13 Commits

Author SHA1 Message Date
Alexander Engelsberger
75a39f5b03 build: bump version 0.4.0 → 0.4.1 2022-01-11 18:29:55 +01:00
Alexander Engelsberger
1a0e697b27 Merge branch 'dev' into main 2022-01-11 18:29:32 +01:00
Alexander Engelsberger
1a17193b35 ci: add github actions (#16)
* chore: update pre-commit versions

* ci: remove old configurations

* ci: copy workflow from prototorch

* ci: run precommit for all files

* ci: add examples CPU test

* ci(test): failing example test

* ci: fix workflow definition

* ci(test): repeat failing example test

* ci: fix workflow definition

* ci(test): repeat failing example test II

* ci: fix test command

* ci: cleanup example test

* ci: remove travis badge
2022-01-11 18:28:50 +01:00
Alexander Engelsberger
aaa3c51e0a build: bump version 0.3.0 → 0.4.0 2021-12-09 15:58:16 +01:00
Jensun Ravichandran
62c5974a85 fix: correct typo in example script 2021-11-17 15:01:38 +01:00
Jensun Ravichandran
1d26226a2f fix(warning): specify dimension explicitly when calling softmin 2021-11-16 10:19:31 +01:00
Christoph
4232d0ed2a fix: spelling issues for previous commits 2021-11-15 11:43:39 +01:00
Christoph
a9edf06507 feat: ImageGTLVQ and SiameseGTLVQ with examples 2021-11-15 11:43:39 +01:00
Christoph
d3bb430104 feat: gtlvq with examples 2021-11-15 11:43:39 +01:00
Alexander Engelsberger
6ffd27d12a chore: Remove PytorchLightning CLI related code
Could be moved in a seperate plugin.
2021-10-11 15:16:12 +02:00
Alexander Engelsberger
859e2cae69 docs(dependencies): Add missing ipykernel dependency for docs 2021-10-11 15:11:53 +02:00
Alexander Engelsberger
d7ea89d47e feat: add simple test step 2021-09-10 19:19:51 +02:00
Jensun Ravichandran
fa928afe2c feat(vis): 2D EV projection for GMLVQ 2021-09-01 10:49:57 +02:00
43 changed files with 666 additions and 399 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.0
current_version = 0.4.1
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@@ -1,5 +0,0 @@
FROM nvcr.io/nvidia/pytorch:21.10-py3
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.9
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.6
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.7
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.8
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.9
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,15 +0,0 @@
# To validate the contents of your configuration file
# run the following command in the folder where the configuration file is located:
# codacy-analysis-cli validate-configuration --directory `pwd`
# To analyse, run:
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
---
engines:
pylintpython3:
exclude_paths:
- config/engines.yml
remark-lint:
exclude_paths:
- config/engines.yml
exclude_paths:
- 'tests/**'

View File

@@ -1,2 +0,0 @@
comment:
require_changes: yes

25
.github/workflows/examples.yml vendored Normal file
View File

@@ -0,0 +1,25 @@
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: examples
on:
push:
paths:
- 'examples/**.py'
jobs:
cpu:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.9
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Run examples
run: |
./tests/test_examples.sh examples/

73
.github/workflows/pythonapp.yml vendored Normal file
View File

@@ -0,0 +1,73 @@
# This workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: tests
on:
push:
pull_request:
branches: [ master ]
jobs:
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.9
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- uses: pre-commit/action@v2.0.3
compatibility:
needs: style
strategy:
fail-fast: false
matrix:
python-version: ["3.7", "3.8", "3.9"]
os: [ubuntu-latest, windows-latest]
exclude:
- os: windows-latest
python-version: "3.7"
- os: windows-latest
python-version: "3.8"
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Test with pytest
run: |
pytest
publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.9
uses: actions/setup-python@v2
with:
python-version: "3.9"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install wheel
- name: Build package
run: python setup.py sdist bdist_wheel
- name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@@ -3,7 +3,7 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.0.1
rev: v4.1.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
@@ -18,19 +18,19 @@ repos:
- id: autoflake
- repo: http://github.com/PyCQA/isort
rev: 5.8.0
rev: 5.10.1
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v0.902
rev: v0.931
hooks:
- id: mypy
files: prototorch
additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.31.0
rev: v0.32.0
hooks:
- id: yapf
@@ -42,7 +42,7 @@ repos:
- id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade
rev: v2.19.4
rev: v2.31.0
hooks:
- id: pyupgrade

118
Jenkinsfile vendored
View File

@@ -1,118 +0,0 @@
pipeline {
agent none
stages {
stage('Unit Tests') {
agent {
dockerfile {
filename 'python310.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh '~/.local/bin/pytest -v --junitxml=reports/result.xml --cov=prototorch/ --cov-report=xml:reports/coverage.xml'
cobertura coberturaReportFile: 'reports/coverage.xml'
junit 'reports/**/*.xml'
}
}
stage('CPU Examples') {
parallel {
stage('3.10') {
agent {
dockerfile {
filename 'python310.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.9') {
agent {
dockerfile {
filename 'python39.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.8') {
agent {
dockerfile {
filename 'python38.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.7') {
agent {
dockerfile {
filename 'python37.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.6') {
agent {
dockerfile {
filename 'python36.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
}
}
stage('GPU Examples') {
agent {
dockerfile {
filename 'gpu.Dockerfile'
dir '.ci'
args '--gpus 1'
}
}
steps {
sh 'pip install -U pip --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples --gpu'
}
}
}
}

View File

@@ -1,6 +1,5 @@
# ProtoTorch Models
[![Build Status](https://api.travis-ci.com/si-cim/prototorch_models.svg?branch=main)](https://travis-ci.com/github/si-cim/prototorch_models)
[![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch_models?color=yellow&label=version)](https://github.com/si-cim/prototorch_models/releases)
[![PyPI](https://img.shields.io/pypi/v/prototorch_models)](https://pypi.org/project/prototorch_models/)
[![GitHub license](https://img.shields.io/github/license/si-cim/prototorch_models)](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)

View File

@@ -1,44 +0,0 @@
dist: bionic
sudo: false
language: python
python:
- 3.9
- 3.8
- 3.7
- 3.6
cache:
directories:
- "$HOME/.cache/pip"
- "./tests/artifacts"
- "$HOME/datasets"
install:
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
- pip install .[all] --progress-bar off
script:
- coverage run -m pytest
- ./tests/test_examples.sh examples/
after_success:
- bash <(curl -s https://codecov.io/bash)
# Publish on PyPI
jobs:
include:
- stage: build
python: 3.9
script: echo "Starting Pypi build"
deploy:
provider: pypi
username: __token__
distributions: "sdist bdist_wheel"
password:
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
on:
tags: true
skip_existing: true
# The password is encrypted with:
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
# See https://docs.travis-ci.com/user/deployment/pypi and
# https://github.com/travis-ci/travis.rb#installation
# for more details
# Note: The encrypt command does not work well in ZSH.

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.3.0"
release = "0.4.1"
# -- General configuration ---------------------------------------------------

View File

@@ -1,8 +0,0 @@
# Examples using Lightning CLI
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
To use the example run
```
python gmlvq.py --config gmlvq.yaml
```

View File

@@ -1,19 +0,0 @@
"""GMLVQ example using the MNIST dataset."""
import prototorch as pt
import torch
from prototorch.models import ImageGMLVQ
from prototorch.models.abstract import PrototypeModel
from prototorch.models.data import MNISTDataModule
from pytorch_lightning.utilities.cli import LightningCLI
class ExperimentClass(ImageGMLVQ):
def __init__(self, hparams, **kwargs):
super().__init__(hparams,
optimizer=torch.optim.Adam,
prototype_initializer=pt.components.zeros(28 * 28),
**kwargs)
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)

View File

@@ -1,11 +0,0 @@
model:
hparams:
input_dim: 784
latent_dim: 784
distribution:
num_classes: 10
prototypes_per_class: 2
proto_lr: 0.01
bb_lr: 0.01
data:
batch_size: 32

58
examples/gmlvq_iris.py Normal file
View File

@@ -0,0 +1,58 @@
"""GMLVQ example using the Iris dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from torch.optim.lr_scheduler import ExponentialLR
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
input_dim=4,
latent_dim=4,
distribution={
"num_classes": 3,
"per_class": 2
},
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = pt.models.GMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 4)
# Callbacks
vis = pt.models.VisGMLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)

View File

@@ -1,4 +1,4 @@
"""GLVQ example using the spiral dataset."""
"""GMLVQ example using the spiral dataset."""
import argparse

104
examples/gtlvq_mnist.py Normal file
View File

@@ -0,0 +1,104 @@
"""GTLVQ example using the MNIST dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from torchvision import transforms
from torchvision.datasets import MNIST
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = MNIST(
"~/datasets",
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]),
)
test_ds = MNIST(
"~/datasets",
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]),
)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
# Hyperparameters
num_classes = 10
prototypes_per_class = 1
hparams = dict(
input_dim=28 * 28,
latent_dim=28,
distribution=(num_classes, prototypes_per_class),
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = pt.models.ImageGTLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
#Use one batch of data for subspace initiator.
omega_initializer=pt.initializers.PCALinearTransformInitializer(
next(iter(train_loader))[0].reshape(256, 28 * 28)))
# Callbacks
vis = pt.models.VisImgComp(
data=train_ds,
num_columns=10,
show=False,
tensorboard=True,
random_data=100,
add_embedding=True,
embedding_data=200,
flatten_data=False,
)
pruning = pt.models.PruneLoserPrototypes(
threshold=0.01,
idle_epochs=1,
prune_quota_per_epoch=10,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=15,
mode="min",
check_on_train_epoch_end=True,
)
# Setup trainer
# using GPUs here is strongly recommended!
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
pruning,
# es,
],
terminate_on_nan=True,
weights_summary=None,
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)

63
examples/gtlvq_moons.py Normal file
View File

@@ -0,0 +1,63 @@
"""Localized-GTLVQ example using the Moons dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
# Hyperparameters
# Latent_dim should be lower than input dim.
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
# Initialize the model
model = pt.models.GTLVQ(
hparams, prototypes_initializer=pt.initializers.SMCI(train_ds))
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
mode="max",
verbose=False,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
es,
],
weights_summary="full",
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)

View File

@@ -6,6 +6,7 @@ import prototorch as pt
import pytorch_lightning as pl
import torch
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
if __name__ == "__main__":
# Command-line arguments
@@ -14,12 +15,20 @@ if __name__ == "__main__":
args = parser.parse_args()
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
X, y = load_iris(return_X_y=True)
X = X[:, [0, 2]]
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.5,
random_state=42)
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
# Hyperparameters
hparams = dict(k=5)
@@ -35,7 +44,7 @@ if __name__ == "__main__":
# Callbacks
vis = pt.models.VisGLVQ2D(
data=(x_train, y_train),
data=(X_train, y_train),
resolution=200,
block=True,
)
@@ -53,5 +62,8 @@ if __name__ == "__main__":
trainer.fit(model, train_loader)
# Recall
y_pred = model.predict(torch.tensor(x_train))
y_pred = model.predict(torch.tensor(X_train))
print(y_pred)
# Test
trainer.test(model, dataloaders=test_loader)

View File

@@ -10,6 +10,7 @@ from prototorch.utils.colors import hex_to_rgb
class Vis2DColorSOM(pl.Callback):
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
super().__init__()
self.title = title

View File

@@ -8,6 +8,7 @@ import torch
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size

View File

@@ -8,6 +8,7 @@ import torch
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size

View File

@@ -0,0 +1,73 @@
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.latent_size = latent_size
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
self.activation = torch.nn.Sigmoid()
def forward(self, x):
x = self.activation(self.dense1(x))
out = self.activation(self.dense2(x))
return out
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(distribution=[1, 2, 3],
proto_lr=0.01,
bb_lr=0.01,
input_dim=2,
latent_dim=1)
# Initialize the backbone
backbone = Backbone(latent_size=hparams["input_dim"])
# Initialize the model
model = pt.models.SiameseGTLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
)
# Training loop
trainer.fit(model, train_loader)

View File

@@ -8,17 +8,34 @@ from .glvq import (
GLVQ21,
GMLVQ,
GRLVQ,
GTLVQ,
LGMLVQ,
LVQMLN,
ImageGLVQ,
ImageGMLVQ,
ImageGTLVQ,
SiameseGLVQ,
SiameseGMLVQ,
SiameseGTLVQ,
)
from .knn import KNN
from .lvq import LVQ1, LVQ21, MedianLVQ
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
from .lvq import (
LVQ1,
LVQ21,
MedianLVQ,
)
from .probabilistic import (
CELVQ,
PLVQ,
RSLVQ,
SLVQ,
)
from .unsupervised import (
GrowingNeuralGas,
HeskesSOM,
KohonenSOM,
NeuralGas,
)
from .vis import *
__version__ = "0.3.0"
__version__ = "0.4.1"

View File

@@ -14,6 +14,7 @@ from ..nn.wrappers import LambdaLayer
class ProtoTorchBolt(pl.LightningModule):
"""All ProtoTorch models are ProtoTorch Bolts."""
def __init__(self, hparams, **kwargs):
super().__init__()
@@ -52,6 +53,7 @@ class ProtoTorchBolt(pl.LightningModule):
class PrototypeModel(ProtoTorchBolt):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -81,6 +83,7 @@ class PrototypeModel(ProtoTorchBolt):
class UnsupervisedPrototypeModel(PrototypeModel):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -103,6 +106,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
class SupervisedPrototypeModel(PrototypeModel):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -135,7 +139,7 @@ class SupervisedPrototypeModel(PrototypeModel):
distances = self.compute_distances(x)
_, plabels = self.proto_layer()
winning = stratified_min_pooling(distances, plabels)
y_pred = torch.nn.functional.softmin(winning)
y_pred = torch.nn.functional.softmin(winning, dim=1)
return y_pred
def predict_from_distances(self, distances):
@@ -162,6 +166,14 @@ class SupervisedPrototypeModel(PrototypeModel):
prog_bar=True,
logger=True)
def test_step(self, batch, batch_idx):
x, targets = batch
preds = self.predict(x)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
self.log("test_acc", accuracy)
class ProtoTorchMixin(object):
"""All mixins are ProtoTorchMixins."""
@@ -170,6 +182,7 @@ class ProtoTorchMixin(object):
class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization = False
@@ -180,6 +193,7 @@ class NonGradientMixin(ProtoTorchMixin):
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)

View File

@@ -11,6 +11,7 @@ from .extras import ConnectionTopology
class PruneLoserPrototypes(pl.Callback):
def __init__(self,
threshold=0.01,
idle_epochs=10,
@@ -67,6 +68,7 @@ class PruneLoserPrototypes(pl.Callback):
class PrototypeConvergence(pl.Callback):
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
self.min_delta = min_delta
self.idle_epochs = idle_epochs # epochs to wait
@@ -89,6 +91,7 @@ class GNGCallback(pl.Callback):
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
"""
def __init__(self, reduction=0.1, freq=10):
self.reduction = reduction
self.freq = freq

View File

@@ -13,6 +13,7 @@ from .glvq import SiameseGLVQ
class CBC(SiameseGLVQ):
"""Classification-By-Components."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)

View File

@@ -1,123 +0,0 @@
"""Prototorch Data Modules
This allows to store the used dataset inside a Lightning Module.
Mainly used for PytorchLightningCLI configurations.
"""
from typing import Any, Optional, Type
import prototorch as pt
import pytorch_lightning as pl
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision import transforms
from torchvision.datasets import MNIST
# MNIST
class MNISTDataModule(pl.LightningDataModule):
def __init__(self, batch_size=32):
super().__init__()
self.batch_size = batch_size
# Download mnist dataset as side-effect, only called on the first cpu
def prepare_data(self):
MNIST("~/datasets", train=True, download=True)
MNIST("~/datasets", train=False, download=True)
# called for every GPU/machine (assigning state is OK)
def setup(self, stage=None):
# Transforms
transform = transforms.Compose([
transforms.ToTensor(),
])
# Split dataset
if stage in (None, "fit"):
mnist_train = MNIST("~/datasets", train=True, transform=transform)
self.mnist_train, self.mnist_val = random_split(
mnist_train,
[55000, 5000],
)
if stage == (None, "test"):
self.mnist_test = MNIST(
"~/datasets",
train=False,
transform=transform,
)
# Dataloaders
def train_dataloader(self):
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
return mnist_train
def val_dataloader(self):
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
return mnist_val
def test_dataloader(self):
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
return mnist_test
# def train_on_mnist(batch_size=256) -> type:
# class DataClass(pl.LightningModule):
# datamodule = MNISTDataModule(batch_size=batch_size)
# def __init__(self, *args, **kwargs):
# prototype_initializer = kwargs.pop(
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
# super().__init__(*args,
# prototype_initializer=prototype_initializer,
# **kwargs)
# dc: Type[DataClass] = DataClass
# return dc
# ABSTRACT
class GeneralDataModule(pl.LightningDataModule):
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
super().__init__()
self.train_dataset = dataset
self.batch_size = batch_size
def train_dataloader(self) -> DataLoader:
return DataLoader(self.train_dataset, batch_size=self.batch_size)
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
# class DataClass(pl.LightningModule):
# datamodule = GeneralDataModule(dataset, batch_size)
# datashape = dataset[0][0].shape
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
# def __init__(self, *args: Any, **kwargs: Any) -> None:
# prototype_initializer = kwargs.pop(
# "prototype_initializer",
# pt.components.Zeros(self.datashape),
# )
# super().__init__(*args,
# prototype_initializer=prototype_initializer,
# **kwargs)
# return DataClass
# if __name__ == "__main__":
# from prototorch.models import GLVQ
# demo_dataset = pt.datasets.Iris()
# TrainingClass: Type = train_on_dataset(demo_dataset)
# class DemoGLVQ(TrainingClass, GLVQ):
# """Model Definition."""
# # Hyperparameters
# hparams = dict(
# distribution={
# "num_classes": 3,
# "prototypes_per_class": 4
# },
# lr=0.01,
# )
# initialized = DemoGLVQ(hparams)
# print(initialized)

View File

@@ -15,7 +15,46 @@ def rank_scaled_gaussian(distances, lambd):
return torch.exp(-torch.exp(-ranks / lambd) * distances)
def orthogonalization(tensors):
"""Orthogonalization via polar decomposition """
u, _, v = torch.svd(tensors, compute_uv=True)
u_shape = tuple(list(u.shape))
v_shape = tuple(list(v.shape))
# reshape to (num x N x M)
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
out = u @ v.permute([0, 2, 1])
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
return out
def ltangent_distance(x, y, omegas):
r"""Localized Tangent distance.
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
:param `torch.tensor` omegas: Three dimensional matrix
:rtype: `torch.tensor`
"""
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)]
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
omegas, omegas.permute([0, 2, 1]))
projected_x = x @ p
projected_y = torch.diagonal(y @ p).T
expanded_y = torch.unsqueeze(projected_y, dim=1)
batchwise_difference = expanded_y - projected_x
differences_squared = batchwise_difference**2
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
distances = distances.permute(1, 0)
return distances
class GaussianPrior(torch.nn.Module):
def __init__(self, variance):
super().__init__()
self.variance = variance
@@ -25,6 +64,7 @@ class GaussianPrior(torch.nn.Module):
class RankScaledGaussianPrior(torch.nn.Module):
def __init__(self, lambd):
super().__init__()
self.lambd = lambd
@@ -34,6 +74,7 @@ class RankScaledGaussianPrior(torch.nn.Module):
class ConnectionTopology(torch.nn.Module):
def __init__(self, agelimit, num_prototypes):
super().__init__()
self.agelimit = agelimit

View File

@@ -4,16 +4,26 @@ import torch
from torch.nn.parameter import Parameter
from ..core.competitions import wtac
from ..core.distances import lomega_distance, omega_distance, squared_euclidean_distance
from ..core.distances import (
lomega_distance,
omega_distance,
squared_euclidean_distance,
)
from ..core.initializers import EyeTransformInitializer
from ..core.losses import GLVQLoss, lvq1_loss, lvq21_loss
from ..core.losses import (
GLVQLoss,
lvq1_loss,
lvq21_loss,
)
from ..core.transforms import LinearTransform
from ..nn.wrappers import LambdaLayer, LossLayer
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
from .extras import ltangent_distance, orthogonalization
class GLVQ(SupervisedPrototypeModel):
"""Generalized Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -98,6 +108,7 @@ class SiameseGLVQ(GLVQ):
transformation pipeline are only learned from the inputs.
"""
def __init__(self,
hparams,
backbone=torch.nn.Identity(),
@@ -164,6 +175,7 @@ class LVQMLN(SiameseGLVQ):
rather in the embedding space.
"""
def compute_distances(self, x):
latent_protos, _ = self.proto_layer()
latent_x = self.backbone(x)
@@ -179,6 +191,7 @@ class GRLVQ(SiameseGLVQ):
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
"""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -204,6 +217,7 @@ class SiameseGMLVQ(SiameseGLVQ):
Implemented as a Siamese network with a linear transformation backbone.
"""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -234,6 +248,7 @@ class GMLVQ(GLVQ):
function. This makes it easier to implement a localized variant.
"""
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", omega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
@@ -251,6 +266,12 @@ class GMLVQ(GLVQ):
def omega_matrix(self):
return self._omega.detach().cpu()
@property
def lambda_matrix(self):
omega = self._omega.detach() # (input_dim, latent_dim)
lam = omega @ omega.T
return lam.detach().cpu()
def compute_distances(self, x):
protos, _ = self.proto_layer()
distances = self.distance_layer(x, protos, self._omega)
@@ -262,6 +283,7 @@ class GMLVQ(GLVQ):
class LGMLVQ(GMLVQ):
"""Localized and Generalized Matrix Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", lomega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
@@ -276,8 +298,48 @@ class LGMLVQ(GMLVQ):
self.register_parameter("_omega", Parameter(omega))
class GTLVQ(LGMLVQ):
"""Localized and Generalized Tangent Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
omega_initializer = kwargs.get("omega_initializer")
if omega_initializer is not None:
subspace = omega_initializer.generate(self.hparams.input_dim,
self.hparams.latent_dim)
omega = torch.repeat_interleave(subspace.unsqueeze(0),
self.num_prototypes,
dim=0)
else:
omega = torch.rand(
self.num_prototypes,
self.hparams.input_dim,
self.hparams.latent_dim,
device=self.device,
)
# Re-register `_omega` to override the one from the super class.
self.register_parameter("_omega", Parameter(omega))
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
"""Generalized Tangent Learning Vector Quantization.
Implemented as a Siamese network with a linear transformation backbone.
"""
class GLVQ1(GLVQ):
"""Generalized Learning Vector Quantization 1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.loss = LossLayer(lvq1_loss)
@@ -286,6 +348,7 @@ class GLVQ1(GLVQ):
class GLVQ21(GLVQ):
"""Generalized Learning Vector Quantization 2.1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.loss = LossLayer(lvq21_loss)
@@ -308,3 +371,18 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
after updates.
"""
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
"""GTLVQ for training on image data.
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))

View File

@@ -4,13 +4,17 @@ import warnings
from ..core.competitions import KNNC
from ..core.components import LabeledComponents
from ..core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
from ..core.initializers import (
LiteralCompInitializer,
LiteralLabelsInitializer,
)
from ..utils.utils import parse_data_arg
from .abstract import SupervisedPrototypeModel
class KNN(SupervisedPrototypeModel):
"""K-Nearest-Neighbors classification algorithm."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)

View File

@@ -9,6 +9,7 @@ from .glvq import GLVQ
class LVQ1(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos, plables = self.proto_layer()
x, y = train_batch
@@ -38,6 +39,7 @@ class LVQ1(NonGradientMixin, GLVQ):
class LVQ21(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 2.1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos, plabels = self.proto_layer()
@@ -70,6 +72,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
# TODO Avoid computing distances over and over
"""
def __init__(self, hparams, verbose=True, **kwargs):
self.verbose = verbose
super().__init__(hparams, **kwargs)

View File

@@ -11,6 +11,7 @@ from .glvq import GLVQ, SiameseGMLVQ
class CELVQ(GLVQ):
"""Cross-Entropy Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -29,6 +30,7 @@ class CELVQ(GLVQ):
class ProbabilisticLVQ(GLVQ):
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
super().__init__(hparams, **kwargs)
@@ -62,6 +64,7 @@ class ProbabilisticLVQ(GLVQ):
class SLVQ(ProbabilisticLVQ):
"""Soft Learning Vector Quantization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss = LossLayer(nllr_loss)
@@ -70,6 +73,7 @@ class SLVQ(ProbabilisticLVQ):
class RSLVQ(ProbabilisticLVQ):
"""Robust Soft Learning Vector Quantization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss = LossLayer(rslvq_loss)
@@ -81,6 +85,7 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
TODO: Use Backbone LVQ instead
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conditional_distribution = RankScaledGaussianPrior(

View File

@@ -18,6 +18,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
TODO Allow non-2D grids
"""
def __init__(self, hparams, **kwargs):
h, w = hparams.get("shape")
# Ignore `num_prototypes`
@@ -69,6 +70,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
class HeskesSOM(UnsupervisedPrototypeModel):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -78,6 +80,7 @@ class HeskesSOM(UnsupervisedPrototypeModel):
class NeuralGas(UnsupervisedPrototypeModel):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -110,6 +113,7 @@ class NeuralGas(UnsupervisedPrototypeModel):
class GrowingNeuralGas(NeuralGas):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)

View File

@@ -11,6 +11,7 @@ from ..utils.utils import mesh2d
class Vis2DAbstract(pl.Callback):
def __init__(self,
data,
title="Prototype Visualization",
@@ -118,6 +119,7 @@ class Vis2DAbstract(pl.Callback):
class VisGLVQ2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
@@ -141,6 +143,7 @@ class VisGLVQ2D(Vis2DAbstract):
class VisSiameseGLVQ2D(Vis2DAbstract):
def __init__(self, *args, map_protos=True, **kwargs):
super().__init__(*args, **kwargs)
self.map_protos = map_protos
@@ -178,7 +181,42 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
self.log_and_display(trainer, pl_module)
class VisGMLVQ2D(Vis2DAbstract):
def __init__(self, *args, ev_proj=True, **kwargs):
super().__init__(*args, **kwargs)
self.ev_proj = ev_proj
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train
device = pl_module.device
omega = pl_module._omega.detach()
lam = omega @ omega.T
u, _, _ = torch.pca_lowrank(lam, q=2)
with torch.no_grad():
x_train = torch.Tensor(x_train).to(device)
x_train = x_train @ u
x_train = x_train.cpu().detach()
if self.show_protos:
with torch.no_grad():
protos = torch.Tensor(protos).to(device)
protos = protos @ u
protos = protos.cpu().detach()
ax = self.setup_ax()
self.plot_data(ax, x_train, y_train)
if self.show_protos:
self.plot_protos(ax, protos, plabels)
self.log_and_display(trainer, pl_module)
class VisCBC2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
@@ -202,6 +240,7 @@ class VisCBC2D(Vis2DAbstract):
class VisNG2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
@@ -229,6 +268,7 @@ class VisNG2D(Vis2DAbstract):
class VisImgComp(Vis2DAbstract):
def __init__(self,
*args,
random_data=0,

View File

@@ -1,8 +1,23 @@
[isort]
profile = hug
src_paths = isort, test
[yapf]
based_on_style = pep8
spaces_before_comment = 2
split_before_logical_operator = true
[pylint]
disable =
too-many-arguments,
too-few-public-methods,
fixme,
[pycodestyle]
max-line-length = 79
[isort]
profile = hug
src_paths = isort, test
multi_line_output = 3
include_trailing_comma = True
force_grid_wrap = 3
use_parentheses = True
line_length = 79

View File

@@ -37,6 +37,7 @@ DOCS = [
"recommonmark",
"sphinx",
"nbsphinx",
"ipykernel",
"sphinx_rtd_theme",
"sphinxcontrib-katex",
"sphinxcontrib-bibtex",
@@ -46,14 +47,14 @@ EXAMPLES = [
"scikit-learn",
]
TESTS = [
"pytest-cov",
"codecov",
"pytest",
]
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
setup(
name=safe_name("prototorch_" + PLUGIN_NAME),
version="0.3.0",
version="0.4.1",
description="Pre-packaged prototype-based "
"machine learning models using ProtoTorch and PyTorch-Lightning.",
long_description=long_description,

View File

@@ -4,6 +4,7 @@ import unittest
class TestDummy(unittest.TestCase):
def setUp(self):
pass