3 Commits

Author SHA1 Message Date
Jensun Ravichandran
aeb6417c28 refactor: minor changes in probabilistic.py 2021-08-06 13:49:29 +02:00
Jensun Ravichandran
cb7fb91c95 feat: add binnam_xor.py 2021-07-15 18:19:28 +02:00
Jensun Ravichandran
823b05e390 feat: add neural additive model for binary classification 2021-07-14 20:07:34 +02:00
24 changed files with 310 additions and 243 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.0
current_version = 0.2.0
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@@ -1,5 +0,0 @@
FROM nvcr.io/nvidia/pytorch:21.10-py3
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.9
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.6
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.7
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.8
RUN adduser --uid 1000 jenkins
USER jenkins

View File

@@ -1,5 +0,0 @@
FROM python:3.9
RUN adduser --uid 1000 jenkins
USER jenkins

25
.travis.yml Normal file
View File

@@ -0,0 +1,25 @@
dist: bionic
sudo: false
language: python
python: 3.9
cache:
directories:
- "$HOME/.cache/pip"
- "./tests/artifacts"
- "$HOME/datasets"
install:
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
- pip install .[all] --progress-bar off
script:
- coverage run -m pytest
- ./tests/test_examples.sh examples/
after_success:
- bash <(curl -s https://codecov.io/bash)
deploy:
provider: pypi
username: __token__
password:
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
on:
tags: true
skip_existing: true

118
Jenkinsfile vendored
View File

@@ -1,118 +0,0 @@
pipeline {
agent none
stages {
stage('Unit Tests') {
agent {
dockerfile {
filename 'python310.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh '~/.local/bin/pytest -v --junitxml=reports/result.xml --cov=prototorch/ --cov-report=xml:reports/coverage.xml'
cobertura coberturaReportFile: 'reports/coverage.xml'
junit 'reports/**/*.xml'
}
}
stage('CPU Examples') {
parallel {
stage('3.10') {
agent {
dockerfile {
filename 'python310.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.9') {
agent {
dockerfile {
filename 'python39.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.8') {
agent {
dockerfile {
filename 'python38.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.7') {
agent {
dockerfile {
filename 'python37.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
stage('3.6') {
agent {
dockerfile {
filename 'python36.Dockerfile'
dir '.ci'
}
}
steps {
sh 'pip install pip --upgrade --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples'
}
}
}
}
stage('GPU Examples') {
agent {
dockerfile {
filename 'gpu.Dockerfile'
dir '.ci'
args '--gpus 1'
}
}
steps {
sh 'pip install -U pip --progress-bar off'
sh 'pip install .[all] --progress-bar off'
sh './tests/test_examples.sh examples --gpu'
}
}
}
}

View File

@@ -1,44 +0,0 @@
dist: bionic
sudo: false
language: python
python:
- 3.9
- 3.8
- 3.7
- 3.6
cache:
directories:
- "$HOME/.cache/pip"
- "./tests/artifacts"
- "$HOME/datasets"
install:
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
- pip install .[all] --progress-bar off
script:
- coverage run -m pytest
- ./tests/test_examples.sh examples/
after_success:
- bash <(curl -s https://codecov.io/bash)
# Publish on PyPI
jobs:
include:
- stage: build
python: 3.9
script: echo "Starting Pypi build"
deploy:
provider: pypi
username: __token__
distributions: "sdist bdist_wheel"
password:
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
on:
tags: true
skip_existing: true
# The password is encrypted with:
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
# See https://docs.travis-ci.com/user/deployment/pypi and
# https://github.com/travis-ci/travis.rb#installation
# for more details
# Note: The encrypt command does not work well in ZSH.

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.3.0"
release = "0.2.0"
# -- General configuration ---------------------------------------------------

View File

@@ -0,0 +1,81 @@
"""Neural Additive Model (NAM) example for binary classification."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Tecator("~/datasets")
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(lr=0.1)
# Define the feature extractor
class FE(torch.nn.Module):
def __init__(self):
super().__init__()
self.modules_list = torch.nn.ModuleList([
torch.nn.Linear(1, 3),
torch.nn.Sigmoid(),
torch.nn.Linear(3, 1),
torch.nn.Sigmoid(),
])
def forward(self, x):
for m in self.modules_list:
x = m(x)
return x
# Initialize the model
model = pt.models.BinaryNAM(
hparams,
extractors=torch.nn.ModuleList([FE() for _ in range(100)]),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 100)
# Callbacks
es = pl.callbacks.EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=20,
mode="min",
verbose=True,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
es,
],
terminate_on_nan=True,
weights_summary=None,
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)
# Visualize extractor shape functions
fig, axes = plt.subplots(10, 10)
for i, ax in enumerate(axes.flat):
x = torch.linspace(-2, 2, 100) # TODO use min/max from data
y = model.extractors[i](x.view(100, 1)).squeeze().detach()
ax.plot(x, y)
ax.set(title=f"Feature {i + 1}", xticklabels=[], yticklabels=[])
plt.show()

86
examples/binnam_xor.py Normal file
View File

@@ -0,0 +1,86 @@
"""Neural Additive Model (NAM) example for binary classification."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.XOR()
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
# Hyperparameters
hparams = dict(lr=0.001)
# Define the feature extractor
class FE(torch.nn.Module):
def __init__(self, hidden_size=10):
super().__init__()
self.modules_list = torch.nn.ModuleList([
torch.nn.Linear(1, hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(hidden_size, 1),
torch.nn.ReLU(),
])
def forward(self, x):
for m in self.modules_list:
x = m(x)
return x
# Initialize the model
model = pt.models.BinaryNAM(
hparams,
extractors=torch.nn.ModuleList([FE(20) for _ in range(2)]),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks
vis = pt.models.Vis2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=50,
mode="min",
verbose=False,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
es,
],
terminate_on_nan=True,
weights_summary="full",
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)
# Visualize extractor shape functions
fig, axes = plt.subplots(2)
for i, ax in enumerate(axes.flat):
x = torch.linspace(0, 1, 100) # TODO use min/max from data
y = model.extractors[i](x.view(100, 1)).squeeze().detach()
ax.plot(x, y)
ax.set(title=f"Feature {i + 1}")
plt.show()

View File

@@ -1,5 +1,7 @@
"""`models` plugin for the `prototorch` package."""
from importlib.metadata import PackageNotFoundError, version
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
from .cbc import CBC, ImageCBC
from .glvq import (
@@ -17,8 +19,9 @@ from .glvq import (
)
from .knn import KNN
from .lvq import LVQ1, LVQ21, MedianLVQ
from .nam import BinaryNAM
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
from .vis import *
__version__ = "0.3.0"
__version__ = "0.2.0"

View File

@@ -1,5 +1,7 @@
"""Abstract classes to be inherited by prototorch models."""
from typing import Final, final
import pytorch_lightning as pl
import torch
import torchmetrics
@@ -41,6 +43,7 @@ class ProtoTorchBolt(pl.LightningModule):
else:
return optimizer
@final
def reconfigure_optimizers(self):
self.trainer.accelerator.setup_optimizers(self.trainer)
@@ -93,7 +96,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
)
def compute_distances(self, x):
protos = self.proto_layer().type_as(x)
protos = self.proto_layer()
distances = self.distance_layer(x, protos)
return distances
@@ -133,14 +136,14 @@ class SupervisedPrototypeModel(PrototypeModel):
def forward(self, x):
distances = self.compute_distances(x)
_, plabels = self.proto_layer()
plabels = self.proto_layer.labels
winning = stratified_min_pooling(distances, plabels)
y_pred = torch.nn.functional.softmin(winning)
return y_pred
def predict_from_distances(self, distances):
with torch.no_grad():
_, plabels = self.proto_layer()
plabels = self.proto_layer.labels
y_pred = self.competition_layer(distances, plabels)
return y_pred
@@ -172,7 +175,7 @@ class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization = False
self.automatic_optimization: Final = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
raise NotImplementedError
@@ -180,6 +183,7 @@ class NonGradientMixin(ProtoTorchMixin):
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
@final
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)

View File

@@ -55,7 +55,7 @@ class PruneLoserPrototypes(pl.Callback):
distribution = dict(zip(labels.tolist(), counts.tolist()))
if self.verbose:
print(f"Re-adding pruned prototypes...")
print(f"distribution={distribution}")
print(f"{distribution=}")
pl_module.add_prototypes(
distribution=distribution,
components_initializer=self.prototypes_initializer)
@@ -134,4 +134,4 @@ class GNGCallback(pl.Callback):
pl_module.errors[
worst_neighbor] = errors[worst_neighbor] * self.reduction
trainer.accelerator.setup_optimizers(trainer)
trainer.accelerator_backend.setup_optimizers(trainer)

View File

@@ -55,7 +55,7 @@ class GLVQ(SupervisedPrototypeModel):
def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self.compute_distances(x)
_, plabels = self.proto_layer()
plabels = self.proto_layer.labels
loss = self.loss(out, y, plabels)
return out, loss
@@ -112,8 +112,7 @@ class SiameseGLVQ(GLVQ):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
# Only add a backbone optimizer if backbone has trainable parameters
bb_params = list(self.backbone.parameters())
if (bb_params):
if (bb_params := list(self.backbone.parameters())):
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
optimizers = [proto_opt, bb_opt]
else:

View File

@@ -10,7 +10,9 @@ from .glvq import GLVQ
class LVQ1(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos, plables = self.proto_layer()
protos = self.proto_layer.components
plabels = self.proto_layer.labels
x, y = train_batch
dis = self.compute_distances(x)
# TODO Vectorized implementation
@@ -28,8 +30,8 @@ class LVQ1(NonGradientMixin, GLVQ):
self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False)
print(f"dis={dis}")
print(f"y={y}")
print(f"{dis=}")
print(f"{y=}")
# Logging
self.log_acc(dis, y, tag="train_acc")
@@ -39,7 +41,8 @@ class LVQ1(NonGradientMixin, GLVQ):
class LVQ21(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 2.1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos, plabels = self.proto_layer()
protos = self.proto_layer.components
plabels = self.proto_layer.labels
x, y = train_batch
dis = self.compute_distances(x)
@@ -96,7 +99,8 @@ class MedianLVQ(NonGradientMixin, GLVQ):
return lower_bound
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos, plabels = self.proto_layer()
protos = self.proto_layer.components
plabels = self.proto_layer.labels
x, y = train_batch
dis = self.compute_distances(x)

58
prototorch/models/nam.py Normal file
View File

@@ -0,0 +1,58 @@
"""ProtoTorch Neural Additive Model."""
import torch
import torchmetrics
from .abstract import ProtoTorchBolt
class BinaryNAM(ProtoTorchBolt):
"""Neural Additive Model for binary classification.
Paper: https://arxiv.org/abs/2004.13912
Official implementation: https://github.com/google-research/google-research/tree/master/neural_additive_models
"""
def __init__(self, hparams: dict, extractors: torch.nn.ModuleList,
**kwargs):
super().__init__(hparams, **kwargs)
# Default hparams
self.hparams.setdefault("threshold", 0.5)
self.extractors = extractors
self.linear = torch.nn.Linear(in_features=len(extractors),
out_features=1,
bias=True)
def extract(self, x):
"""Apply the local extractors batch-wise on features."""
out = torch.zeros_like(x)
for j in range(x.shape[1]):
out[:, j] = self.extractors[j](x[:, j].unsqueeze(1)).squeeze()
return out
def forward(self, x):
x = self.extract(x)
x = self.linear(x)
return torch.sigmoid(x)
def training_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
preds = self(x).squeeze()
train_loss = torch.nn.functional.binary_cross_entropy(preds, y.float())
self.log("train_loss", train_loss)
accuracy = torchmetrics.functional.accuracy(preds.int(), y.int())
self.log("train_acc",
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True)
return train_loss
def predict(self, x):
out = self(x)
pred = torch.zeros_like(out, device=self.device)
pred[out > self.hparams.threshold] = 1
return pred

View File

@@ -1,5 +1,4 @@
"""Probabilistic GLVQ methods"""
import torch
from ..core.losses import nllr_loss, rslvq_loss
@@ -20,7 +19,7 @@ class CELVQ(GLVQ):
def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self.compute_distances(x) # [None, num_protos]
_, plabels = self.proto_layer()
plabels = self.proto_layer.labels
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
probs = -1.0 * winning
batch_loss = self.loss(probs, y.long())
@@ -32,7 +31,7 @@ class ProbabilisticLVQ(GLVQ):
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
super().__init__(hparams, **kwargs)
self.conditional_distribution = None
self.conditional_distribution = GaussianPrior(self.hparams.variance)
self.rejection_confidence = rejection_confidence
def forward(self, x):
@@ -54,10 +53,11 @@ class ProbabilisticLVQ(GLVQ):
def training_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self.forward(x)
_, plabels = self.proto_layer()
plabels = self.proto_layer.labels
batch_loss = self.loss(out, y, plabels)
loss = batch_loss.sum()
return loss
train_loss = batch_loss.sum()
self.log("train_loss", train_loss)
return train_loss
class SLVQ(ProbabilisticLVQ):
@@ -65,7 +65,6 @@ class SLVQ(ProbabilisticLVQ):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss = LossLayer(nllr_loss)
self.conditional_distribution = GaussianPrior(self.hparams.variance)
class RSLVQ(ProbabilisticLVQ):
@@ -73,7 +72,6 @@ class RSLVQ(ProbabilisticLVQ):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss = LossLayer(rslvq_loss)
self.conditional_distribution = GaussianPrior(self.hparams.variance)
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):

View File

@@ -53,7 +53,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
grid = self._grid.view(-1, 2)
gd = squared_euclidean_distance(wp, grid)
nh = torch.exp(-gd / self._sigma**2)
protos = self.proto_layer()
protos = self.proto_layer.components
diff = x.unsqueeze(dim=1) - protos
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
updated_protos = protos + delta.sum(dim=0)

View File

@@ -117,6 +117,24 @@ class Vis2DAbstract(pl.Callback):
plt.close()
class Vis2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
x_train, y_train = self.x_train, self.y_train
ax = self.setup_ax(xlabel="Data dimension 1",
ylabel="Data dimension 2")
self.plot_data(ax, x_train, y_train)
mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
mesh_input = torch.from_numpy(mesh_input).type_as(x_train)
y_pred = pl_module.predict(mesh_input)
y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
self.log_and_display(trainer, pl_module)
class VisGLVQ2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
@@ -251,6 +269,8 @@ class VisImgComp(Vis2DAbstract):
size=self.embedding_data,
replace=False)
data = self.x_train[ind]
# print(f"{data.shape=}")
# print(f"{self.y_train[ind].shape=}")
tb.add_embedding(data.view(len(ind), -1),
label_img=data,
global_step=None,

View File

@@ -22,7 +22,7 @@ with open("README.md", "r") as fh:
long_description = fh.read()
INSTALL_REQUIRES = [
"prototorch>=0.7.0",
"prototorch>=0.6.0",
"pytorch_lightning>=1.3.5",
"torchmetrics",
]
@@ -46,14 +46,14 @@ EXAMPLES = [
"scikit-learn",
]
TESTS = [
"pytest-cov",
"codecov",
"pytest",
]
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
setup(
name=safe_name("prototorch_" + PLUGIN_NAME),
version="0.3.0",
version="0.2.0",
description="Pre-packaged prototype-based "
"machine learning models using ProtoTorch and PyTorch-Lightning.",
long_description=long_description,
@@ -63,7 +63,7 @@ setup(
url=PROJECT_URL,
download_url=DOWNLOAD_URL,
license="MIT",
python_requires=">=3.6",
python_requires=">=3.9",
install_requires=INSTALL_REQUIRES,
extras_require={
"dev": DEV,
@@ -80,9 +80,6 @@ setup(
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.6",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",

View File

@@ -1,27 +1,11 @@
#! /bin/bash
# Read Flags
gpu=0
while [ -n "$1" ]; do
case "$1" in
--gpu) gpu=1;;
-g) gpu=1;;
*) path=$1;;
esac
shift
done
python --version
echo "Using GPU: " $gpu
# Loop
failed=0
for example in $(find $path -maxdepth 1 -name "*.py")
for example in $(find $1 -maxdepth 1 -name "*.py")
do
echo -n "$x" $example '... '
export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
export DISPLAY= && python $example --fast_dev_run 1 &> run_log.txt
if [[ $? -ne 0 ]]; then
echo "FAILED!!"
cat run_log.txt