Compare commits
3 Commits
feature/ux
...
wip/nam
Author | SHA1 | Date | |
---|---|---|---|
|
aeb6417c28 | ||
|
cb7fb91c95 | ||
|
823b05e390 |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.3.0
|
||||
current_version = 0.2.0
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
|
@@ -18,12 +18,12 @@ repos:
|
||||
- id: autoflake
|
||||
|
||||
- repo: http://github.com/PyCQA/isort
|
||||
rev: 5.9.3
|
||||
rev: 5.8.0
|
||||
hooks:
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v0.910-1
|
||||
rev: v0.902
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
@@ -42,10 +42,9 @@ repos:
|
||||
- id: python-check-blanket-noqa
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.29.0
|
||||
rev: v2.19.4
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
args: [--py36-plus]
|
||||
|
||||
- repo: https://github.com/si-cim/gitlint
|
||||
rev: v0.15.2-unofficial
|
||||
|
37
.travis.yml
37
.travis.yml
@@ -1,11 +1,7 @@
|
||||
dist: bionic
|
||||
sudo: false
|
||||
language: python
|
||||
python:
|
||||
- 3.9
|
||||
- 3.8
|
||||
- 3.7
|
||||
- 3.6
|
||||
python: 3.9
|
||||
cache:
|
||||
directories:
|
||||
- "$HOME/.cache/pip"
|
||||
@@ -19,26 +15,11 @@ script:
|
||||
- ./tests/test_examples.sh examples/
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
|
||||
# Publish on PyPI
|
||||
jobs:
|
||||
include:
|
||||
- stage: build
|
||||
python: 3.9
|
||||
script: echo "Starting Pypi build"
|
||||
deploy:
|
||||
provider: pypi
|
||||
username: __token__
|
||||
distributions: "sdist bdist_wheel"
|
||||
password:
|
||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
||||
|
||||
# The password is encrypted with:
|
||||
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
|
||||
# See https://docs.travis-ci.com/user/deployment/pypi and
|
||||
# https://github.com/travis-ci/travis.rb#installation
|
||||
# for more details
|
||||
# Note: The encrypt command does not work well in ZSH.
|
||||
deploy:
|
||||
provider: pypi
|
||||
username: __token__
|
||||
password:
|
||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.3.0"
|
||||
release = "0.2.0"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
81
examples/binnam_tecator.py
Normal file
81
examples/binnam_tecator.py
Normal file
@@ -0,0 +1,81 @@
|
||||
"""Neural Additive Model (NAM) example for binary classification."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Tecator("~/datasets")
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(lr=0.1)
|
||||
|
||||
# Define the feature extractor
|
||||
class FE(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.modules_list = torch.nn.ModuleList([
|
||||
torch.nn.Linear(1, 3),
|
||||
torch.nn.Sigmoid(),
|
||||
torch.nn.Linear(3, 1),
|
||||
torch.nn.Sigmoid(),
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
for m in self.modules_list:
|
||||
x = m(x)
|
||||
return x
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.BinaryNAM(
|
||||
hparams,
|
||||
extractors=torch.nn.ModuleList([FE() for _ in range(100)]),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 100)
|
||||
|
||||
# Callbacks
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
es,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Visualize extractor shape functions
|
||||
fig, axes = plt.subplots(10, 10)
|
||||
for i, ax in enumerate(axes.flat):
|
||||
x = torch.linspace(-2, 2, 100) # TODO use min/max from data
|
||||
y = model.extractors[i](x.view(100, 1)).squeeze().detach()
|
||||
ax.plot(x, y)
|
||||
ax.set(title=f"Feature {i + 1}", xticklabels=[], yticklabels=[])
|
||||
plt.show()
|
86
examples/binnam_xor.py
Normal file
86
examples/binnam_xor.py
Normal file
@@ -0,0 +1,86 @@
|
||||
"""Neural Additive Model (NAM) example for binary classification."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.XOR()
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(lr=0.001)
|
||||
|
||||
# Define the feature extractor
|
||||
class FE(torch.nn.Module):
|
||||
def __init__(self, hidden_size=10):
|
||||
super().__init__()
|
||||
self.modules_list = torch.nn.ModuleList([
|
||||
torch.nn.Linear(1, hidden_size),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Linear(hidden_size, 1),
|
||||
torch.nn.ReLU(),
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
for m in self.modules_list:
|
||||
x = m(x)
|
||||
return x
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.BinaryNAM(
|
||||
hparams,
|
||||
extractors=torch.nn.ModuleList([FE(20) for _ in range(2)]),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.Vis2D(data=train_ds)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=50,
|
||||
mode="min",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Visualize extractor shape functions
|
||||
fig, axes = plt.subplots(2)
|
||||
for i, ax in enumerate(axes.flat):
|
||||
x = torch.linspace(0, 1, 100) # TODO use min/max from data
|
||||
y = model.extractors[i](x.view(100, 1)).squeeze().detach()
|
||||
ax.plot(x, y)
|
||||
ax.set(title=f"Feature {i + 1}")
|
||||
plt.show()
|
@@ -38,12 +38,10 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.Visualize2DVoronoiCallback(
|
||||
data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True,
|
||||
)
|
||||
vis = pt.models.VisCBC2D(data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
8
examples/cli/README.md
Normal file
8
examples/cli/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
# Examples using Lightning CLI
|
||||
|
||||
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
|
||||
|
||||
To use the example run
|
||||
```
|
||||
python gmlvq.py --config gmlvq.yaml
|
||||
```
|
19
examples/cli/gmlvq.py
Normal file
19
examples/cli/gmlvq.py
Normal file
@@ -0,0 +1,19 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import torch
|
||||
from prototorch.models import ImageGMLVQ
|
||||
from prototorch.models.abstract import PrototypeModel
|
||||
from prototorch.models.data import MNISTDataModule
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
|
||||
|
||||
class ExperimentClass(ImageGMLVQ):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.zeros(28 * 28),
|
||||
**kwargs)
|
||||
|
||||
|
||||
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)
|
11
examples/cli/gmlvq.yaml
Normal file
11
examples/cli/gmlvq.yaml
Normal file
@@ -0,0 +1,11 @@
|
||||
model:
|
||||
hparams:
|
||||
input_dim: 784
|
||||
latent_dim: 784
|
||||
distribution:
|
||||
num_classes: 10
|
||||
prototypes_per_class: 2
|
||||
proto_lr: 0.01
|
||||
bb_lr: 0.01
|
||||
data:
|
||||
batch_size: 32
|
@@ -3,7 +3,6 @@
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import prototorch.models.clcc
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
@@ -30,7 +29,7 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = prototorch.models.GLVQ(
|
||||
model = pt.models.GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
@@ -42,13 +41,7 @@ if __name__ == "__main__":
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.Visualize2DVoronoiCallback(
|
||||
data=train_ds,
|
||||
resolution=200,
|
||||
title="Example: GLVQ on Iris",
|
||||
x_label="sepal length",
|
||||
y_label="petal length",
|
||||
)
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
@@ -1,58 +0,0 @@
|
||||
"""GMLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=4,
|
||||
latent_dim=4,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"per_class": 2
|
||||
},
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 4)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGMLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -6,7 +6,6 @@ import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
@@ -15,20 +14,12 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X = X[:, [0, 2]]
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X,
|
||||
y,
|
||||
test_size=0.5,
|
||||
random_state=42)
|
||||
|
||||
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
|
||||
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(k=5)
|
||||
@@ -44,7 +35,7 @@ if __name__ == "__main__":
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(
|
||||
data=(X_train, y_train),
|
||||
data=(x_train, y_train),
|
||||
resolution=200,
|
||||
block=True,
|
||||
)
|
||||
@@ -62,8 +53,5 @@ if __name__ == "__main__":
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Recall
|
||||
y_pred = model.predict(torch.tensor(X_train))
|
||||
y_pred = model.predict(torch.tensor(x_train))
|
||||
print(y_pred)
|
||||
|
||||
# Test
|
||||
trainer.test(model, dataloaders=test_loader)
|
||||
|
@@ -1,5 +1,7 @@
|
||||
"""`models` plugin for the `prototorch` package."""
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
||||
from .cbc import CBC, ImageCBC
|
||||
from .glvq import (
|
||||
@@ -17,8 +19,9 @@ from .glvq import (
|
||||
)
|
||||
from .knn import KNN
|
||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
||||
from .nam import BinaryNAM
|
||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
|
||||
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
|
||||
from .vis import *
|
||||
|
||||
__version__ = "0.3.0"
|
||||
__version__ = "0.2.0"
|
||||
|
@@ -1,14 +1,17 @@
|
||||
"""Abstract classes to be inherited by prototorch models."""
|
||||
|
||||
from typing import Final, final
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.core.competitions import WTAC
|
||||
from prototorch.core.components import Components, LabeledComponents
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
from prototorch.core.initializers import LabelsInitializer
|
||||
from prototorch.core.pooling import stratified_min_pooling
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from ..core.competitions import WTAC
|
||||
from ..core.components import Components, LabeledComponents
|
||||
from ..core.distances import euclidean_distance
|
||||
from ..core.initializers import LabelsInitializer
|
||||
from ..core.pooling import stratified_min_pooling
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchBolt(pl.LightningModule):
|
||||
@@ -40,6 +43,7 @@ class ProtoTorchBolt(pl.LightningModule):
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
@final
|
||||
def reconfigure_optimizers(self):
|
||||
self.trainer.accelerator.setup_optimizers(self.trainer)
|
||||
|
||||
@@ -92,7 +96,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
)
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos = self.proto_layer().type_as(x)
|
||||
protos = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
@@ -132,14 +136,14 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
_, plabels = self.proto_layer()
|
||||
plabels = self.proto_layer.labels
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = torch.nn.functional.softmin(winning)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
_, plabels = self.proto_layer()
|
||||
plabels = self.proto_layer.labels
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
@@ -161,10 +165,32 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, targets = batch
|
||||
|
||||
preds = self.predict(x)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||
class ProtoTorchMixin(object):
|
||||
"""All mixins are ProtoTorchMixins."""
|
||||
pass
|
||||
|
||||
self.log("test_acc", accuracy)
|
||||
|
||||
class NonGradientMixin(ProtoTorchMixin):
|
||||
"""Mixin for custom non-gradient optimization."""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization: Final = False
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||
"""Mixin for models with image prototypes."""
|
||||
@final
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
||||
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
|
||||
from torchvision.utils import make_grid
|
||||
grid = make_grid(self.components, nrow=num_columns)
|
||||
if return_channels_last:
|
||||
grid = grid.permute((1, 2, 0))
|
||||
return grid.cpu()
|
||||
|
@@ -4,9 +4,9 @@ import logging
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.core.components import Components
|
||||
from prototorch.core.initializers import LiteralCompInitializer
|
||||
|
||||
from ..core.components import Components
|
||||
from ..core.initializers import LiteralCompInitializer
|
||||
from .extras import ConnectionTopology
|
||||
|
||||
|
||||
@@ -55,7 +55,7 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
||||
if self.verbose:
|
||||
print(f"Re-adding pruned prototypes...")
|
||||
print(f"distribution={distribution}")
|
||||
print(f"{distribution=}")
|
||||
pl_module.add_prototypes(
|
||||
distribution=distribution,
|
||||
components_initializer=self.prototypes_initializer)
|
||||
@@ -134,4 +134,4 @@ class GNGCallback(pl.Callback):
|
||||
pl_module.errors[
|
||||
worst_neighbor] = errors[worst_neighbor] * self.reduction
|
||||
|
||||
trainer.accelerator.setup_optimizers(trainer)
|
||||
trainer.accelerator_backend.setup_optimizers(trainer)
|
||||
|
@@ -1,14 +1,14 @@
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.core.competitions import CBCC
|
||||
from prototorch.core.components import ReasoningComponents
|
||||
from prototorch.core.initializers import RandomReasoningsInitializer
|
||||
from prototorch.core.losses import MarginLoss
|
||||
from prototorch.core.similarities import euclidean_similarity
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from ..core.competitions import CBCC
|
||||
from ..core.components import ReasoningComponents
|
||||
from ..core.initializers import RandomReasoningsInitializer
|
||||
from ..core.losses import MarginLoss
|
||||
from ..core.similarities import euclidean_similarity
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import ImagePrototypesMixin
|
||||
from .glvq import SiameseGLVQ
|
||||
from .mixin import ImagePrototypesMixin
|
||||
|
||||
|
||||
class CBC(SiameseGLVQ):
|
||||
|
@@ -1,86 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from prototorch.core.competitions import WTAC
|
||||
from prototorch.core.components import LabeledComponents
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
from prototorch.core.initializers import AbstractComponentsInitializer, LabelsInitializer
|
||||
from prototorch.core.losses import GLVQLoss
|
||||
from prototorch.models.clcc.clcc_scheme import CLCCScheme
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
|
||||
@dataclass
|
||||
class GLVQhparams:
|
||||
distribution: dict
|
||||
component_initializer: AbstractComponentsInitializer
|
||||
distance_fn: Callable = euclidean_distance
|
||||
lr: float = 0.01
|
||||
margin: float = 0.0
|
||||
# TODO: make nicer
|
||||
transfer_fn: str = "identity"
|
||||
transfer_beta: float = 10.0
|
||||
optimizer: torch.optim.Optimizer = torch.optim.Adam
|
||||
|
||||
|
||||
class GLVQ(CLCCScheme):
|
||||
def __init__(self, hparams: GLVQhparams) -> None:
|
||||
super().__init__(hparams)
|
||||
self.lr = hparams.lr
|
||||
self.optimizer = hparams.optimizer
|
||||
|
||||
# Initializers
|
||||
def init_components(self, hparams):
|
||||
# initialize Component Layer
|
||||
self.components_layer = LabeledComponents(
|
||||
distribution=hparams.distribution,
|
||||
components_initializer=hparams.component_initializer,
|
||||
labels_initializer=LabelsInitializer(),
|
||||
)
|
||||
|
||||
def init_comparison(self, hparams):
|
||||
# initialize Distance Layer
|
||||
self.comparison_layer = LambdaLayer(hparams.distance_fn)
|
||||
|
||||
def init_inference(self, hparams):
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
def init_loss(self, hparams):
|
||||
self.loss_layer = GLVQLoss(
|
||||
margin=hparams.margin,
|
||||
transfer_fn=hparams.transfer_fn,
|
||||
beta=hparams.transfer_beta,
|
||||
)
|
||||
|
||||
# Steps
|
||||
def comparison(self, batch, components):
|
||||
comp_tensor, _ = components
|
||||
batch_tensor, _ = batch
|
||||
|
||||
comp_tensor = comp_tensor.unsqueeze(1)
|
||||
|
||||
distances = self.comparison_layer(batch_tensor, comp_tensor)
|
||||
|
||||
return distances
|
||||
|
||||
def inference(self, comparisonmeasures, components):
|
||||
comp_labels = components[1]
|
||||
return self.competition_layer(comparisonmeasures, comp_labels)
|
||||
|
||||
def loss(self, comparisonmeasures, batch, components):
|
||||
target = batch[1]
|
||||
comp_labels = components[1]
|
||||
return self.loss_layer(comparisonmeasures, target, comp_labels)
|
||||
|
||||
def configure_optimizers(self):
|
||||
return self.optimizer(self.parameters(), lr=self.lr)
|
||||
|
||||
# Properties
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.components_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.components_layer.labels.detach().cpu()
|
@@ -1,192 +0,0 @@
|
||||
"""
|
||||
CLCC Scheme
|
||||
|
||||
CLCC is a LVQ scheme containing 4 steps
|
||||
- Components
|
||||
- Latent Space
|
||||
- Comparison
|
||||
- Competition
|
||||
|
||||
"""
|
||||
from typing import Dict, Set, Type
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
|
||||
class CLCCScheme(pl.LightningModule):
|
||||
registered_metrics: Dict[Type[torchmetrics.Metric],
|
||||
torchmetrics.Metric] = {}
|
||||
registered_metric_names: Dict[Type[torchmetrics.Metric], Set[str]] = {}
|
||||
|
||||
def __init__(self, hparams) -> None:
|
||||
super().__init__()
|
||||
|
||||
# Common Steps
|
||||
self.init_components(hparams)
|
||||
self.init_latent(hparams)
|
||||
self.init_comparison(hparams)
|
||||
self.init_competition(hparams)
|
||||
|
||||
# Train Steps
|
||||
self.init_loss(hparams)
|
||||
|
||||
# Inference Steps
|
||||
self.init_inference(hparams)
|
||||
|
||||
# Initialize Model Metrics
|
||||
self.init_model_metrics()
|
||||
|
||||
# internal API, called by models and callbacks
|
||||
def register_torchmetric(self, name: str, metric: torchmetrics.Metric):
|
||||
if metric not in self.registered_metrics:
|
||||
self.registered_metrics[metric] = metric()
|
||||
self.registered_metric_names[metric] = {name}
|
||||
else:
|
||||
self.registered_metric_names[metric].add(name)
|
||||
|
||||
# external API
|
||||
def get_competion(self, batch, components):
|
||||
latent_batch, latent_components = self.latent(batch, components)
|
||||
# TODO: => Latent Hook
|
||||
comparison_tensor = self.comparison(latent_batch, latent_components)
|
||||
# TODO: => Comparison Hook
|
||||
return comparison_tensor
|
||||
|
||||
def forward(self, batch):
|
||||
if isinstance(batch, torch.Tensor):
|
||||
batch = (batch, None)
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
comparison_tensor = self.get_competion(batch, components)
|
||||
# TODO: => Competition Hook
|
||||
return self.inference(comparison_tensor, components)
|
||||
|
||||
def predict(self, batch):
|
||||
"""
|
||||
Alias for forward
|
||||
"""
|
||||
return self.forward(batch)
|
||||
|
||||
def loss_forward(self, batch):
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
comparison_tensor = self.get_competion(batch, components)
|
||||
# TODO: => Competition Hook
|
||||
return self.loss(comparison_tensor, batch, components)
|
||||
|
||||
# Empty Initialization
|
||||
# TODO: Type hints
|
||||
# TODO: Docs
|
||||
def init_components(self, hparams):
|
||||
...
|
||||
|
||||
def init_latent(self, hparams):
|
||||
...
|
||||
|
||||
def init_comparison(self, hparams):
|
||||
...
|
||||
|
||||
def init_competition(self, hparams):
|
||||
...
|
||||
|
||||
def init_loss(self, hparams):
|
||||
...
|
||||
|
||||
def init_inference(self, hparams):
|
||||
...
|
||||
|
||||
def init_model_metrics(self):
|
||||
self.register_torchmetric('train_accuracy', torchmetrics.Accuracy)
|
||||
|
||||
# Empty Steps
|
||||
# TODO: Type hints
|
||||
def components(self):
|
||||
"""
|
||||
This step has no input.
|
||||
|
||||
It returns the components.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The components step has no reasonable default.")
|
||||
|
||||
def latent(self, batch, components):
|
||||
"""
|
||||
The latent step receives the data batch and the components.
|
||||
It can transform both by an arbitrary function.
|
||||
|
||||
It returns the transformed batch and components, each of the same length as the original input.
|
||||
"""
|
||||
return batch, components
|
||||
|
||||
def comparison(self, batch, components):
|
||||
"""
|
||||
Takes a batch of size N and the componentsset of size M.
|
||||
|
||||
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The comparison step has no reasonable default.")
|
||||
|
||||
def competition(self, comparisonmeasures, components):
|
||||
"""
|
||||
Takes the tensor of comparison measures.
|
||||
|
||||
Assigns a competition vector to each class.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The competition step has no reasonable default.")
|
||||
|
||||
def loss(self, comparisonmeasures, batch, components):
|
||||
"""
|
||||
Takes the tensor of competition measures.
|
||||
|
||||
Calculates a single loss value
|
||||
"""
|
||||
raise NotImplementedError("The loss step has no reasonable default.")
|
||||
|
||||
def inference(self, comparisonmeasures, components):
|
||||
"""
|
||||
Takes the tensor of competition measures.
|
||||
|
||||
Returns the inferred vector.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The inference step has no reasonable default.")
|
||||
|
||||
def update_metrics_step(self, batch):
|
||||
x, y = batch
|
||||
preds = self(x)
|
||||
|
||||
for metric in self.registered_metrics:
|
||||
instance = self.registered_metrics[metric].to(self.device)
|
||||
value = instance(y, preds)
|
||||
|
||||
for name in self.registered_metric_names[metric]:
|
||||
self.log(name, value)
|
||||
|
||||
def update_metrics_epoch(self):
|
||||
for metric in self.registered_metrics:
|
||||
instance = self.registered_metrics[metric].to(self.device)
|
||||
value = instance.compute()
|
||||
|
||||
for name in self.registered_metric_names[metric]:
|
||||
self.log(name, value)
|
||||
|
||||
# Lightning Hooks
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
self.update_metrics_step(batch)
|
||||
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def train_epoch_end(self, outs) -> None:
|
||||
self.update_metrics_epoch()
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
return self.loss_forward(batch)
|
@@ -1,76 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.core.initializers import SMCI, RandomNormalCompInitializer
|
||||
from prototorch.models.clcc.clcc_glvq import GLVQ, GLVQhparams
|
||||
from prototorch.models.clcc.clcc_scheme import CLCCScheme
|
||||
from prototorch.models.vis import Visualize2DVoronoiCallback
|
||||
|
||||
# NEW STUFF
|
||||
# ##############################################################################
|
||||
|
||||
|
||||
# TODO: Metrics
|
||||
class MetricsTestCallback(pl.Callback):
|
||||
metric_name = "test_cb_acc"
|
||||
|
||||
def setup(self,
|
||||
trainer: pl.Trainer,
|
||||
pl_module: CLCCScheme,
|
||||
stage: Optional[str] = None) -> None:
|
||||
pl_module.register_torchmetric(self.metric_name, torchmetrics.Accuracy)
|
||||
|
||||
def on_epoch_end(self, trainer: pl.Trainer,
|
||||
pl_module: pl.LightningModule) -> None:
|
||||
metric = trainer.logged_metrics[self.metric_name]
|
||||
if metric > 0.95:
|
||||
trainer.should_stop = True
|
||||
|
||||
|
||||
# TODO: Pruning
|
||||
|
||||
# ##############################################################################
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=64,
|
||||
num_workers=8)
|
||||
|
||||
components_initializer = SMCI(train_ds)
|
||||
|
||||
hparams = GLVQhparams(
|
||||
distribution=dict(
|
||||
num_classes=3,
|
||||
per_class=2,
|
||||
),
|
||||
component_initializer=components_initializer,
|
||||
)
|
||||
model = GLVQ(hparams)
|
||||
|
||||
print(model)
|
||||
# Callbacks
|
||||
vis = Visualize2DVoronoiCallback(
|
||||
data=train_ds,
|
||||
resolution=500,
|
||||
)
|
||||
metrics = MetricsTestCallback()
|
||||
|
||||
# Train
|
||||
trainer = pl.Trainer(
|
||||
callbacks=[
|
||||
#vis,
|
||||
metrics,
|
||||
],
|
||||
gpus=1,
|
||||
max_epochs=100,
|
||||
weights_summary=None,
|
||||
log_every_n_steps=1,
|
||||
)
|
||||
trainer.fit(model, train_loader)
|
123
prototorch/models/data.py
Normal file
123
prototorch/models/data.py
Normal file
@@ -0,0 +1,123 @@
|
||||
"""Prototorch Data Modules
|
||||
|
||||
This allows to store the used dataset inside a Lightning Module.
|
||||
Mainly used for PytorchLightningCLI configurations.
|
||||
"""
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import DataLoader, Dataset, random_split
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
|
||||
# MNIST
|
||||
class MNISTDataModule(pl.LightningDataModule):
|
||||
def __init__(self, batch_size=32):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
# Download mnist dataset as side-effect, only called on the first cpu
|
||||
def prepare_data(self):
|
||||
MNIST("~/datasets", train=True, download=True)
|
||||
MNIST("~/datasets", train=False, download=True)
|
||||
|
||||
# called for every GPU/machine (assigning state is OK)
|
||||
def setup(self, stage=None):
|
||||
# Transforms
|
||||
transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
])
|
||||
# Split dataset
|
||||
if stage in (None, "fit"):
|
||||
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
||||
self.mnist_train, self.mnist_val = random_split(
|
||||
mnist_train,
|
||||
[55000, 5000],
|
||||
)
|
||||
if stage == (None, "test"):
|
||||
self.mnist_test = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
def train_dataloader(self):
|
||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
||||
return mnist_train
|
||||
|
||||
def val_dataloader(self):
|
||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
||||
return mnist_val
|
||||
|
||||
def test_dataloader(self):
|
||||
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
||||
return mnist_test
|
||||
|
||||
|
||||
# def train_on_mnist(batch_size=256) -> type:
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = MNISTDataModule(batch_size=batch_size)
|
||||
|
||||
# def __init__(self, *args, **kwargs):
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# dc: Type[DataClass] = DataClass
|
||||
# return dc
|
||||
|
||||
|
||||
# ABSTRACT
|
||||
class GeneralDataModule(pl.LightningDataModule):
|
||||
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
|
||||
super().__init__()
|
||||
self.train_dataset = dataset
|
||||
self.batch_size = batch_size
|
||||
|
||||
def train_dataloader(self) -> DataLoader:
|
||||
return DataLoader(self.train_dataset, batch_size=self.batch_size)
|
||||
|
||||
|
||||
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = GeneralDataModule(dataset, batch_size)
|
||||
# datashape = dataset[0][0].shape
|
||||
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
|
||||
|
||||
# def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer",
|
||||
# pt.components.Zeros(self.datashape),
|
||||
# )
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# return DataClass
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# from prototorch.models import GLVQ
|
||||
|
||||
# demo_dataset = pt.datasets.Iris()
|
||||
|
||||
# TrainingClass: Type = train_on_dataset(demo_dataset)
|
||||
|
||||
# class DemoGLVQ(TrainingClass, GLVQ):
|
||||
# """Model Definition."""
|
||||
|
||||
# # Hyperparameters
|
||||
# hparams = dict(
|
||||
# distribution={
|
||||
# "num_classes": 3,
|
||||
# "prototypes_per_class": 4
|
||||
# },
|
||||
# lr=0.01,
|
||||
# )
|
||||
|
||||
# initialized = DemoGLVQ(hparams)
|
||||
# print(initialized)
|
@@ -5,7 +5,8 @@ Modules not yet available in prototorch go here temporarily.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from prototorch.core.similarities import gaussian
|
||||
|
||||
from ..core.similarities import gaussian
|
||||
|
||||
|
||||
def rank_scaled_gaussian(distances, lambd):
|
||||
|
@@ -1,16 +1,15 @@
|
||||
"""Models based on the GLVQ framework."""
|
||||
|
||||
import torch
|
||||
from prototorch.core.competitions import wtac
|
||||
from prototorch.core.distances import lomega_distance, omega_distance, squared_euclidean_distance
|
||||
from prototorch.core.initializers import EyeTransformInitializer
|
||||
from prototorch.core.losses import GLVQLoss, lvq1_loss, lvq21_loss
|
||||
from prototorch.core.transforms import LinearTransform
|
||||
from prototorch.nn.wrappers import LambdaLayer, LossLayer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
from .mixin import ImagePrototypesMixin
|
||||
from ..core.competitions import wtac
|
||||
from ..core.distances import lomega_distance, omega_distance, squared_euclidean_distance
|
||||
from ..core.initializers import EyeTransformInitializer
|
||||
from ..core.losses import GLVQLoss, lvq1_loss, lvq21_loss
|
||||
from ..core.transforms import LinearTransform
|
||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
||||
|
||||
|
||||
class GLVQ(SupervisedPrototypeModel):
|
||||
@@ -56,7 +55,7 @@ class GLVQ(SupervisedPrototypeModel):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
_, plabels = self.proto_layer()
|
||||
plabels = self.proto_layer.labels
|
||||
loss = self.loss(out, y, plabels)
|
||||
return out, loss
|
||||
|
||||
@@ -113,8 +112,7 @@ class SiameseGLVQ(GLVQ):
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
# Only add a backbone optimizer if backbone has trainable parameters
|
||||
bb_params = list(self.backbone.parameters())
|
||||
if (bb_params):
|
||||
if (bb_params := list(self.backbone.parameters())):
|
||||
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
|
||||
optimizers = [proto_opt, bb_opt]
|
||||
else:
|
||||
@@ -131,7 +129,7 @@ class SiameseGLVQ(GLVQ):
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
|
||||
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_protos = self.backbone(protos)
|
||||
@@ -252,12 +250,6 @@ class GMLVQ(GLVQ):
|
||||
def omega_matrix(self):
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self._omega.detach() # (input_dim, latent_dim)
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos, self._omega)
|
||||
|
@@ -2,11 +2,10 @@
|
||||
|
||||
import warnings
|
||||
|
||||
from prototorch.core.competitions import KNNC
|
||||
from prototorch.core.components import LabeledComponents
|
||||
from prototorch.core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
|
||||
from prototorch.utils.utils import parse_data_arg
|
||||
|
||||
from ..core.competitions import KNNC
|
||||
from ..core.components import LabeledComponents
|
||||
from ..core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
|
||||
from ..utils.utils import parse_data_arg
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
|
||||
|
||||
|
@@ -1,17 +1,18 @@
|
||||
"""LVQ models that are optimized using non-gradient methods."""
|
||||
|
||||
from prototorch.core.losses import _get_dp_dm
|
||||
from prototorch.nn.activations import get_activation
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from ..core.losses import _get_dp_dm
|
||||
from ..nn.activations import get_activation
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import NonGradientMixin
|
||||
from .glvq import GLVQ
|
||||
from .mixin import NonGradientMixin
|
||||
|
||||
|
||||
class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plables = self.proto_layer()
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
@@ -29,8 +30,8 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
print(f"dis={dis}")
|
||||
print(f"y={y}")
|
||||
print(f"{dis=}")
|
||||
print(f"{y=}")
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
@@ -40,7 +41,8 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
@@ -97,7 +99,8 @@ class MedianLVQ(NonGradientMixin, GLVQ):
|
||||
return lower_bound
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
|
@@ -1,27 +0,0 @@
|
||||
class ProtoTorchMixin:
|
||||
"""All mixins are ProtoTorchMixins."""
|
||||
pass
|
||||
|
||||
|
||||
class NonGradientMixin(ProtoTorchMixin):
|
||||
"""Mixin for custom non-gradient optimization."""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization = False
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||
"""Mixin for models with image prototypes."""
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
||||
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
|
||||
from torchvision.utils import make_grid
|
||||
grid = make_grid(self.components, nrow=num_columns)
|
||||
if return_channels_last:
|
||||
grid = grid.permute((1, 2, 0))
|
||||
return grid.cpu()
|
58
prototorch/models/nam.py
Normal file
58
prototorch/models/nam.py
Normal file
@@ -0,0 +1,58 @@
|
||||
"""ProtoTorch Neural Additive Model."""
|
||||
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
from .abstract import ProtoTorchBolt
|
||||
|
||||
|
||||
class BinaryNAM(ProtoTorchBolt):
|
||||
"""Neural Additive Model for binary classification.
|
||||
|
||||
Paper: https://arxiv.org/abs/2004.13912
|
||||
Official implementation: https://github.com/google-research/google-research/tree/master/neural_additive_models
|
||||
|
||||
"""
|
||||
def __init__(self, hparams: dict, extractors: torch.nn.ModuleList,
|
||||
**kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("threshold", 0.5)
|
||||
|
||||
self.extractors = extractors
|
||||
self.linear = torch.nn.Linear(in_features=len(extractors),
|
||||
out_features=1,
|
||||
bias=True)
|
||||
|
||||
def extract(self, x):
|
||||
"""Apply the local extractors batch-wise on features."""
|
||||
out = torch.zeros_like(x)
|
||||
for j in range(x.shape[1]):
|
||||
out[:, j] = self.extractors[j](x[:, j].unsqueeze(1)).squeeze()
|
||||
return out
|
||||
|
||||
def forward(self, x):
|
||||
x = self.extract(x)
|
||||
x = self.linear(x)
|
||||
return torch.sigmoid(x)
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
preds = self(x).squeeze()
|
||||
train_loss = torch.nn.functional.binary_cross_entropy(preds, y.float())
|
||||
self.log("train_loss", train_loss)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), y.int())
|
||||
self.log("train_acc",
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
return train_loss
|
||||
|
||||
def predict(self, x):
|
||||
out = self(x)
|
||||
pred = torch.zeros_like(out, device=self.device)
|
||||
pred[out > self.hparams.threshold] = 1
|
||||
return pred
|
@@ -1,10 +1,9 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
from prototorch.core.losses import nllr_loss, rslvq_loss
|
||||
from prototorch.core.pooling import stratified_min_pooling, stratified_sum_pooling
|
||||
from prototorch.nn.wrappers import LambdaLayer, LossLayer
|
||||
|
||||
from ..core.losses import nllr_loss, rslvq_loss
|
||||
from ..core.pooling import stratified_min_pooling, stratified_sum_pooling
|
||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||
from .extras import GaussianPrior, RankScaledGaussianPrior
|
||||
from .glvq import GLVQ, SiameseGMLVQ
|
||||
|
||||
@@ -20,7 +19,7 @@ class CELVQ(GLVQ):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x) # [None, num_protos]
|
||||
_, plabels = self.proto_layer()
|
||||
plabels = self.proto_layer.labels
|
||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||
probs = -1.0 * winning
|
||||
batch_loss = self.loss(probs, y.long())
|
||||
@@ -32,7 +31,7 @@ class ProbabilisticLVQ(GLVQ):
|
||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.conditional_distribution = None
|
||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
||||
self.rejection_confidence = rejection_confidence
|
||||
|
||||
def forward(self, x):
|
||||
@@ -54,10 +53,11 @@ class ProbabilisticLVQ(GLVQ):
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
_, plabels = self.proto_layer()
|
||||
plabels = self.proto_layer.labels
|
||||
batch_loss = self.loss(out, y, plabels)
|
||||
loss = batch_loss.sum()
|
||||
return loss
|
||||
train_loss = batch_loss.sum()
|
||||
self.log("train_loss", train_loss)
|
||||
return train_loss
|
||||
|
||||
|
||||
class SLVQ(ProbabilisticLVQ):
|
||||
@@ -65,7 +65,6 @@ class SLVQ(ProbabilisticLVQ):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(nllr_loss)
|
||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
||||
|
||||
|
||||
class RSLVQ(ProbabilisticLVQ):
|
||||
@@ -73,7 +72,6 @@ class RSLVQ(ProbabilisticLVQ):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(rslvq_loss)
|
||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
||||
|
||||
|
||||
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
|
@@ -2,15 +2,14 @@
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from prototorch.core.competitions import wtac
|
||||
from prototorch.core.distances import squared_euclidean_distance
|
||||
from prototorch.core.losses import NeuralGasEnergy
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from .abstract import UnsupervisedPrototypeModel
|
||||
from ..core.competitions import wtac
|
||||
from ..core.distances import squared_euclidean_distance
|
||||
from ..core.losses import NeuralGasEnergy
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
||||
from .callbacks import GNGCallback
|
||||
from .extras import ConnectionTopology
|
||||
from .mixin import NonGradientMixin
|
||||
|
||||
|
||||
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
@@ -54,7 +53,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
grid = self._grid.view(-1, 2)
|
||||
gd = squared_euclidean_distance(wp, grid)
|
||||
nh = torch.exp(-gd / self._sigma**2)
|
||||
protos = self.proto_layer()
|
||||
protos = self.proto_layer.components
|
||||
diff = x.unsqueeze(dim=1) - protos
|
||||
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
||||
updated_protos = protos + delta.sum(dim=0)
|
||||
|
@@ -5,18 +5,15 @@ import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.utils.utils import generate_mesh, mesh2d
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
COLOR_UNLABELED = 'w'
|
||||
from ..utils.utils import mesh2d
|
||||
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
def __init__(self,
|
||||
data,
|
||||
title=None,
|
||||
x_label=None,
|
||||
y_label=None,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
border=0.1,
|
||||
resolution=100,
|
||||
@@ -48,8 +45,6 @@ class Vis2DAbstract(pl.Callback):
|
||||
self.y_train = y
|
||||
|
||||
self.title = title
|
||||
self.x_label = x_label
|
||||
self.y_label = y_label
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.border = border
|
||||
@@ -62,19 +57,20 @@ class Vis2DAbstract(pl.Callback):
|
||||
self.pause_time = pause_time
|
||||
self.block = block
|
||||
|
||||
def show_on_current_epoch(self, trainer):
|
||||
if self.show_last_only and trainer.current_epoch != trainer.max_epochs - 1:
|
||||
return False
|
||||
def precheck(self, trainer):
|
||||
if self.show_last_only:
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
return False
|
||||
return True
|
||||
|
||||
def setup_ax(self):
|
||||
def setup_ax(self, xlabel=None, ylabel=None):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
if self.x_label:
|
||||
ax.set_xlabel(self.x_label)
|
||||
if self.x_label:
|
||||
ax.set_ylabel(self.y_label)
|
||||
if xlabel:
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
if ylabel:
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
if self.axis_off:
|
||||
ax.axis("off")
|
||||
return ax
|
||||
@@ -121,64 +117,43 @@ class Vis2DAbstract(pl.Callback):
|
||||
plt.close()
|
||||
|
||||
|
||||
class Visualize2DVoronoiCallback(Vis2DAbstract):
|
||||
def __init__(self, data, **kwargs):
|
||||
super().__init__(data, **kwargs)
|
||||
|
||||
self.data_min = torch.min(self.x_train, axis=0).values
|
||||
self.data_max = torch.max(self.x_train, axis=0).values
|
||||
|
||||
def current_span(self, proto_values):
|
||||
proto_min = torch.min(proto_values, axis=0).values
|
||||
proto_max = torch.max(proto_values, axis=0).values
|
||||
|
||||
overall_min = torch.minimum(proto_min, self.data_min)
|
||||
overall_max = torch.maximum(proto_max, self.data_max)
|
||||
|
||||
return overall_min, overall_max
|
||||
|
||||
def get_voronoi_diagram(self, min, max, model):
|
||||
mesh_input, (xx, yy) = generate_mesh(
|
||||
min,
|
||||
max,
|
||||
border=self.border,
|
||||
resolution=self.resolution,
|
||||
device=model.device,
|
||||
)
|
||||
|
||||
y_pred = model.predict(mesh_input)
|
||||
return xx, yy, y_pred.reshape(xx.shape)
|
||||
|
||||
class Vis2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
# Extract Prototypes
|
||||
proto_values = pl_module.prototypes
|
||||
if hasattr(pl_module, "prototype_labels"):
|
||||
proto_labels = pl_module.prototype_labels
|
||||
else:
|
||||
proto_labels = COLOR_UNLABELED
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(x_train)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
# Calculate Voronoi Diagram
|
||||
overall_min, overall_max = self.current_span(proto_values)
|
||||
xx, yy, y_pred = self.get_voronoi_diagram(
|
||||
overall_min,
|
||||
overall_max,
|
||||
pl_module,
|
||||
)
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
ax = self.setup_ax()
|
||||
ax.contourf(
|
||||
xx.cpu(),
|
||||
yy.cpu(),
|
||||
y_pred.cpu(),
|
||||
cmap=self.cmap,
|
||||
alpha=0.35,
|
||||
)
|
||||
|
||||
self.plot_data(ax, self.x_train, self.y_train)
|
||||
self.plot_protos(ax, proto_values, proto_labels)
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
@@ -189,7 +164,7 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
@@ -221,49 +196,40 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
protos = pl_module.components
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.components_layer._components
|
||||
y_pred = pl_module.predict(
|
||||
torch.Tensor(mesh_input).type_as(_components))
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.prototypes
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
ax = self.setup_ax()
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
|
||||
@@ -303,6 +269,8 @@ class VisImgComp(Vis2DAbstract):
|
||||
size=self.embedding_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
# print(f"{data.shape=}")
|
||||
# print(f"{self.y_train[ind].shape=}")
|
||||
tb.add_embedding(data.view(len(ind), -1),
|
||||
label_img=data,
|
||||
global_step=None,
|
||||
@@ -334,7 +302,7 @@ class VisImgComp(Vis2DAbstract):
|
||||
)
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.show_on_current_epoch(trainer):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
if self.show:
|
||||
|
12
setup.py
12
setup.py
@@ -18,11 +18,11 @@ PLUGIN_NAME = "models"
|
||||
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
|
||||
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
|
||||
|
||||
with open("README.md") as fh:
|
||||
with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
INSTALL_REQUIRES = [
|
||||
"prototorch>=0.7.0",
|
||||
"prototorch>=0.6.0",
|
||||
"pytorch_lightning>=1.3.5",
|
||||
"torchmetrics",
|
||||
]
|
||||
@@ -37,7 +37,6 @@ DOCS = [
|
||||
"recommonmark",
|
||||
"sphinx",
|
||||
"nbsphinx",
|
||||
"ipykernel",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-katex",
|
||||
"sphinxcontrib-bibtex",
|
||||
@@ -54,7 +53,7 @@ ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name=safe_name("prototorch_" + PLUGIN_NAME),
|
||||
version="0.3.0",
|
||||
version="0.2.0",
|
||||
description="Pre-packaged prototype-based "
|
||||
"machine learning models using ProtoTorch and PyTorch-Lightning.",
|
||||
long_description=long_description,
|
||||
@@ -64,7 +63,7 @@ setup(
|
||||
url=PROJECT_URL,
|
||||
download_url=DOWNLOAD_URL,
|
||||
license="MIT",
|
||||
python_requires=">=3.6",
|
||||
python_requires=">=3.9",
|
||||
install_requires=INSTALL_REQUIRES,
|
||||
extras_require={
|
||||
"dev": DEV,
|
||||
@@ -81,9 +80,6 @@ setup(
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Natural Language :: English",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.7",
|
||||
"Programming Language :: Python :: 3.6",
|
||||
"Operating System :: OS Independent",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
|
@@ -1,27 +1,11 @@
|
||||
#! /bin/bash
|
||||
|
||||
|
||||
# Read Flags
|
||||
gpu=0
|
||||
while [ -n "$1" ]; do
|
||||
case "$1" in
|
||||
--gpu) gpu=1;;
|
||||
-g) gpu=1;;
|
||||
*) path=$1;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
python --version
|
||||
echo "Using GPU: " $gpu
|
||||
|
||||
# Loop
|
||||
failed=0
|
||||
|
||||
for example in $(find $path -maxdepth 1 -name "*.py")
|
||||
for example in $(find $1 -maxdepth 1 -name "*.py")
|
||||
do
|
||||
echo -n "$x" $example '... '
|
||||
export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
|
||||
export DISPLAY= && python $example --fast_dev_run 1 &> run_log.txt
|
||||
if [[ $? -ne 0 ]]; then
|
||||
echo "FAILED!!"
|
||||
cat run_log.txt
|
||||
|
Reference in New Issue
Block a user