric]:
|
||||||
|
self.log(name, value)
|
||||||
|
|
||||||
|
# Lightning Hooks
|
||||||
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||||
|
self.update_metrics_step(batch)
|
||||||
|
|
||||||
|
return self.loss_forward(batch)
|
||||||
|
|
||||||
|
def train_epoch_end(self, outs) -> None:
|
||||||
|
self.update_metrics_epoch()
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
return self.loss_forward(batch)
|
||||||
|
|
||||||
|
def test_step(self, batch, batch_idx):
|
||||||
|
return self.loss_forward(batch)
|
76
prototorch/models/clcc/test_clcc.py
Normal file
76
prototorch/models/clcc/test_clcc.py
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
import torchmetrics
|
||||||
|
from prototorch.core.initializers import SMCI, RandomNormalCompInitializer
|
||||||
|
from prototorch.models.clcc.clcc_glvq import GLVQ, GLVQhparams
|
||||||
|
from prototorch.models.clcc.clcc_scheme import CLCCScheme
|
||||||
|
from prototorch.models.vis import Visualize2DVoronoiCallback
|
||||||
|
|
||||||
|
# NEW STUFF
|
||||||
|
# ##############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: Metrics
|
||||||
|
class MetricsTestCallback(pl.Callback):
|
||||||
|
metric_name = "test_cb_acc"
|
||||||
|
|
||||||
|
def setup(self,
|
||||||
|
trainer: pl.Trainer,
|
||||||
|
pl_module: CLCCScheme,
|
||||||
|
stage: Optional[str] = None) -> None:
|
||||||
|
pl_module.register_torchmetric(self.metric_name, torchmetrics.Accuracy)
|
||||||
|
|
||||||
|
def on_epoch_end(self, trainer: pl.Trainer,
|
||||||
|
pl_module: pl.LightningModule) -> None:
|
||||||
|
metric = trainer.logged_metrics[self.metric_name]
|
||||||
|
if metric > 0.95:
|
||||||
|
trainer.should_stop = True
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: Pruning
|
||||||
|
|
||||||
|
# ##############################################################################
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Dataset
|
||||||
|
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||||
|
batch_size=64,
|
||||||
|
num_workers=8)
|
||||||
|
|
||||||
|
components_initializer = SMCI(train_ds)
|
||||||
|
|
||||||
|
hparams = GLVQhparams(
|
||||||
|
distribution=dict(
|
||||||
|
num_classes=3,
|
||||||
|
per_class=2,
|
||||||
|
),
|
||||||
|
component_initializer=components_initializer,
|
||||||
|
)
|
||||||
|
model = GLVQ(hparams)
|
||||||
|
|
||||||
|
print(model)
|
||||||
|
# Callbacks
|
||||||
|
vis = Visualize2DVoronoiCallback(
|
||||||
|
data=train_ds,
|
||||||
|
resolution=500,
|
||||||
|
)
|
||||||
|
metrics = MetricsTestCallback()
|
||||||
|
|
||||||
|
# Train
|
||||||
|
trainer = pl.Trainer(
|
||||||
|
callbacks=[
|
||||||
|
#vis,
|
||||||
|
metrics,
|
||||||
|
],
|
||||||
|
gpus=1,
|
||||||
|
max_epochs=100,
|
||||||
|
weights_summary=None,
|
||||||
|
log_every_n_steps=1,
|
||||||
|
)
|
||||||
|
trainer.fit(model, train_loader)
|
@@ -1,123 +0,0 @@
|
|||||||
"""Prototorch Data Modules
|
|
||||||
|
|
||||||
This allows to store the used dataset inside a Lightning Module.
|
|
||||||
Mainly used for PytorchLightningCLI configurations.
|
|
||||||
"""
|
|
||||||
from typing import Any, Optional, Type
|
|
||||||
|
|
||||||
import prototorch as pt
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
from torch.utils.data import DataLoader, Dataset, random_split
|
|
||||||
from torchvision import transforms
|
|
||||||
from torchvision.datasets import MNIST
|
|
||||||
|
|
||||||
|
|
||||||
# MNIST
|
|
||||||
class MNISTDataModule(pl.LightningDataModule):
|
|
||||||
def __init__(self, batch_size=32):
|
|
||||||
super().__init__()
|
|
||||||
self.batch_size = batch_size
|
|
||||||
|
|
||||||
# Download mnist dataset as side-effect, only called on the first cpu
|
|
||||||
def prepare_data(self):
|
|
||||||
MNIST("~/datasets", train=True, download=True)
|
|
||||||
MNIST("~/datasets", train=False, download=True)
|
|
||||||
|
|
||||||
# called for every GPU/machine (assigning state is OK)
|
|
||||||
def setup(self, stage=None):
|
|
||||||
# Transforms
|
|
||||||
transform = transforms.Compose([
|
|
||||||
transforms.ToTensor(),
|
|
||||||
])
|
|
||||||
# Split dataset
|
|
||||||
if stage in (None, "fit"):
|
|
||||||
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
|
||||||
self.mnist_train, self.mnist_val = random_split(
|
|
||||||
mnist_train,
|
|
||||||
[55000, 5000],
|
|
||||||
)
|
|
||||||
if stage == (None, "test"):
|
|
||||||
self.mnist_test = MNIST(
|
|
||||||
"~/datasets",
|
|
||||||
train=False,
|
|
||||||
transform=transform,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
def train_dataloader(self):
|
|
||||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
||||||
return mnist_train
|
|
||||||
|
|
||||||
def val_dataloader(self):
|
|
||||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
||||||
return mnist_val
|
|
||||||
|
|
||||||
def test_dataloader(self):
|
|
||||||
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
||||||
return mnist_test
|
|
||||||
|
|
||||||
|
|
||||||
# def train_on_mnist(batch_size=256) -> type:
|
|
||||||
# class DataClass(pl.LightningModule):
|
|
||||||
# datamodule = MNISTDataModule(batch_size=batch_size)
|
|
||||||
|
|
||||||
# def __init__(self, *args, **kwargs):
|
|
||||||
# prototype_initializer = kwargs.pop(
|
|
||||||
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
|
|
||||||
# super().__init__(*args,
|
|
||||||
# prototype_initializer=prototype_initializer,
|
|
||||||
# **kwargs)
|
|
||||||
|
|
||||||
# dc: Type[DataClass] = DataClass
|
|
||||||
# return dc
|
|
||||||
|
|
||||||
|
|
||||||
# ABSTRACT
|
|
||||||
class GeneralDataModule(pl.LightningDataModule):
|
|
||||||
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.train_dataset = dataset
|
|
||||||
self.batch_size = batch_size
|
|
||||||
|
|
||||||
def train_dataloader(self) -> DataLoader:
|
|
||||||
return DataLoader(self.train_dataset, batch_size=self.batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
|
|
||||||
# class DataClass(pl.LightningModule):
|
|
||||||
# datamodule = GeneralDataModule(dataset, batch_size)
|
|
||||||
# datashape = dataset[0][0].shape
|
|
||||||
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
|
|
||||||
|
|
||||||
# def __init__(self, *args: Any, **kwargs: Any) -> None:
|
|
||||||
# prototype_initializer = kwargs.pop(
|
|
||||||
# "prototype_initializer",
|
|
||||||
# pt.components.Zeros(self.datashape),
|
|
||||||
# )
|
|
||||||
# super().__init__(*args,
|
|
||||||
# prototype_initializer=prototype_initializer,
|
|
||||||
# **kwargs)
|
|
||||||
|
|
||||||
# return DataClass
|
|
||||||
|
|
||||||
# if __name__ == "__main__":
|
|
||||||
# from prototorch.models import GLVQ
|
|
||||||
|
|
||||||
# demo_dataset = pt.datasets.Iris()
|
|
||||||
|
|
||||||
# TrainingClass: Type = train_on_dataset(demo_dataset)
|
|
||||||
|
|
||||||
# class DemoGLVQ(TrainingClass, GLVQ):
|
|
||||||
# """Model Definition."""
|
|
||||||
|
|
||||||
# # Hyperparameters
|
|
||||||
# hparams = dict(
|
|
||||||
# distribution={
|
|
||||||
# "num_classes": 3,
|
|
||||||
# "prototypes_per_class": 4
|
|
||||||
# },
|
|
||||||
# lr=0.01,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# initialized = DemoGLVQ(hparams)
|
|
||||||
# print(initialized)
|
|
@@ -5,8 +5,7 @@ Modules not yet available in prototorch go here temporarily.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from prototorch.core.similarities import gaussian
|
||||||
from ..core.similarities import gaussian
|
|
||||||
|
|
||||||
|
|
||||||
def rank_scaled_gaussian(distances, lambd):
|
def rank_scaled_gaussian(distances, lambd):
|
||||||
|
@@ -1,15 +1,16 @@
|
|||||||
"""Models based on the GLVQ framework."""
|
"""Models based on the GLVQ framework."""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from prototorch.core.competitions import wtac
|
||||||
|
from prototorch.core.distances import lomega_distance, omega_distance, squared_euclidean_distance
|
||||||
|
from prototorch.core.initializers import EyeTransformInitializer
|
||||||
|
from prototorch.core.losses import GLVQLoss, lvq1_loss, lvq21_loss
|
||||||
|
from prototorch.core.transforms import LinearTransform
|
||||||
|
from prototorch.nn.wrappers import LambdaLayer, LossLayer
|
||||||
from torch.nn.parameter import Parameter
|
from torch.nn.parameter import Parameter
|
||||||
|
|
||||||
from ..core.competitions import wtac
|
from .abstract import SupervisedPrototypeModel
|
||||||
from ..core.distances import lomega_distance, omega_distance, squared_euclidean_distance
|
from .mixin import ImagePrototypesMixin
|
||||||
from ..core.initializers import EyeTransformInitializer
|
|
||||||
from ..core.losses import GLVQLoss, lvq1_loss, lvq21_loss
|
|
||||||
from ..core.transforms import LinearTransform
|
|
||||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
|
||||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
|
||||||
|
|
||||||
|
|
||||||
class GLVQ(SupervisedPrototypeModel):
|
class GLVQ(SupervisedPrototypeModel):
|
||||||
@@ -130,7 +131,7 @@ class SiameseGLVQ(GLVQ):
|
|||||||
|
|
||||||
def compute_distances(self, x):
|
def compute_distances(self, x):
|
||||||
protos, _ = self.proto_layer()
|
protos, _ = self.proto_layer()
|
||||||
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
|
x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
|
||||||
latent_x = self.backbone(x)
|
latent_x = self.backbone(x)
|
||||||
self.backbone.requires_grad_(self.both_path_gradients)
|
self.backbone.requires_grad_(self.both_path_gradients)
|
||||||
latent_protos = self.backbone(protos)
|
latent_protos = self.backbone(protos)
|
||||||
@@ -251,6 +252,12 @@ class GMLVQ(GLVQ):
|
|||||||
def omega_matrix(self):
|
def omega_matrix(self):
|
||||||
return self._omega.detach().cpu()
|
return self._omega.detach().cpu()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lambda_matrix(self):
|
||||||
|
omega = self._omega.detach() # (input_dim, latent_dim)
|
||||||
|
lam = omega @ omega.T
|
||||||
|
return lam.detach().cpu()
|
||||||
|
|
||||||
def compute_distances(self, x):
|
def compute_distances(self, x):
|
||||||
protos, _ = self.proto_layer()
|
protos, _ = self.proto_layer()
|
||||||
distances = self.distance_layer(x, protos, self._omega)
|
distances = self.distance_layer(x, protos, self._omega)
|
||||||
|
@@ -2,10 +2,11 @@
|
|||||||
|
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
from ..core.competitions import KNNC
|
from prototorch.core.competitions import KNNC
|
||||||
from ..core.components import LabeledComponents
|
from prototorch.core.components import LabeledComponents
|
||||||
from ..core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
|
from prototorch.core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
|
||||||
from ..utils.utils import parse_data_arg
|
from prototorch.utils.utils import parse_data_arg
|
||||||
|
|
||||||
from .abstract import SupervisedPrototypeModel
|
from .abstract import SupervisedPrototypeModel
|
||||||
|
|
||||||
|
|
||||||
|
@@ -1,10 +1,11 @@
|
|||||||
"""LVQ models that are optimized using non-gradient methods."""
|
"""LVQ models that are optimized using non-gradient methods."""
|
||||||
|
|
||||||
from ..core.losses import _get_dp_dm
|
from prototorch.core.losses import _get_dp_dm
|
||||||
from ..nn.activations import get_activation
|
from prototorch.nn.activations import get_activation
|
||||||
from ..nn.wrappers import LambdaLayer
|
from prototorch.nn.wrappers import LambdaLayer
|
||||||
from .abstract import NonGradientMixin
|
|
||||||
from .glvq import GLVQ
|
from .glvq import GLVQ
|
||||||
|
from .mixin import NonGradientMixin
|
||||||
|
|
||||||
|
|
||||||
class LVQ1(NonGradientMixin, GLVQ):
|
class LVQ1(NonGradientMixin, GLVQ):
|
||||||
|
27
prototorch/models/mixin.py
Normal file
27
prototorch/models/mixin.py
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
class ProtoTorchMixin:
|
||||||
|
"""All mixins are ProtoTorchMixins."""
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class NonGradientMixin(ProtoTorchMixin):
|
||||||
|
"""Mixin for custom non-gradient optimization."""
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.automatic_optimization = False
|
||||||
|
|
||||||
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||||
|
"""Mixin for models with image prototypes."""
|
||||||
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||||
|
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||||
|
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||||
|
|
||||||
|
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
|
||||||
|
from torchvision.utils import make_grid
|
||||||
|
grid = make_grid(self.components, nrow=num_columns)
|
||||||
|
if return_channels_last:
|
||||||
|
grid = grid.permute((1, 2, 0))
|
||||||
|
return grid.cpu()
|
@@ -1,10 +1,10 @@
|
|||||||
"""Probabilistic GLVQ methods"""
|
"""Probabilistic GLVQ methods"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from prototorch.core.losses import nllr_loss, rslvq_loss
|
||||||
|
from prototorch.core.pooling import stratified_min_pooling, stratified_sum_pooling
|
||||||
|
from prototorch.nn.wrappers import LambdaLayer, LossLayer
|
||||||
|
|
||||||
from ..core.losses import nllr_loss, rslvq_loss
|
|
||||||
from ..core.pooling import stratified_min_pooling, stratified_sum_pooling
|
|
||||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
|
||||||
from .extras import GaussianPrior, RankScaledGaussianPrior
|
from .extras import GaussianPrior, RankScaledGaussianPrior
|
||||||
from .glvq import GLVQ, SiameseGMLVQ
|
from .glvq import GLVQ, SiameseGMLVQ
|
||||||
|
|
||||||
|
@@ -2,14 +2,15 @@
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
from prototorch.core.competitions import wtac
|
||||||
|
from prototorch.core.distances import squared_euclidean_distance
|
||||||
|
from prototorch.core.losses import NeuralGasEnergy
|
||||||
|
from prototorch.nn.wrappers import LambdaLayer
|
||||||
|
|
||||||
from ..core.competitions import wtac
|
from .abstract import UnsupervisedPrototypeModel
|
||||||
from ..core.distances import squared_euclidean_distance
|
|
||||||
from ..core.losses import NeuralGasEnergy
|
|
||||||
from ..nn.wrappers import LambdaLayer
|
|
||||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
|
||||||
from .callbacks import GNGCallback
|
from .callbacks import GNGCallback
|
||||||
from .extras import ConnectionTopology
|
from .extras import ConnectionTopology
|
||||||
|
from .mixin import NonGradientMixin
|
||||||
|
|
||||||
|
|
||||||
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||||
|
@@ -5,15 +5,18 @@ import pytorch_lightning as pl
|
|||||||
import torch
|
import torch
|
||||||
import torchvision
|
import torchvision
|
||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
|
from prototorch.utils.utils import generate_mesh, mesh2d
|
||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
|
||||||
from ..utils.utils import mesh2d
|
COLOR_UNLABELED = 'w'
|
||||||
|
|
||||||
|
|
||||||
class Vis2DAbstract(pl.Callback):
|
class Vis2DAbstract(pl.Callback):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
data,
|
data,
|
||||||
title="Prototype Visualization",
|
title=None,
|
||||||
|
x_label=None,
|
||||||
|
y_label=None,
|
||||||
cmap="viridis",
|
cmap="viridis",
|
||||||
border=0.1,
|
border=0.1,
|
||||||
resolution=100,
|
resolution=100,
|
||||||
@@ -45,6 +48,8 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
self.y_train = y
|
self.y_train = y
|
||||||
|
|
||||||
self.title = title
|
self.title = title
|
||||||
|
self.x_label = x_label
|
||||||
|
self.y_label = y_label
|
||||||
self.fig = plt.figure(self.title)
|
self.fig = plt.figure(self.title)
|
||||||
self.cmap = cmap
|
self.cmap = cmap
|
||||||
self.border = border
|
self.border = border
|
||||||
@@ -57,20 +62,19 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
self.pause_time = pause_time
|
self.pause_time = pause_time
|
||||||
self.block = block
|
self.block = block
|
||||||
|
|
||||||
def precheck(self, trainer):
|
def show_on_current_epoch(self, trainer):
|
||||||
if self.show_last_only:
|
if self.show_last_only and trainer.current_epoch != trainer.max_epochs - 1:
|
||||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def setup_ax(self, xlabel=None, ylabel=None):
|
def setup_ax(self):
|
||||||
ax = self.fig.gca()
|
ax = self.fig.gca()
|
||||||
ax.cla()
|
ax.cla()
|
||||||
ax.set_title(self.title)
|
ax.set_title(self.title)
|
||||||
if xlabel:
|
if self.x_label:
|
||||||
ax.set_xlabel("Data dimension 1")
|
ax.set_xlabel(self.x_label)
|
||||||
if ylabel:
|
if self.x_label:
|
||||||
ax.set_ylabel("Data dimension 2")
|
ax.set_ylabel(self.y_label)
|
||||||
if self.axis_off:
|
if self.axis_off:
|
||||||
ax.axis("off")
|
ax.axis("off")
|
||||||
return ax
|
return ax
|
||||||
@@ -117,25 +121,64 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
class VisGLVQ2D(Vis2DAbstract):
|
class Visualize2DVoronoiCallback(Vis2DAbstract):
|
||||||
|
def __init__(self, data, **kwargs):
|
||||||
|
super().__init__(data, **kwargs)
|
||||||
|
|
||||||
|
self.data_min = torch.min(self.x_train, axis=0).values
|
||||||
|
self.data_max = torch.max(self.x_train, axis=0).values
|
||||||
|
|
||||||
|
def current_span(self, proto_values):
|
||||||
|
proto_min = torch.min(proto_values, axis=0).values
|
||||||
|
proto_max = torch.max(proto_values, axis=0).values
|
||||||
|
|
||||||
|
overall_min = torch.minimum(proto_min, self.data_min)
|
||||||
|
overall_max = torch.maximum(proto_max, self.data_max)
|
||||||
|
|
||||||
|
return overall_min, overall_max
|
||||||
|
|
||||||
|
def get_voronoi_diagram(self, min, max, model):
|
||||||
|
mesh_input, (xx, yy) = generate_mesh(
|
||||||
|
min,
|
||||||
|
max,
|
||||||
|
border=self.border,
|
||||||
|
resolution=self.resolution,
|
||||||
|
device=model.device,
|
||||||
|
)
|
||||||
|
|
||||||
|
y_pred = model.predict(mesh_input)
|
||||||
|
return xx, yy, y_pred.reshape(xx.shape)
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
if not self.precheck(trainer):
|
if not self.show_on_current_epoch(trainer):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
protos = pl_module.prototypes
|
# Extract Prototypes
|
||||||
plabels = pl_module.prototype_labels
|
proto_values = pl_module.prototypes
|
||||||
x_train, y_train = self.x_train, self.y_train
|
if hasattr(pl_module, "prototype_labels"):
|
||||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
proto_labels = pl_module.prototype_labels
|
||||||
ylabel="Data dimension 2")
|
else:
|
||||||
self.plot_data(ax, x_train, y_train)
|
proto_labels = COLOR_UNLABELED
|
||||||
self.plot_protos(ax, protos, plabels)
|
|
||||||
x = np.vstack((x_train, protos))
|
# Calculate Voronoi Diagram
|
||||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
overall_min, overall_max = self.current_span(proto_values)
|
||||||
_components = pl_module.proto_layer._components
|
xx, yy, y_pred = self.get_voronoi_diagram(
|
||||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
overall_min,
|
||||||
y_pred = pl_module.predict(mesh_input)
|
overall_max,
|
||||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
pl_module,
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
)
|
||||||
|
|
||||||
|
ax = self.setup_ax()
|
||||||
|
ax.contourf(
|
||||||
|
xx.cpu(),
|
||||||
|
yy.cpu(),
|
||||||
|
y_pred.cpu(),
|
||||||
|
cmap=self.cmap,
|
||||||
|
alpha=0.35,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.plot_data(ax, self.x_train, self.y_train)
|
||||||
|
self.plot_protos(ax, proto_values, proto_labels)
|
||||||
|
|
||||||
self.log_and_display(trainer, pl_module)
|
self.log_and_display(trainer, pl_module)
|
||||||
|
|
||||||
@@ -146,7 +189,7 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
|||||||
self.map_protos = map_protos
|
self.map_protos = map_protos
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
if not self.precheck(trainer):
|
if not self.show_on_current_epoch(trainer):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
@@ -178,40 +221,49 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
|||||||
self.log_and_display(trainer, pl_module)
|
self.log_and_display(trainer, pl_module)
|
||||||
|
|
||||||
|
|
||||||
class VisCBC2D(Vis2DAbstract):
|
class VisGMLVQ2D(Vis2DAbstract):
|
||||||
|
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.ev_proj = ev_proj
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
if not self.precheck(trainer):
|
if not self.show_on_current_epoch(trainer):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
protos = pl_module.prototypes
|
||||||
|
plabels = pl_module.prototype_labels
|
||||||
x_train, y_train = self.x_train, self.y_train
|
x_train, y_train = self.x_train, self.y_train
|
||||||
protos = pl_module.components
|
device = pl_module.device
|
||||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
omega = pl_module._omega.detach()
|
||||||
ylabel="Data dimension 2")
|
lam = omega @ omega.T
|
||||||
|
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||||
|
with torch.no_grad():
|
||||||
|
x_train = torch.Tensor(x_train).to(device)
|
||||||
|
x_train = x_train @ u
|
||||||
|
x_train = x_train.cpu().detach()
|
||||||
|
if self.show_protos:
|
||||||
|
with torch.no_grad():
|
||||||
|
protos = torch.Tensor(protos).to(device)
|
||||||
|
protos = protos @ u
|
||||||
|
protos = protos.cpu().detach()
|
||||||
|
ax = self.setup_ax()
|
||||||
self.plot_data(ax, x_train, y_train)
|
self.plot_data(ax, x_train, y_train)
|
||||||
self.plot_protos(ax, protos, "w")
|
if self.show_protos:
|
||||||
x = np.vstack((x_train, protos))
|
self.plot_protos(ax, protos, plabels)
|
||||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
|
||||||
_components = pl_module.components_layer._components
|
|
||||||
y_pred = pl_module.predict(
|
|
||||||
torch.Tensor(mesh_input).type_as(_components))
|
|
||||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
|
||||||
|
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
|
||||||
|
|
||||||
self.log_and_display(trainer, pl_module)
|
self.log_and_display(trainer, pl_module)
|
||||||
|
|
||||||
|
|
||||||
class VisNG2D(Vis2DAbstract):
|
class VisNG2D(Vis2DAbstract):
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
if not self.precheck(trainer):
|
if not self.show_on_current_epoch(trainer):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
x_train, y_train = self.x_train, self.y_train
|
x_train, y_train = self.x_train, self.y_train
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||||
|
|
||||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
ax = self.setup_ax()
|
||||||
ylabel="Data dimension 2")
|
|
||||||
self.plot_data(ax, x_train, y_train)
|
self.plot_data(ax, x_train, y_train)
|
||||||
self.plot_protos(ax, protos, "w")
|
self.plot_protos(ax, protos, "w")
|
||||||
|
|
||||||
@@ -282,7 +334,7 @@ class VisImgComp(Vis2DAbstract):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
if not self.precheck(trainer):
|
if not self.show_on_current_epoch(trainer):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
if self.show:
|
if self.show:
|
||||||
|
5
setup.py
5
setup.py
@@ -18,7 +18,7 @@ PLUGIN_NAME = "models"
|
|||||||
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
|
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
|
||||||
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
|
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
|
||||||
|
|
||||||
with open("README.md", "r") as fh:
|
with open("README.md") as fh:
|
||||||
long_description = fh.read()
|
long_description = fh.read()
|
||||||
|
|
||||||
INSTALL_REQUIRES = [
|
INSTALL_REQUIRES = [
|
||||||
@@ -37,6 +37,7 @@ DOCS = [
|
|||||||
"recommonmark",
|
"recommonmark",
|
||||||
"sphinx",
|
"sphinx",
|
||||||
"nbsphinx",
|
"nbsphinx",
|
||||||
|
"ipykernel",
|
||||||
"sphinx_rtd_theme",
|
"sphinx_rtd_theme",
|
||||||
"sphinxcontrib-katex",
|
"sphinxcontrib-katex",
|
||||||
"sphinxcontrib-bibtex",
|
"sphinxcontrib-bibtex",
|
||||||
@@ -46,7 +47,7 @@ EXAMPLES = [
|
|||||||
"scikit-learn",
|
"scikit-learn",
|
||||||
]
|
]
|
||||||
TESTS = [
|
TESTS = [
|
||||||
"pytest-cov",
|
"codecov",
|
||||||
"pytest",
|
"pytest",
|
||||||
]
|
]
|
||||||
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
|
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
|
||||||
|
Reference in New Issue
Block a user