Compare commits
113 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
e0abb1f3de | ||
|
918e599c6a | ||
|
ec61881ca8 | ||
|
5a89f24c10 | ||
|
bcf9c6bdb1 | ||
|
736565b768 | ||
|
94730f492b | ||
|
46ec7b07d7 | ||
|
07dab5a5ca | ||
|
ed83138e1f | ||
|
1be7d7ec09 | ||
|
60d2a1d2c9 | ||
|
be7d7f43bd | ||
|
fe729781fc | ||
|
a7df7be1c8 | ||
|
696719600b | ||
|
48e7c029fa | ||
|
5de3a480c7 | ||
|
626f51ce80 | ||
|
6d7d93c8e8 | ||
|
93b1d0bd46 | ||
|
b7992c01db | ||
|
fcd944d3ff | ||
|
054720dd7b | ||
|
23d1a71b31 | ||
|
e922aae432 | ||
|
3e50d0d817 | ||
|
dc4f31d700 | ||
|
02954044d7 | ||
|
8f08ba66ea | ||
|
e0b92e9ac2 | ||
|
d16a0de202 | ||
|
76fea3f881 | ||
|
c00513ae0d | ||
|
bccef8bef0 | ||
|
29ee326b85 | ||
|
055568dc86 | ||
|
3a7328e290 | ||
|
d6629c8792 | ||
|
ef65bd3789 | ||
|
d096eba2c9 | ||
|
dd34c57e2e | ||
|
5911f4dd90 | ||
|
dbfe315f4f | ||
|
9c90c902dc | ||
|
7d3f59e54b | ||
|
9da47b1dba | ||
|
41f0e77fc9 | ||
|
fab786a07e | ||
|
40bd7ed380 | ||
|
4941c2b89d | ||
|
ce14dec7e9 | ||
|
b31c8cc707 | ||
|
e21e6c7e02 | ||
|
dd696ea1e0 | ||
|
15e7232747 | ||
|
197b728c63 | ||
|
98892afee0 | ||
|
d5855dbe97 | ||
|
75a39f5b03 | ||
|
1a0e697b27 | ||
|
1a17193b35 | ||
|
aaa3c51e0a | ||
|
62c5974a85 | ||
|
1d26226a2f | ||
|
4232d0ed2a | ||
|
a9edf06507 | ||
|
d3bb430104 | ||
|
6ffd27d12a | ||
|
859e2cae69 | ||
|
d7ea89d47e | ||
|
fa928afe2c | ||
|
7d4a041df2 | ||
|
04c51c00c6 | ||
|
62185b38cf | ||
|
7b93cd4ad5 | ||
|
d7834e2cc0 | ||
|
0af8cf36f8 | ||
|
f8ad1d83eb | ||
|
23a3683860 | ||
|
4be9fb81eb | ||
|
9d38123114 | ||
|
0f9f24e36a | ||
|
09e3ef1d0e | ||
|
7b9b767113 | ||
|
f56ec44afe | ||
|
67a20124e8 | ||
|
72af03b991 | ||
|
71602bf38a | ||
|
a1d9657b91 | ||
|
4dc11a3737 | ||
|
2649e3ac31 | ||
|
2b2e4a5f37 | ||
|
72404f7c4e | ||
|
612ee8dc6a | ||
|
d42693a441 | ||
|
7eb496110f | ||
|
4ab0a5a414 | ||
|
29063dcec4 | ||
|
a37095409b | ||
|
1b420c1f6b | ||
|
7ec5528ade | ||
|
a44219ee47 | ||
|
24ebfdc667 | ||
|
1c658cdc1b | ||
|
1911d4b33e | ||
|
6197d7d5d6 | ||
|
d2856383e2 | ||
|
4eafe88dc4 | ||
|
3afced8662 | ||
|
68034d56f6 | ||
|
97ec15b76a | ||
|
69e5ff3243 |
@@ -1,10 +1,15 @@
|
||||
[bumpversion]
|
||||
current_version = 0.1.8
|
||||
current_version = 1.0.0a6
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
serialize = {major}.{minor}.{patch}
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)((?P<release>[a-zA-Z0-9_.-]+))?
|
||||
serialize =
|
||||
{major}.{minor}.{patch}-{release}
|
||||
{major}.{minor}.{patch}
|
||||
message = build: bump version {current_version} → {new_version}
|
||||
|
||||
[bumpversion:file:setup.py]
|
||||
|
||||
[bumpversion:file:./prototorch/models/__init__.py]
|
||||
|
||||
[bumpversion:file:./docs/source/conf.py]
|
||||
|
15
.codacy.yml
15
.codacy.yml
@@ -1,15 +0,0 @@
|
||||
# To validate the contents of your configuration file
|
||||
# run the following command in the folder where the configuration file is located:
|
||||
# codacy-analysis-cli validate-configuration --directory `pwd`
|
||||
# To analyse, run:
|
||||
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
|
||||
---
|
||||
engines:
|
||||
pylintpython3:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
remark-lint:
|
||||
exclude_paths:
|
||||
- config/engines.yml
|
||||
exclude_paths:
|
||||
- 'tests/**'
|
@@ -1,2 +0,0 @@
|
||||
comment:
|
||||
require_changes: yes
|
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**Steps to reproduce the behavior**
|
||||
1. ...
|
||||
2. Run script '...' or this snippet:
|
||||
```python
|
||||
import prototorch as pt
|
||||
|
||||
...
|
||||
```
|
||||
3. See errors
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Observed behavior**
|
||||
A clear and concise description of what actually happened.
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**System and version information**
|
||||
- OS: [e.g. Ubuntu 20.10]
|
||||
- ProtoTorch Version: [e.g. 0.4.0]
|
||||
- Python Version: [e.g. 3.9.5]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
25
.github/workflows/examples.yml
vendored
Normal file
25
.github/workflows/examples.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: examples
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'examples/**.py'
|
||||
jobs:
|
||||
cpu:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Run examples
|
||||
run: |
|
||||
./tests/test_examples.sh examples/
|
75
.github/workflows/pythonapp.yml
vendored
Normal file
75
.github/workflows/pythonapp.yml
vendored
Normal file
@@ -0,0 +1,75 @@
|
||||
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: tests
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
branches: [ master ]
|
||||
|
||||
jobs:
|
||||
style:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- uses: pre-commit/action@v2.0.3
|
||||
compatibility:
|
||||
needs: style
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.7", "3.8", "3.9", "3.10"]
|
||||
os: [ubuntu-latest, windows-latest]
|
||||
exclude:
|
||||
- os: windows-latest
|
||||
python-version: "3.7"
|
||||
- os: windows-latest
|
||||
python-version: "3.8"
|
||||
- os: windows-latest
|
||||
python-version: "3.9"
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest
|
||||
publish_pypi:
|
||||
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
|
||||
needs: compatibility
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .[all]
|
||||
pip install wheel
|
||||
- name: Build package
|
||||
run: python setup.py sdist bdist_wheel
|
||||
- name: Publish a Python distribution to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
user: __token__
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
17
.gitignore
vendored
17
.gitignore
vendored
@@ -128,14 +128,19 @@ dmypy.json
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# Datasets
|
||||
datasets/
|
||||
|
||||
# PyTorch-Lightning
|
||||
lightning_logs/
|
||||
|
||||
.vscode/
|
||||
|
||||
# Vim
|
||||
*~
|
||||
*.swp
|
||||
*.swo
|
||||
|
||||
# Pytorch Models or Weights
|
||||
# If necessary make exceptions for single pretrained models
|
||||
*.pt
|
||||
|
||||
# Artifacts created by ProtoTorch Models
|
||||
datasets/
|
||||
lightning_logs/
|
||||
examples/_*.py
|
||||
examples/_*.ipynb
|
||||
|
@@ -1,54 +1,54 @@
|
||||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.2.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
exclude: (^\.bumpversion\.cfg$|cli_messages\.py)
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
|
||||
- repo: https://github.com/myint/autoflake
|
||||
rev: v1.4
|
||||
hooks:
|
||||
- id: autoflake
|
||||
- id: autoflake
|
||||
|
||||
- repo: http://github.com/PyCQA/isort
|
||||
rev: 5.8.0
|
||||
rev: 5.10.1
|
||||
hooks:
|
||||
- id: isort
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: 'v0.902'
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v0.950
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: 'v0.31.0' # Use the sha / tag you want to point at
|
||||
hooks:
|
||||
- id: yapf
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.9.0 # Use the ref you want to point at
|
||||
hooks:
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.9.0
|
||||
hooks:
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.32.1
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.19.4
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/jorisroovers/gitlint
|
||||
rev: "v0.15.1"
|
||||
hooks:
|
||||
- id: gitlint
|
||||
args: [--contrib=CT1, --ignore=B6, --msg-filename]
|
||||
- repo: https://github.com/si-cim/gitlint
|
||||
rev: v0.15.2-unofficial
|
||||
hooks:
|
||||
- id: gitlint
|
||||
args: [--contrib=CT1, --ignore=B6, --msg-filename]
|
||||
|
25
.travis.yml
25
.travis.yml
@@ -1,25 +0,0 @@
|
||||
dist: bionic
|
||||
sudo: false
|
||||
language: python
|
||||
python: 3.9
|
||||
cache:
|
||||
directories:
|
||||
- "$HOME/.cache/pip"
|
||||
- "./tests/artifacts"
|
||||
- "$HOME/datasets"
|
||||
install:
|
||||
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
|
||||
- pip install .[all] --progress-bar off
|
||||
script:
|
||||
- coverage run -m pytest
|
||||
- ./tests/test_examples.sh examples/
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
deploy:
|
||||
provider: pypi
|
||||
username: __token__
|
||||
password:
|
||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
37
README.md
37
README.md
@@ -1,6 +1,5 @@
|
||||
# ProtoTorch Models
|
||||
|
||||
[](https://travis-ci.com/github/si-cim/prototorch_models)
|
||||
[](https://github.com/si-cim/prototorch_models/releases)
|
||||
[](https://pypi.org/project/prototorch_models/)
|
||||
[](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)
|
||||
@@ -20,23 +19,6 @@ pip install prototorch_models
|
||||
of** [ProtoTorch](https://github.com/si-cim/prototorch). The plugin should then
|
||||
be available for use in your Python environment as `prototorch.models`.
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## Available models
|
||||
|
||||
### LVQ Family
|
||||
@@ -53,6 +35,7 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
- Soft Learning Vector Quantization (SLVQ)
|
||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||
- Probabilistic Learning Vector Quantization (PLVQ)
|
||||
- Median-LVQ
|
||||
|
||||
### Other
|
||||
|
||||
@@ -68,7 +51,6 @@ provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## Planned models
|
||||
|
||||
- Median-LVQ
|
||||
- Generalized Tangent Learning Vector Quantization (GTLVQ)
|
||||
- Self-Incremental Learning Vector Quantization (SILVQ)
|
||||
|
||||
@@ -103,6 +85,23 @@ To assist in the development process, you may also find it useful to install
|
||||
please avoid installing Tensorflow in this environment. It is known to cause
|
||||
problems with PyTorch-Lightning.**
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I update the plugin?
|
||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.4.4"
|
||||
release = "1.0.0-a6"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
@@ -23,6 +23,13 @@ ProtoTorch Models Plugins
|
||||
|
||||
custom
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 3
|
||||
:caption: Proto Y Architecture
|
||||
|
||||
y-architecture
|
||||
|
||||
About
|
||||
-----------------------------------------
|
||||
`Prototorch Models <https://github.com/si-cim/prototorch_models>`_ is a Plugin
|
||||
@@ -33,8 +40,10 @@ prototype-based Machine Learning algorithms using `PyTorch-Lightning
|
||||
Library
|
||||
-----------------------------------------
|
||||
Prototorch Models delivers many application ready models.
|
||||
These models have been published in the past and have been adapted to the Prototorch library.
|
||||
These models have been published in the past and have been adapted to the
|
||||
Prototorch library.
|
||||
|
||||
Customizable
|
||||
-----------------------------------------
|
||||
Prototorch Models also contains the building blocks to build own models with PyTorch-Lightning and Prototorch.
|
||||
Prototorch Models also contains the building blocks to build own models with
|
||||
PyTorch-Lightning and Prototorch.
|
||||
|
@@ -71,7 +71,7 @@ Probabilistic Models
|
||||
Probabilistic variants assume, that the prototypes generate a probability distribution over the classes.
|
||||
For a test sample they return a distribution instead of a class assignment.
|
||||
|
||||
The following two algorihms were presented by :cite:t:`seo2003` .
|
||||
The following two algorithms were presented by :cite:t:`seo2003` .
|
||||
Every prototypes is a center of a gaussian distribution of its class, generating a mixture model.
|
||||
|
||||
.. autoclass:: prototorch.models.probabilistic.SLVQ
|
||||
@@ -80,7 +80,7 @@ Every prototypes is a center of a gaussian distribution of its class, generating
|
||||
.. autoclass:: prototorch.models.probabilistic.RSLVQ
|
||||
:members:
|
||||
|
||||
:cite:t:`villmann2018` proposed two changes to RSLVQ: First incooperate the winning rank into the prior probability calculation.
|
||||
:cite:t:`villmann2018` proposed two changes to RSLVQ: First incorporate the winning rank into the prior probability calculation.
|
||||
And second use divergence as loss function.
|
||||
|
||||
.. autoclass:: prototorch.models.probabilistic.PLVQ
|
||||
@@ -106,7 +106,7 @@ Visualization
|
||||
Visualization is very specific to its application.
|
||||
PrototorchModels delivers visualization for two dimensional data and image data.
|
||||
|
||||
The visulizations can be shown in a seperate window and inside a tensorboard.
|
||||
The visualizations can be shown in a separate window and inside a tensorboard.
|
||||
|
||||
.. automodule:: prototorch.models.vis
|
||||
:members:
|
||||
|
File diff suppressed because one or more lines are too long
71
docs/source/y-architecture.rst
Normal file
71
docs/source/y-architecture.rst
Normal file
@@ -0,0 +1,71 @@
|
||||
.. Documentation of the updated Architecture.
|
||||
|
||||
Proto Y Architecture
|
||||
========================================
|
||||
|
||||
Overview
|
||||
****************************************
|
||||
|
||||
The Proto Y Architecture is a framework for abstract prototype learning methods.
|
||||
|
||||
It divides the problem into multiple steps:
|
||||
|
||||
* **Components** : Recalling the position and metadata of the components/prototypes.
|
||||
* **Backbone** : Apply a mapping function to data and prototypes.
|
||||
* **Comparison** : Calculate a dissimilarity based on the latent positions.
|
||||
* **Competition** : Calculate competition values based on the comparison and the metadata.
|
||||
* **Loss** : Calculate the loss based on the competition values
|
||||
* **Inference** : Predict the output based on the competition values.
|
||||
|
||||
Depending on the phase (Training or Testing) Loss or Inference is used.
|
||||
|
||||
Inheritance Structure
|
||||
****************************************
|
||||
|
||||
The Proto Y Architecture has a single base class that defines all steps and hooks
|
||||
of the architecture.
|
||||
|
||||
.. autoclass:: prototorch.y.architectures.base.BaseYArchitecture
|
||||
|
||||
**Steps**
|
||||
|
||||
Components
|
||||
|
||||
.. automethod:: init_components
|
||||
.. automethod:: components
|
||||
|
||||
Backbone
|
||||
|
||||
.. automethod:: init_backbone
|
||||
.. automethod:: backbone
|
||||
|
||||
Comparison
|
||||
|
||||
.. automethod:: init_comparison
|
||||
.. automethod:: comparison
|
||||
|
||||
Competition
|
||||
|
||||
.. automethod:: init_competition
|
||||
.. automethod:: competition
|
||||
|
||||
Loss
|
||||
|
||||
.. automethod:: init_loss
|
||||
.. automethod:: loss
|
||||
|
||||
Inference
|
||||
|
||||
.. automethod:: init_inference
|
||||
.. automethod:: inference
|
||||
|
||||
**Hooks**
|
||||
|
||||
Torchmetric
|
||||
|
||||
.. automethod:: register_torchmetric
|
||||
|
||||
Hyperparameters
|
||||
****************************************
|
||||
Every model implemented with the Proto Y Architecture has a set of hyperparameters,
|
||||
which is stored in the ``HyperParameters`` attribute of the architecture.
|
@@ -1,50 +0,0 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[2, 2, 2],
|
||||
proto_lr=0.1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CBC(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisCBC2D(data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,8 +0,0 @@
|
||||
# Examples using Lightning CLI
|
||||
|
||||
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
|
||||
|
||||
To use the example run
|
||||
```
|
||||
python gmlvq.py --config gmlvq.yaml
|
||||
```
|
@@ -1,20 +0,0 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import torch
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
|
||||
import prototorch as pt
|
||||
from prototorch.models import ImageGMLVQ
|
||||
from prototorch.models.abstract import PrototypeModel
|
||||
from prototorch.models.data import MNISTDataModule
|
||||
|
||||
|
||||
class ExperimentClass(ImageGMLVQ):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.zeros(28 * 28),
|
||||
**kwargs)
|
||||
|
||||
|
||||
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)
|
@@ -1,11 +0,0 @@
|
||||
model:
|
||||
hparams:
|
||||
input_dim: 784
|
||||
latent_dim: 784
|
||||
distribution:
|
||||
num_classes: 10
|
||||
prototypes_per_class: 2
|
||||
proto_lr: 0.01
|
||||
bb_lr: 0.01
|
||||
data:
|
||||
batch_size: 32
|
@@ -1,82 +0,0 @@
|
||||
"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
num_classes = 4
|
||||
num_features = 2
|
||||
num_clusters = 1
|
||||
train_ds = pt.datasets.Random(num_samples=500,
|
||||
num_classes=num_classes,
|
||||
num_features=num_features,
|
||||
num_clusters=num_clusters,
|
||||
separation=3.0,
|
||||
seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
prototypes_per_class = num_clusters * 5
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
lr=0.2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CELVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Ones(2, scale=3),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(train_ds)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.01, # prune prototype if it wins less than 1%
|
||||
idle_epochs=20, # pruning too early may cause problems
|
||||
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
|
||||
frequency=1, # prune every epoch
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
progress_bar_refresh_rate=0,
|
||||
terminate_on_nan=True,
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,56 +0,0 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 4
|
||||
},
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,78 +0,0 @@
|
||||
"""GLVQ example using the spiral dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 2
|
||||
prototypes_per_class = 10
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
transfer_function="swish_beta",
|
||||
transfer_beta=10.0,
|
||||
# lr=0.1,
|
||||
proto_lr=0.1,
|
||||
bb_lr=0.1,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(
|
||||
train_ds,
|
||||
show_last_only=False,
|
||||
block=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.02,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=2,
|
||||
replace=True,
|
||||
initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=1.0,
|
||||
patience=5,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
# es,
|
||||
pruning,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,59 +1,136 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
import logging
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
import torchmetrics
|
||||
from prototorch.core import SMCI, PCALinearTransformInitializer
|
||||
from prototorch.datasets import Iris
|
||||
from prototorch.models.architectures.base import Steps
|
||||
from prototorch.models.callbacks import (
|
||||
LogTorchmetricCallback,
|
||||
PlotLambdaMatrixToTensorboard,
|
||||
VisGMLVQ2D,
|
||||
)
|
||||
from prototorch.models.library.gmlvq import GMLVQ
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
# ##############################################################################
|
||||
|
||||
|
||||
def main():
|
||||
# ------------------------------------------------------------
|
||||
# DATA
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
full_dataset = Iris()
|
||||
full_count = len(full_dataset)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
train_count = int(full_count * 0.5)
|
||||
val_count = int(full_count * 0.4)
|
||||
test_count = int(full_count * 0.1)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
train_dataset, val_dataset, test_dataset = random_split(
|
||||
full_dataset, (train_count, val_count, test_count))
|
||||
|
||||
# Dataloader
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
shuffle=True,
|
||||
)
|
||||
val_loader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
shuffle=False,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
batch_size=1,
|
||||
num_workers=0,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# HYPERPARAMETERS
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Select Initializer
|
||||
components_initializer = SMCI(full_dataset)
|
||||
|
||||
# Define Hyperparameters
|
||||
hyperparameters = GMLVQ.HyperParameters(
|
||||
lr=dict(components_layer=0.1, _omega=0),
|
||||
input_dim=4,
|
||||
latent_dim=3,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 2
|
||||
},
|
||||
proto_lr=0.0005,
|
||||
bb_lr=0.0005,
|
||||
distribution=dict(
|
||||
num_classes=3,
|
||||
per_class=1,
|
||||
),
|
||||
component_initializer=components_initializer,
|
||||
omega_initializer=PCALinearTransformInitializer,
|
||||
omega_initializer_kwargs=dict(
|
||||
data=train_dataset.dataset[train_dataset.indices][0]))
|
||||
|
||||
# Create Model
|
||||
model = GMLVQ(hyperparameters)
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# TRAINING
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Controlling Callbacks
|
||||
recall = LogTorchmetricCallback(
|
||||
'training_recall',
|
||||
torchmetrics.Recall,
|
||||
num_classes=3,
|
||||
step=Steps.TRAINING,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
omega_initializer=pt.components.PCA(train_ds.data)
|
||||
stopping_criterion = LogTorchmetricCallback(
|
||||
'validation_recall',
|
||||
torchmetrics.Recall,
|
||||
num_classes=3,
|
||||
step=Steps.VALIDATION,
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
#model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGMLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
es = EarlyStopping(
|
||||
monitor=stopping_criterion.name,
|
||||
mode="max",
|
||||
patience=10,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
# Visualization Callback
|
||||
vis = VisGMLVQ2D(data=full_dataset)
|
||||
|
||||
# Define trainer
|
||||
trainer = pl.Trainer(
|
||||
callbacks=[
|
||||
vis,
|
||||
recall,
|
||||
stopping_criterion,
|
||||
es,
|
||||
PlotLambdaMatrixToTensorboard(),
|
||||
],
|
||||
max_epochs=100,
|
||||
)
|
||||
|
||||
# Train
|
||||
trainer.fit(model, train_loader, val_loader)
|
||||
trainer.test(model, test_loader)
|
||||
|
||||
# Manual save
|
||||
trainer.save_checkpoint("./y_arch.ckpt")
|
||||
|
||||
# Load saved model
|
||||
new_model = GMLVQ.load_from_checkpoint(
|
||||
checkpoint_path="./y_arch.ckpt",
|
||||
strict=True,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,102 +0,0 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
test_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 10
|
||||
prototypes_per_class = 10
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
latent_dim=28 * 28,
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.ImageGMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisImgComp(
|
||||
data=train_ds,
|
||||
num_columns=10,
|
||||
show=False,
|
||||
tensorboard=True,
|
||||
random_data=100,
|
||||
add_embedding=True,
|
||||
embedding_data=200,
|
||||
flatten_data=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=1,
|
||||
prune_quota_per_epoch=10,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=15,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
# es,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,54 +0,0 @@
|
||||
"""Growing Neural Gas example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Prepare the data
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
num_prototypes=5,
|
||||
input_dim=2,
|
||||
lr=0.1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GrowingNeuralGas(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Zeros(2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisNG2D(data=train_loader)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
max_epochs=100,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,58 +0,0 @@
|
||||
"""k-NN example using the Iris dataset from scikit-learn."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(k=5)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.KNN(hparams, data=train_ds)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(
|
||||
data=(x_train, y_train),
|
||||
resolution=200,
|
||||
block=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
max_epochs=1,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
# This is only for visualization. k-NN has no training phase.
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Recall
|
||||
y_pred = model.predict(torch.tensor(x_train))
|
||||
print(y_pred)
|
@@ -1,117 +0,0 @@
|
||||
"""Kohonen Self Organizing Map."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
def hex_to_rgb(hex_values):
|
||||
for v in hex_values:
|
||||
v = v.lstrip('#')
|
||||
lv = len(v)
|
||||
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
|
||||
yield c
|
||||
|
||||
|
||||
def rgb_to_hex(rgb_values):
|
||||
for v in rgb_values:
|
||||
c = "%02x%02x%02x" % tuple(v)
|
||||
yield c
|
||||
|
||||
|
||||
class Vis2DColorSOM(pl.Callback):
|
||||
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
||||
super().__init__()
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.data = data
|
||||
self.pause_time = pause_time
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
h, w = pl_module._grid.shape[:2]
|
||||
protos = pl_module.prototypes.view(h, w, 3)
|
||||
ax.imshow(protos)
|
||||
ax.axis("off")
|
||||
|
||||
# Overlay color names
|
||||
d = pl_module.compute_distances(self.data)
|
||||
wp = pl_module.predict_from_distances(d)
|
||||
for i, iloc in enumerate(wp):
|
||||
plt.text(iloc[1],
|
||||
iloc[0],
|
||||
cnames[i],
|
||||
ha="center",
|
||||
va="center",
|
||||
bbox=dict(facecolor="white", alpha=0.5, lw=0))
|
||||
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
plt.pause(self.pause_time)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Prepare the data
|
||||
hex_colors = [
|
||||
"#000000", "#0000ff", "#00007f", "#1f86ff", "#5466aa", "#997fff",
|
||||
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
|
||||
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
|
||||
]
|
||||
cnames = [
|
||||
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
|
||||
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
|
||||
"lightgrey", "olive", "purple", "orange"
|
||||
]
|
||||
colors = list(hex_to_rgb(hex_colors))
|
||||
data = torch.Tensor(colors) / 255.0
|
||||
train_ds = torch.utils.data.TensorDataset(data)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
shape=(18, 32),
|
||||
alpha=1.0,
|
||||
sigma=16,
|
||||
lr=0.1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.KohonenSOM(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Random(3),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 3)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = Vis2DColorSOM(data=data)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
max_epochs=500,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,67 +0,0 @@
|
||||
"""Localized-GMLVQ example using the Moons dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=256,
|
||||
shuffle=True)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 3],
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.LGMLVQ(hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="max",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,90 +0,0 @@
|
||||
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
def plot_matrix(matrix):
|
||||
title = "Lambda matrix"
|
||||
plt.figure(title)
|
||||
plt.title(title)
|
||||
plt.imshow(matrix, cmap="gray")
|
||||
plt.axis("off")
|
||||
plt.colorbar()
|
||||
plt.show(block=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
|
||||
test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=10)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 2,
|
||||
"prototypes_per_class": 1
|
||||
},
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
proto_lr=0.0001,
|
||||
bb_lr=0.0001,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGMLVQ(
|
||||
hparams,
|
||||
# optimizer=torch.optim.SGD,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
|
||||
es = pl.callbacks.EarlyStopping(monitor="val_loss",
|
||||
min_delta=0.001,
|
||||
patience=50,
|
||||
verbose=False,
|
||||
mode="min")
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis, es],
|
||||
weights_summary=None,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader, test_loader)
|
||||
|
||||
# Save the model
|
||||
torch.save(model, "liramlvq_tecator.pt")
|
||||
|
||||
# Load a saved model
|
||||
saved_model = torch.load("liramlvq_tecator.pt")
|
||||
|
||||
# Display the Lambda matrix
|
||||
plot_matrix(saved_model.lambda_matrix)
|
||||
|
||||
# Testing
|
||||
trainer.test(model, test_dataloaders=test_loader)
|
@@ -1,78 +0,0 @@
|
||||
"""LVQMLN example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 2],
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone()
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.LVQMLN(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
|
||||
backbone=backbone,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(
|
||||
data=train_ds,
|
||||
map_protos=False,
|
||||
border=0.1,
|
||||
resolution=500,
|
||||
axis_off=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,63 +0,0 @@
|
||||
"""Neural Gas example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare and pre-process the dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
num_prototypes=30,
|
||||
input_dim=2,
|
||||
lr=0.03,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.NeuralGas(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Zeros(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisNG2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,65 +0,0 @@
|
||||
"""RSLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision.transforms import Lambda
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[2, 2, 3],
|
||||
proto_lr=0.05,
|
||||
lambd=0.1,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.PLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
# prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.2),
|
||||
# prototype_initializer=pt.components.Zeros(2),
|
||||
# prototype_initializer=pt.components.Ones(2, scale=2.0),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
terminate_on_nan=True,
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,73 +0,0 @@
|
||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 3],
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone()
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGLVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@@ -1,15 +1,25 @@
|
||||
"""`models` plugin for the `prototorch` package."""
|
||||
from .architectures.base import BaseYArchitecture
|
||||
from .architectures.comparison import (
|
||||
OmegaComparisonMixin,
|
||||
SimpleComparisonMixin,
|
||||
)
|
||||
from .architectures.competition import WTACompetitionMixin
|
||||
from .architectures.components import SupervisedArchitecture
|
||||
from .architectures.loss import GLVQLossMixin
|
||||
from .architectures.optimization import (
|
||||
MultipleLearningRateMixin,
|
||||
SingleLearningRateMixin,
|
||||
)
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
__all__ = [
|
||||
'BaseYArchitecture',
|
||||
"OmegaComparisonMixin",
|
||||
"SimpleComparisonMixin",
|
||||
"SingleLearningRateMixin",
|
||||
"MultipleLearningRateMixin",
|
||||
"SupervisedArchitecture",
|
||||
"WTACompetitionMixin",
|
||||
"GLVQLossMixin",
|
||||
]
|
||||
|
||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
||||
from .cbc import CBC, ImageCBC
|
||||
from .glvq import (GLVQ, GLVQ1, GLVQ21, GMLVQ, GRLVQ, LGMLVQ, LVQMLN,
|
||||
ImageGLVQ, ImageGMLVQ, SiameseGLVQ, SiameseGMLVQ)
|
||||
from .knn import KNN
|
||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
|
||||
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
|
||||
from .vis import *
|
||||
|
||||
__version__ = "0.1.8"
|
||||
__version__ = "1.0.0-a6"
|
||||
|
@@ -1,190 +0,0 @@
|
||||
"""Abstract classes to be inherited by prototorch models."""
|
||||
|
||||
from typing import Final, final
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.components import Components, LabeledComponents
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules import WTAC, LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchMixin(object):
|
||||
pass
|
||||
|
||||
|
||||
class ProtoTorchBolt(pl.LightningModule):
|
||||
"""All ProtoTorch models are ProtoTorch Bolts."""
|
||||
def __repr__(self):
|
||||
surep = super().__repr__()
|
||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||
return wrapped
|
||||
|
||||
|
||||
class PrototypeModel(ProtoTorchBolt):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
# Hyperparameters
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("lr", 0.01)
|
||||
|
||||
# Default config
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
self.lr_scheduler = kwargs.get("lr_scheduler", None)
|
||||
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
||||
|
||||
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||
self.distance_layer = LambdaLayer(distance_fn)
|
||||
|
||||
@property
|
||||
def num_prototypes(self):
|
||||
return len(self.proto_layer.components)
|
||||
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
"""Only an alias for the prototypes."""
|
||||
return self.prototypes
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
if self.lr_scheduler is not None:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
@final
|
||||
def reconfigure_optimizers(self):
|
||||
self.trainer.accelerator_backend.setup_optimizers(self.trainer)
|
||||
|
||||
def add_prototypes(self, *args, **kwargs):
|
||||
self.proto_layer.add_components(*args, **kwargs)
|
||||
self.reconfigure_optimizers()
|
||||
|
||||
def remove_prototypes(self, indices):
|
||||
self.proto_layer.remove_components(indices)
|
||||
self.reconfigure_optimizers()
|
||||
|
||||
|
||||
class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
self.proto_layer = Components(
|
||||
self.hparams.num_prototypes,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
)
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
return distances
|
||||
|
||||
|
||||
class SupervisedPrototypeModel(PrototypeModel):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
)
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return len(self.proto_layer.distribution)
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
y_pred = self.predict_from_distances(distances)
|
||||
# TODO
|
||||
y_pred = torch.eye(self.num_classes, device=self.device)[
|
||||
y_pred.long()] # depends on labels {0,...,num_classes}
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
plabels = self.proto_layer.component_labels
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
def predict(self, x):
|
||||
with torch.no_grad():
|
||||
distances = self.compute_distances(x)
|
||||
y_pred = self.predict_from_distances(distances)
|
||||
return y_pred
|
||||
|
||||
def log_acc(self, distances, targets, tag):
|
||||
preds = self.predict_from_distances(distances)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||
# `.int()` because FloatTensors are assumed to be class probabilities
|
||||
|
||||
self.log(tag,
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
|
||||
|
||||
class NonGradientMixin(ProtoTorchMixin):
|
||||
"""Mixin for custom non-gradient optimization."""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization: Final = False
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||
"""Mixin for models with image prototypes."""
|
||||
@final
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
||||
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
|
||||
from torchvision.utils import make_grid
|
||||
grid = make_grid(self.components, nrow=num_columns)
|
||||
if return_channels_last:
|
||||
grid = grid.permute((1, 2, 0))
|
||||
return grid.cpu()
|
280
prototorch/models/architectures/base.py
Normal file
280
prototorch/models/architectures/base.py
Normal file
@@ -0,0 +1,280 @@
|
||||
"""
|
||||
Proto Y Architecture
|
||||
|
||||
Network architecture for Component based Learning.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import asdict, dataclass
|
||||
from typing import Any, Callable
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchmetrics import Metric
|
||||
|
||||
|
||||
class Steps(enumerate):
|
||||
TRAINING = "training"
|
||||
VALIDATION = "validation"
|
||||
TEST = "test"
|
||||
PREDICT = "predict"
|
||||
|
||||
|
||||
class BaseYArchitecture(pl.LightningModule):
|
||||
|
||||
@dataclass
|
||||
class HyperParameters:
|
||||
"""
|
||||
Add all hyperparameters in the inherited class.
|
||||
"""
|
||||
...
|
||||
|
||||
# Fields
|
||||
registered_metrics: dict[str, dict[type[Metric], Metric]] = {
|
||||
Steps.TRAINING: {},
|
||||
Steps.VALIDATION: {},
|
||||
Steps.TEST: {},
|
||||
}
|
||||
registered_metric_callbacks: dict[str, dict[type[Metric],
|
||||
set[Callable]]] = {
|
||||
Steps.TRAINING: {},
|
||||
Steps.VALIDATION: {},
|
||||
Steps.TEST: {},
|
||||
}
|
||||
|
||||
# Type Hints for Necessary Fields
|
||||
components_layer: torch.nn.Module
|
||||
|
||||
def __init__(self, hparams) -> None:
|
||||
if type(hparams) is dict:
|
||||
self.save_hyperparameters(hparams)
|
||||
# TODO: => Move into Component Child
|
||||
del hparams["initialized_proto_shape"]
|
||||
hparams = self.HyperParameters(**hparams)
|
||||
else:
|
||||
hparam_dict = asdict(hparams)
|
||||
hparam_dict["component_initializer"] = None
|
||||
self.save_hyperparameters(hparam_dict, )
|
||||
|
||||
super().__init__()
|
||||
|
||||
# Common Steps
|
||||
self.init_components(hparams)
|
||||
self.init_backbone(hparams)
|
||||
self.init_comparison(hparams)
|
||||
self.init_competition(hparams)
|
||||
|
||||
# Train Steps
|
||||
self.init_loss(hparams)
|
||||
|
||||
# Inference Steps
|
||||
self.init_inference(hparams)
|
||||
|
||||
# external API
|
||||
def get_competition(self, batch, components):
|
||||
latent_batch, latent_components = self.backbone(batch, components)
|
||||
# TODO: => Latent Hook
|
||||
comparison_tensor = self.comparison(latent_batch, latent_components)
|
||||
# TODO: => Comparison Hook
|
||||
return comparison_tensor
|
||||
|
||||
def forward(self, batch):
|
||||
if isinstance(batch, torch.Tensor):
|
||||
batch = (batch, None)
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
comparison_tensor = self.get_competition(batch, components)
|
||||
# TODO: => Competition Hook
|
||||
return self.inference(comparison_tensor, components)
|
||||
|
||||
def predict(self, batch):
|
||||
"""
|
||||
Alias for forward
|
||||
"""
|
||||
return self.forward(batch)
|
||||
|
||||
def forward_comparison(self, batch):
|
||||
if isinstance(batch, torch.Tensor):
|
||||
batch = (batch, None)
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
return self.get_competition(batch, components)
|
||||
|
||||
def loss_forward(self, batch):
|
||||
# TODO: manage different datatypes?
|
||||
components = self.components_layer()
|
||||
# TODO: => Component Hook
|
||||
comparison_tensor = self.get_competition(batch, components)
|
||||
# TODO: => Competition Hook
|
||||
return self.loss(comparison_tensor, batch, components)
|
||||
|
||||
# Empty Initialization
|
||||
def init_components(self, hparams: HyperParameters) -> None:
|
||||
"""
|
||||
All initialization necessary for the components step.
|
||||
"""
|
||||
...
|
||||
|
||||
def init_backbone(self, hparams: HyperParameters) -> None:
|
||||
"""
|
||||
All initialization necessary for the backbone step.
|
||||
"""
|
||||
...
|
||||
|
||||
def init_comparison(self, hparams: HyperParameters) -> None:
|
||||
"""
|
||||
All initialization necessary for the comparison step.
|
||||
"""
|
||||
...
|
||||
|
||||
def init_competition(self, hparams: HyperParameters) -> None:
|
||||
"""
|
||||
All initialization necessary for the competition step.
|
||||
"""
|
||||
...
|
||||
|
||||
def init_loss(self, hparams: HyperParameters) -> None:
|
||||
"""
|
||||
All initialization necessary for the loss step.
|
||||
"""
|
||||
...
|
||||
|
||||
def init_inference(self, hparams: HyperParameters) -> None:
|
||||
"""
|
||||
All initialization necessary for the inference step.
|
||||
"""
|
||||
...
|
||||
|
||||
# Empty Steps
|
||||
def components(self):
|
||||
"""
|
||||
This step has no input.
|
||||
|
||||
It returns the components.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The components step has no reasonable default.")
|
||||
|
||||
def backbone(self, batch, components):
|
||||
"""
|
||||
The backbone step receives the data batch and the components.
|
||||
It can transform both by an arbitrary function.
|
||||
|
||||
It returns the transformed batch and components, each of the same length as the original input.
|
||||
"""
|
||||
return batch, components
|
||||
|
||||
def comparison(self, batch, components):
|
||||
"""
|
||||
Takes a batch of size N and the component set of size M.
|
||||
|
||||
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The comparison step has no reasonable default.")
|
||||
|
||||
def competition(self, comparison_measures, components):
|
||||
"""
|
||||
Takes the tensor of comparison measures.
|
||||
|
||||
Assigns a competition vector to each class.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The competition step has no reasonable default.")
|
||||
|
||||
def loss(self, comparison_measures, batch, components):
|
||||
"""
|
||||
Takes the tensor of competition measures.
|
||||
|
||||
Calculates a single loss value
|
||||
"""
|
||||
raise NotImplementedError("The loss step has no reasonable default.")
|
||||
|
||||
def inference(self, comparison_measures, components):
|
||||
"""
|
||||
Takes the tensor of competition measures.
|
||||
|
||||
Returns the inferred vector.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"The inference step has no reasonable default.")
|
||||
|
||||
# Y Architecture Hooks
|
||||
|
||||
# internal API, called by models and callbacks
|
||||
def register_torchmetric(
|
||||
self,
|
||||
name: Callable,
|
||||
metric: type[Metric],
|
||||
step: str = Steps.TRAINING,
|
||||
**metric_kwargs,
|
||||
):
|
||||
if step == Steps.PREDICT:
|
||||
raise ValueError("Prediction metrics are not supported.")
|
||||
|
||||
if metric not in self.registered_metrics:
|
||||
self.registered_metrics[step][metric] = metric(**metric_kwargs)
|
||||
self.registered_metric_callbacks[step][metric] = {name}
|
||||
else:
|
||||
self.registered_metric_callbacks[step][metric].add(name)
|
||||
|
||||
def update_metrics_step(self, batch, step):
|
||||
# Prediction Metrics
|
||||
preds = self(batch)
|
||||
|
||||
x, y = batch
|
||||
for metric in self.registered_metrics[step]:
|
||||
instance = self.registered_metrics[step][metric].to(self.device)
|
||||
instance(y, preds)
|
||||
|
||||
def update_metrics_epoch(self, step):
|
||||
for metric in self.registered_metrics[step]:
|
||||
instance = self.registered_metrics[step][metric].to(self.device)
|
||||
value = instance.compute()
|
||||
|
||||
for callback in self.registered_metric_callbacks[step][metric]:
|
||||
callback(value, self)
|
||||
|
||||
instance.reset()
|
||||
|
||||
# Lightning steps
|
||||
# -------------------------------------------------------------------------
|
||||
# >>>> Training
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
self.update_metrics_step(batch, Steps.TRAINING)
|
||||
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def training_epoch_end(self, outs) -> None:
|
||||
self.update_metrics_epoch(Steps.TRAINING)
|
||||
|
||||
# >>>> Validation
|
||||
def validation_step(self, batch, batch_idx):
|
||||
self.update_metrics_step(batch, Steps.VALIDATION)
|
||||
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def validation_epoch_end(self, outs) -> None:
|
||||
self.update_metrics_epoch(Steps.VALIDATION)
|
||||
|
||||
# >>>> Test
|
||||
def test_step(self, batch, batch_idx):
|
||||
self.update_metrics_step(batch, Steps.TEST)
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def test_epoch_end(self, outs) -> None:
|
||||
self.update_metrics_epoch(Steps.TEST)
|
||||
|
||||
# >>>> Prediction
|
||||
def predict_step(self, batch, batch_idx, dataloader_idx=0):
|
||||
return self.predict(batch)
|
||||
|
||||
# Check points
|
||||
def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None:
|
||||
# Compatible with Lightning
|
||||
checkpoint["hyper_parameters"] = {
|
||||
'hparams': checkpoint["hyper_parameters"]
|
||||
}
|
||||
return super().on_save_checkpoint(checkpoint)
|
139
prototorch/models/architectures/comparison.py
Normal file
139
prototorch/models/architectures/comparison.py
Normal file
@@ -0,0 +1,139 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
from prototorch.core.initializers import (
|
||||
AbstractLinearTransformInitializer,
|
||||
EyeLinearTransformInitializer,
|
||||
)
|
||||
from prototorch.models.architectures.base import BaseYArchitecture
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
from torch import Tensor
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class SimpleComparisonMixin(BaseYArchitecture):
|
||||
"""
|
||||
Simple Comparison
|
||||
|
||||
A comparison layer that only uses the positions of the components
|
||||
and the batch for dissimilarity computation.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
comparison_fn: The comparison / dissimilarity function to use. Default: euclidean_distance.
|
||||
comparison_args: Keyword arguments for the comparison function. Default: {}.
|
||||
"""
|
||||
comparison_fn: Callable = euclidean_distance
|
||||
comparison_args: dict = field(default_factory=lambda: dict())
|
||||
|
||||
comparison_parameters: dict = field(default_factory=lambda: dict())
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
def init_comparison(self, hparams: HyperParameters):
|
||||
self.comparison_layer = LambdaLayer(
|
||||
fn=hparams.comparison_fn,
|
||||
**hparams.comparison_args,
|
||||
)
|
||||
|
||||
self.comparison_kwargs: dict[str, Tensor] = dict()
|
||||
|
||||
def comparison(self, batch, components):
|
||||
comp_tensor, _ = components
|
||||
batch_tensor, _ = batch
|
||||
|
||||
comp_tensor = comp_tensor.unsqueeze(1)
|
||||
|
||||
distances = self.comparison_layer(
|
||||
batch_tensor,
|
||||
comp_tensor,
|
||||
**self.comparison_kwargs,
|
||||
)
|
||||
|
||||
return distances
|
||||
|
||||
|
||||
class OmegaComparisonMixin(SimpleComparisonMixin):
|
||||
"""
|
||||
Omega Comparison
|
||||
|
||||
A comparison layer that uses the positions of the components
|
||||
and the batch for dissimilarity computation.
|
||||
"""
|
||||
|
||||
_omega: torch.Tensor
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(SimpleComparisonMixin.HyperParameters):
|
||||
"""
|
||||
input_dim: Necessary Field: The dimensionality of the input.
|
||||
latent_dim:
|
||||
The dimensionality of the latent space. Default: 2.
|
||||
omega_initializer:
|
||||
The initializer to use for the omega matrix. Default: EyeLinearTransformInitializer.
|
||||
"""
|
||||
input_dim: int | None = None
|
||||
latent_dim: int = 2
|
||||
omega_initializer: type[
|
||||
AbstractLinearTransformInitializer] = EyeLinearTransformInitializer
|
||||
omega_initializer_kwargs: dict = field(default_factory=lambda: dict())
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
def init_comparison(self, hparams: HyperParameters) -> None:
|
||||
super().init_comparison(hparams)
|
||||
|
||||
# Initialize the omega matrix
|
||||
if hparams.input_dim is None:
|
||||
raise ValueError("input_dim must be specified.")
|
||||
else:
|
||||
omega = hparams.omega_initializer(
|
||||
**hparams.omega_initializer_kwargs).generate(
|
||||
hparams.input_dim,
|
||||
hparams.latent_dim,
|
||||
)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
self.comparison_kwargs = dict(omega=self._omega)
|
||||
|
||||
# Properties
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
'''
|
||||
Omega Matrix. Mapping applied to data and prototypes.
|
||||
'''
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
'''
|
||||
Lambda Matrix.
|
||||
'''
|
||||
omega = self._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
'''
|
||||
Relevance Profile. Main Diagonal of the Lambda Matrix.
|
||||
'''
|
||||
return self.lambda_matrix.diag().abs()
|
||||
|
||||
@property
|
||||
def classification_influence_profile(self):
|
||||
'''
|
||||
Classification Influence Profile. Influence of each dimension.
|
||||
'''
|
||||
lam = self.lambda_matrix
|
||||
return lam.abs().sum(0)
|
29
prototorch/models/architectures/competition.py
Normal file
29
prototorch/models/architectures/competition.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.core.competitions import WTAC
|
||||
from prototorch.models.architectures.base import BaseYArchitecture
|
||||
|
||||
|
||||
class WTACompetitionMixin(BaseYArchitecture):
|
||||
"""
|
||||
Winner Take All Competition
|
||||
|
||||
A competition layer that uses the winner-take-all strategy.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
No hyperparameters.
|
||||
"""
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_inference(self, hparams: HyperParameters):
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
def inference(self, comparison_measures, components):
|
||||
comp_labels = components[1]
|
||||
return self.competition_layer(comparison_measures, comp_labels)
|
64
prototorch/models/architectures/components.py
Normal file
64
prototorch/models/architectures/components.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.core.components import LabeledComponents
|
||||
from prototorch.core.initializers import (
|
||||
AbstractComponentsInitializer,
|
||||
LabelsInitializer,
|
||||
ZerosCompInitializer,
|
||||
)
|
||||
from prototorch.models import BaseYArchitecture
|
||||
|
||||
|
||||
class SupervisedArchitecture(BaseYArchitecture):
|
||||
"""
|
||||
Supervised Architecture
|
||||
|
||||
An architecture that uses labeled Components as component Layer.
|
||||
"""
|
||||
components_layer: LabeledComponents
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters:
|
||||
"""
|
||||
distribution: A valid prototype distribution. No default possible.
|
||||
components_initializer: An implementation of AbstractComponentsInitializer. No default possible.
|
||||
"""
|
||||
distribution: "dict[str, int]"
|
||||
component_initializer: AbstractComponentsInitializer
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_components(self, hparams: HyperParameters):
|
||||
if hparams.component_initializer is not None:
|
||||
self.components_layer = LabeledComponents(
|
||||
distribution=hparams.distribution,
|
||||
components_initializer=hparams.component_initializer,
|
||||
labels_initializer=LabelsInitializer(),
|
||||
)
|
||||
proto_shape = self.components_layer.components.shape[1:]
|
||||
self.hparams["initialized_proto_shape"] = proto_shape
|
||||
else:
|
||||
# when restoring a checkpointed model
|
||||
self.components_layer = LabeledComponents(
|
||||
distribution=hparams.distribution,
|
||||
components_initializer=ZerosCompInitializer(
|
||||
self.hparams["initialized_proto_shape"]),
|
||||
)
|
||||
|
||||
# Properties
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@property
|
||||
def prototypes(self):
|
||||
"""
|
||||
Returns the position of the prototypes.
|
||||
"""
|
||||
return self.components_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
"""
|
||||
Returns the labels of the prototypes.
|
||||
"""
|
||||
return self.components_layer.labels.detach().cpu()
|
42
prototorch/models/architectures/loss.py
Normal file
42
prototorch/models/architectures/loss.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from prototorch.core.losses import GLVQLoss
|
||||
from prototorch.models.architectures.base import BaseYArchitecture
|
||||
|
||||
|
||||
class GLVQLossMixin(BaseYArchitecture):
|
||||
"""
|
||||
GLVQ Loss
|
||||
|
||||
A loss layer that uses the Generalized Learning Vector Quantization (GLVQ) loss.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
margin: The margin of the GLVQ loss. Default: 0.0.
|
||||
transfer_fn: Transfer function to use. Default: sigmoid_beta.
|
||||
transfer_args: Keyword arguments for the transfer function. Default: {beta: 10.0}.
|
||||
"""
|
||||
margin: float = 0.0
|
||||
|
||||
transfer_fn: str = "sigmoid_beta"
|
||||
transfer_args: dict = field(default_factory=lambda: dict(beta=10.0))
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def init_loss(self, hparams: HyperParameters):
|
||||
self.loss_layer = GLVQLoss(
|
||||
margin=hparams.margin,
|
||||
transfer_fn=hparams.transfer_fn,
|
||||
**hparams.transfer_args,
|
||||
)
|
||||
|
||||
def loss(self, comparison_measures, batch, components):
|
||||
target = batch[1]
|
||||
comp_labels = components[1]
|
||||
loss = self.loss_layer(comparison_measures, target, comp_labels)
|
||||
self.log('loss', loss)
|
||||
return loss
|
73
prototorch/models/architectures/optimization.py
Normal file
73
prototorch/models/architectures/optimization.py
Normal file
@@ -0,0 +1,73 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Type
|
||||
|
||||
import torch
|
||||
from prototorch.models import BaseYArchitecture
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class SingleLearningRateMixin(BaseYArchitecture):
|
||||
"""
|
||||
Single Learning Rate
|
||||
|
||||
All parameters are updated with a single learning rate.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
lr: The learning rate. Default: 0.1.
|
||||
optimizer: The optimizer to use. Default: torch.optim.Adam.
|
||||
"""
|
||||
lr: float = 0.1
|
||||
optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
|
||||
|
||||
# Hooks
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def configure_optimizers(self):
|
||||
return self.hparams.optimizer(self.parameters(),
|
||||
lr=self.hparams.lr) # type: ignore
|
||||
|
||||
|
||||
class MultipleLearningRateMixin(BaseYArchitecture):
|
||||
"""
|
||||
Multiple Learning Rates
|
||||
|
||||
Define Different Learning Rates for different parameters.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
lr: The learning rate. Default: 0.1.
|
||||
optimizer: The optimizer to use. Default: torch.optim.Adam.
|
||||
"""
|
||||
lr: dict = field(default_factory=lambda: dict())
|
||||
optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
|
||||
|
||||
# Hooks
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def configure_optimizers(self):
|
||||
optimizers = []
|
||||
for name, lr in self.hparams.lr.items():
|
||||
if not hasattr(self, name):
|
||||
raise ValueError(f"{name} is not a parameter of {self}")
|
||||
else:
|
||||
model_part = getattr(self, name)
|
||||
if isinstance(model_part, Parameter):
|
||||
optimizers.append(
|
||||
self.hparams.optimizer(
|
||||
[model_part],
|
||||
lr=lr, # type: ignore
|
||||
))
|
||||
elif hasattr(model_part, "parameters"):
|
||||
optimizers.append(
|
||||
self.hparams.optimizer(
|
||||
model_part.parameters(),
|
||||
lr=lr, # type: ignore
|
||||
))
|
||||
return optimizers
|
@@ -1,134 +1,217 @@
|
||||
"""Lightning Callbacks."""
|
||||
|
||||
import logging
|
||||
import warnings
|
||||
from typing import Optional, Type
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
import torchmetrics
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.architectures.base import BaseYArchitecture, Steps
|
||||
from prototorch.models.library.gmlvq import GMLVQ
|
||||
from prototorch.models.vis import Vis2DAbstract
|
||||
from prototorch.utils.utils import mesh2d
|
||||
from pytorch_lightning.loggers import TensorBoardLogger
|
||||
|
||||
from .extras import ConnectionTopology
|
||||
DIVERGING_COLOR_MAPS = [
|
||||
'PiYG',
|
||||
'PRGn',
|
||||
'BrBG',
|
||||
'PuOr',
|
||||
'RdGy',
|
||||
'RdBu',
|
||||
'RdYlBu',
|
||||
'RdYlGn',
|
||||
'Spectral',
|
||||
'coolwarm',
|
||||
'bwr',
|
||||
'seismic',
|
||||
]
|
||||
|
||||
|
||||
class PruneLoserPrototypes(pl.Callback):
|
||||
def __init__(self,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=-1,
|
||||
frequency=1,
|
||||
replace=False,
|
||||
initializer=None,
|
||||
verbose=False):
|
||||
self.threshold = threshold # minimum win ratio
|
||||
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
||||
self.prune_quota_per_epoch = prune_quota_per_epoch
|
||||
self.frequency = frequency
|
||||
self.replace = replace
|
||||
self.verbose = verbose
|
||||
self.initializer = initializer
|
||||
class LogTorchmetricCallback(pl.Callback):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
return None
|
||||
if (trainer.current_epoch + 1) % self.frequency:
|
||||
return None
|
||||
def __init__(
|
||||
self,
|
||||
name,
|
||||
metric: Type[torchmetrics.Metric],
|
||||
step: str = Steps.TRAINING,
|
||||
**metric_kwargs,
|
||||
) -> None:
|
||||
self.name = name
|
||||
self.metric = metric
|
||||
self.metric_kwargs = metric_kwargs
|
||||
self.step = step
|
||||
|
||||
ratios = pl_module.prototype_win_ratios.mean(dim=0)
|
||||
to_prune = torch.arange(len(ratios))[ratios < self.threshold]
|
||||
to_prune = to_prune.tolist()
|
||||
prune_labels = pl_module.prototype_labels[to_prune]
|
||||
if self.prune_quota_per_epoch > 0:
|
||||
to_prune = to_prune[:self.prune_quota_per_epoch]
|
||||
prune_labels = prune_labels[:self.prune_quota_per_epoch]
|
||||
def setup(
|
||||
self,
|
||||
trainer: pl.Trainer,
|
||||
pl_module: BaseYArchitecture,
|
||||
stage: Optional[str] = None,
|
||||
) -> None:
|
||||
pl_module.register_torchmetric(
|
||||
self,
|
||||
self.metric,
|
||||
step=self.step,
|
||||
**self.metric_kwargs,
|
||||
)
|
||||
|
||||
if len(to_prune) > 0:
|
||||
if self.verbose:
|
||||
print(f"\nPrototype win ratios: {ratios}")
|
||||
print(f"Pruning prototypes at: {to_prune}")
|
||||
print(f"Corresponding labels are: {prune_labels.tolist()}")
|
||||
cur_num_protos = pl_module.num_prototypes
|
||||
pl_module.remove_prototypes(indices=to_prune)
|
||||
if self.replace:
|
||||
labels, counts = torch.unique(prune_labels,
|
||||
sorted=True,
|
||||
return_counts=True)
|
||||
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
||||
if self.verbose:
|
||||
print(f"Re-adding pruned prototypes...")
|
||||
print(f"{distribution=}")
|
||||
pl_module.add_prototypes(distribution=distribution,
|
||||
initializer=self.initializer)
|
||||
new_num_protos = pl_module.num_prototypes
|
||||
if self.verbose:
|
||||
print(f"`num_prototypes` changed from {cur_num_protos} "
|
||||
f"to {new_num_protos}.")
|
||||
return True
|
||||
def __call__(self, value, pl_module: BaseYArchitecture):
|
||||
pl_module.log(self.name, value)
|
||||
|
||||
|
||||
class PrototypeConvergence(pl.Callback):
|
||||
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
||||
self.min_delta = min_delta
|
||||
self.idle_epochs = idle_epochs # epochs to wait
|
||||
self.verbose = verbose
|
||||
class LogConfusionMatrix(LogTorchmetricCallback):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
return None
|
||||
if self.verbose:
|
||||
print("Stopping...")
|
||||
# TODO
|
||||
return True
|
||||
def __init__(
|
||||
self,
|
||||
num_classes,
|
||||
name="confusion",
|
||||
on='prediction',
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
name,
|
||||
torchmetrics.ConfusionMatrix,
|
||||
on=on,
|
||||
num_classes=num_classes,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def __call__(self, value, pl_module: BaseYArchitecture):
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(value.detach().cpu().numpy())
|
||||
|
||||
# Show all ticks and label them with the respective list entries
|
||||
# ax.set_xticks(np.arange(len(farmers)), labels=farmers)
|
||||
# ax.set_yticks(np.arange(len(vegetables)), labels=vegetables)
|
||||
|
||||
# Rotate the tick labels and set their alignment.
|
||||
plt.setp(
|
||||
ax.get_xticklabels(),
|
||||
rotation=45,
|
||||
ha="right",
|
||||
rotation_mode="anchor",
|
||||
)
|
||||
|
||||
# Loop over data dimensions and create text annotations.
|
||||
for i in range(len(value)):
|
||||
for j in range(len(value)):
|
||||
text = ax.text(
|
||||
j,
|
||||
i,
|
||||
value[i, j].item(),
|
||||
ha="center",
|
||||
va="center",
|
||||
color="w",
|
||||
)
|
||||
|
||||
ax.set_title(self.name)
|
||||
fig.tight_layout()
|
||||
|
||||
pl_module.logger.experiment.add_figure(
|
||||
tag=self.name,
|
||||
figure=fig,
|
||||
close=True,
|
||||
global_step=pl_module.global_step,
|
||||
)
|
||||
|
||||
|
||||
class GNGCallback(pl.Callback):
|
||||
"""GNG Callback.
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
Applies growing algorithm based on accumulated error and topology.
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax()
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
if x_train is not None:
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(
|
||||
np.vstack([x_train, protos]),
|
||||
self.border,
|
||||
self.resolution,
|
||||
)
|
||||
else:
|
||||
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||
_components = pl_module.components_layer.components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
||||
|
||||
"""
|
||||
def __init__(self, reduction=0.1, freq=10):
|
||||
self.reduction = reduction
|
||||
self.freq = freq
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
|
||||
def on_epoch_end(self, trainer: pl.Trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) % self.freq == 0:
|
||||
# Get information
|
||||
errors = pl_module.errors
|
||||
topology: ConnectionTopology = pl_module.topology_layer
|
||||
components: Components = pl_module.proto_layer.components
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
# Insertion point
|
||||
worst = torch.argmax(errors)
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
|
||||
neighbors = topology.get_neighbors(worst)[0]
|
||||
|
||||
if len(neighbors) == 0:
|
||||
logging.log(level=20, msg="No neighbor-pairs found!")
|
||||
return
|
||||
class PlotLambdaMatrixToTensorboard(pl.Callback):
|
||||
|
||||
neighbors_errors = errors[neighbors]
|
||||
worst_neighbor = neighbors[torch.argmax(neighbors_errors)]
|
||||
def __init__(self, cmap='seismic') -> None:
|
||||
super().__init__()
|
||||
self.cmap = cmap
|
||||
|
||||
# New Prototype
|
||||
new_component = 0.5 * (components[worst] +
|
||||
components[worst_neighbor])
|
||||
if self.cmap not in DIVERGING_COLOR_MAPS and type(self.cmap) is str:
|
||||
warnings.warn(
|
||||
f"{self.cmap} is not a diverging color map. We recommend to use one of the following: {DIVERGING_COLOR_MAPS}"
|
||||
)
|
||||
|
||||
# Add component
|
||||
pl_module.proto_layer.add_components(
|
||||
initialized_components=new_component.unsqueeze(0))
|
||||
def on_train_start(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
# Adjust Topology
|
||||
topology.add_prototype()
|
||||
topology.add_connection(worst, -1)
|
||||
topology.add_connection(worst_neighbor, -1)
|
||||
topology.remove_connection(worst, worst_neighbor)
|
||||
def on_train_epoch_end(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
# New errors
|
||||
worst_error = errors[worst].unsqueeze(0)
|
||||
pl_module.errors = torch.cat([pl_module.errors, worst_error])
|
||||
pl_module.errors[worst] = errors[worst] * self.reduction
|
||||
pl_module.errors[
|
||||
worst_neighbor] = errors[worst_neighbor] * self.reduction
|
||||
def plot_lambda(self, trainer, pl_module: GMLVQ):
|
||||
|
||||
trainer.accelerator_backend.setup_optimizers(trainer)
|
||||
self.fig, self.ax = plt.subplots(1, 1)
|
||||
|
||||
# plot lambda matrix
|
||||
l_matrix = pl_module.lambda_matrix
|
||||
|
||||
# normalize lambda matrix
|
||||
l_matrix = l_matrix / torch.max(torch.abs(l_matrix))
|
||||
|
||||
# plot lambda matrix
|
||||
self.ax.imshow(l_matrix.detach().numpy(), self.cmap, vmin=-1, vmax=1)
|
||||
|
||||
self.fig.colorbar(self.ax.images[-1])
|
||||
|
||||
# add title
|
||||
self.ax.set_title('Lambda Matrix')
|
||||
|
||||
# add to tensorboard
|
||||
if isinstance(trainer.logger, TensorBoardLogger):
|
||||
trainer.logger.experiment.add_figure(
|
||||
f"lambda_matrix",
|
||||
self.fig,
|
||||
trainer.global_step,
|
||||
)
|
||||
else:
|
||||
warnings.warn(
|
||||
f"{self.__class__.__name__} is not compatible with {trainer.logger.__class__.__name__} as logger. Use TensorBoardLogger instead."
|
||||
)
|
||||
|
@@ -1,76 +0,0 @@
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
from .abstract import ImagePrototypesMixin
|
||||
from .extras import (CosineSimilarity, MarginLoss, ReasoningLayer,
|
||||
euclidean_similarity, rescaled_cosine_similarity,
|
||||
shift_activation)
|
||||
from .glvq import SiameseGLVQ
|
||||
|
||||
|
||||
class CBC(SiameseGLVQ):
|
||||
"""Classification-By-Components."""
|
||||
def __init__(self, hparams, margin=0.1, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.margin = margin
|
||||
self.similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
num_components = self.components.shape[0]
|
||||
self.reasoning_layer = ReasoningLayer(num_components=num_components,
|
||||
num_classes=self.num_classes)
|
||||
self.component_layer = self.proto_layer
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
return self.prototypes
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
return self.reasoning_layer.reasonings.cpu()
|
||||
|
||||
def forward(self, x):
|
||||
components, _ = self.component_layer()
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_components = self.backbone(components)
|
||||
self.backbone.requires_grad_(True)
|
||||
detections = self.similarity_fn(latent_x, latent_components)
|
||||
probs = self.reasoning_layer(detections)
|
||||
return probs
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
# x = x.view(x.size(0), -1)
|
||||
y_pred = self(x)
|
||||
num_classes = self.reasoning_layer.num_classes
|
||||
y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
|
||||
loss = MarginLoss(self.margin)(y_pred, y_true).mean(dim=0)
|
||||
return y_pred, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
|
||||
preds = torch.argmax(y_pred, dim=1)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(),
|
||||
batch[1].int())
|
||||
self.log("train_acc",
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
return train_loss
|
||||
|
||||
def predict(self, x):
|
||||
with torch.no_grad():
|
||||
y_pred = self(x)
|
||||
y_pred = torch.argmax(y_pred, dim=1)
|
||||
return y_pred
|
||||
|
||||
|
||||
class ImageCBC(ImagePrototypesMixin, CBC):
|
||||
"""CBC model that constrains the components to the range [0, 1] by
|
||||
clamping after updates.
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
# Namespace hook
|
||||
self.proto_layer = self.component_layer
|
@@ -1,124 +0,0 @@
|
||||
"""Prototorch Data Modules
|
||||
|
||||
This allows to store the used dataset inside a Lightning Module.
|
||||
Mainly used for PytorchLightningCLI configurations.
|
||||
"""
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import DataLoader, Dataset, random_split
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
# MNIST
|
||||
class MNISTDataModule(pl.LightningDataModule):
|
||||
def __init__(self, batch_size=32):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
# Download mnist dataset as side-effect, only called on the first cpu
|
||||
def prepare_data(self):
|
||||
MNIST("~/datasets", train=True, download=True)
|
||||
MNIST("~/datasets", train=False, download=True)
|
||||
|
||||
# called for every GPU/machine (assigning state is OK)
|
||||
def setup(self, stage=None):
|
||||
# Transforms
|
||||
transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
])
|
||||
# Split dataset
|
||||
if stage in (None, "fit"):
|
||||
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
||||
self.mnist_train, self.mnist_val = random_split(
|
||||
mnist_train,
|
||||
[55000, 5000],
|
||||
)
|
||||
if stage == (None, "test"):
|
||||
self.mnist_test = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
def train_dataloader(self):
|
||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
||||
return mnist_train
|
||||
|
||||
def val_dataloader(self):
|
||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
||||
return mnist_val
|
||||
|
||||
def test_dataloader(self):
|
||||
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
||||
return mnist_test
|
||||
|
||||
|
||||
# def train_on_mnist(batch_size=256) -> type:
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = MNISTDataModule(batch_size=batch_size)
|
||||
|
||||
# def __init__(self, *args, **kwargs):
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# dc: Type[DataClass] = DataClass
|
||||
# return dc
|
||||
|
||||
|
||||
# ABSTRACT
|
||||
class GeneralDataModule(pl.LightningDataModule):
|
||||
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
|
||||
super().__init__()
|
||||
self.train_dataset = dataset
|
||||
self.batch_size = batch_size
|
||||
|
||||
def train_dataloader(self) -> DataLoader:
|
||||
return DataLoader(self.train_dataset, batch_size=self.batch_size)
|
||||
|
||||
|
||||
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
|
||||
# class DataClass(pl.LightningModule):
|
||||
# datamodule = GeneralDataModule(dataset, batch_size)
|
||||
# datashape = dataset[0][0].shape
|
||||
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
|
||||
|
||||
# def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
# prototype_initializer = kwargs.pop(
|
||||
# "prototype_initializer",
|
||||
# pt.components.Zeros(self.datashape),
|
||||
# )
|
||||
# super().__init__(*args,
|
||||
# prototype_initializer=prototype_initializer,
|
||||
# **kwargs)
|
||||
|
||||
# return DataClass
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# from prototorch.models import GLVQ
|
||||
|
||||
# demo_dataset = pt.datasets.Iris()
|
||||
|
||||
# TrainingClass: Type = train_on_dataset(demo_dataset)
|
||||
|
||||
# class DemoGLVQ(TrainingClass, GLVQ):
|
||||
# """Model Definition."""
|
||||
|
||||
# # Hyperparameters
|
||||
# hparams = dict(
|
||||
# distribution={
|
||||
# "num_classes": 3,
|
||||
# "prototypes_per_class": 4
|
||||
# },
|
||||
# lr=0.01,
|
||||
# )
|
||||
|
||||
# initialized = DemoGLVQ(hparams)
|
||||
# print(initialized)
|
@@ -1,142 +0,0 @@
|
||||
"""prototorch.models.extras
|
||||
|
||||
Modules not yet available in prototorch go here temporarily.
|
||||
|
||||
"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.similarities import cosine_similarity
|
||||
|
||||
|
||||
def rescaled_cosine_similarity(x, y):
|
||||
"""Cosine Similarity rescaled to [0, 1]."""
|
||||
similarities = cosine_similarity(x, y)
|
||||
return (similarities + 1.0) / 2.0
|
||||
|
||||
|
||||
def shift_activation(x):
|
||||
return (x + 1.0) / 2.0
|
||||
|
||||
|
||||
def euclidean_similarity(x, y, variance=1.0):
|
||||
d = euclidean_distance(x, y)
|
||||
return torch.exp(-(d * d) / (2 * variance))
|
||||
|
||||
|
||||
class ConnectionTopology(torch.nn.Module):
|
||||
def __init__(self, agelimit, num_prototypes):
|
||||
super().__init__()
|
||||
self.agelimit = agelimit
|
||||
self.num_prototypes = num_prototypes
|
||||
|
||||
self.cmat = torch.zeros((self.num_prototypes, self.num_prototypes))
|
||||
self.age = torch.zeros_like(self.cmat)
|
||||
|
||||
def forward(self, d):
|
||||
order = torch.argsort(d, dim=1)
|
||||
|
||||
for element in order:
|
||||
i0, i1 = element[0], element[1]
|
||||
|
||||
self.cmat[i0][i1] = 1
|
||||
self.cmat[i1][i0] = 1
|
||||
|
||||
self.age[i0][i1] = 0
|
||||
self.age[i1][i0] = 0
|
||||
|
||||
self.age[i0][self.cmat[i0] == 1] += 1
|
||||
self.age[i1][self.cmat[i1] == 1] += 1
|
||||
|
||||
self.cmat[i0][self.age[i0] > self.agelimit] = 0
|
||||
self.cmat[i1][self.age[i1] > self.agelimit] = 0
|
||||
|
||||
def get_neighbors(self, position):
|
||||
return torch.where(self.cmat[position])
|
||||
|
||||
def add_prototype(self):
|
||||
new_cmat = torch.zeros([dim + 1 for dim in self.cmat.shape])
|
||||
new_cmat[:-1, :-1] = self.cmat
|
||||
self.cmat = new_cmat
|
||||
|
||||
new_age = torch.zeros([dim + 1 for dim in self.age.shape])
|
||||
new_age[:-1, :-1] = self.age
|
||||
self.age = new_age
|
||||
|
||||
def add_connection(self, a, b):
|
||||
self.cmat[a][b] = 1
|
||||
self.cmat[b][a] = 1
|
||||
|
||||
self.age[a][b] = 0
|
||||
self.age[b][a] = 0
|
||||
|
||||
def remove_connection(self, a, b):
|
||||
self.cmat[a][b] = 0
|
||||
self.cmat[b][a] = 0
|
||||
|
||||
self.age[a][b] = 0
|
||||
self.age[b][a] = 0
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(agelimit): ({self.agelimit})"
|
||||
|
||||
|
||||
class CosineSimilarity(torch.nn.Module):
|
||||
def __init__(self, activation=shift_activation):
|
||||
super().__init__()
|
||||
self.activation = activation
|
||||
|
||||
def forward(self, x, y):
|
||||
epsilon = torch.finfo(x.dtype).eps
|
||||
normed_x = (x / x.pow(2).sum(dim=tuple(range(
|
||||
1, x.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
normed_y = (y / y.pow(2).sum(dim=tuple(range(
|
||||
1, y.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
# normed_x = (x / torch.linalg.norm(x, dim=1))
|
||||
diss = torch.inner(normed_x, normed_y)
|
||||
return self.activation(diss)
|
||||
|
||||
|
||||
class MarginLoss(torch.nn.modules.loss._Loss):
|
||||
def __init__(self,
|
||||
margin=0.3,
|
||||
size_average=None,
|
||||
reduce=None,
|
||||
reduction="mean"):
|
||||
super().__init__(size_average, reduce, reduction)
|
||||
self.margin = margin
|
||||
|
||||
def forward(self, input_, target):
|
||||
dp = torch.sum(target * input_, dim=-1)
|
||||
dm = torch.max(input_ - target, dim=-1).values
|
||||
return torch.nn.functional.relu(dm - dp + self.margin)
|
||||
|
||||
|
||||
class ReasoningLayer(torch.nn.Module):
|
||||
def __init__(self, num_components, num_classes, num_replicas=1):
|
||||
super().__init__()
|
||||
self.num_replicas = num_replicas
|
||||
self.num_classes = num_classes
|
||||
probabilities_init = torch.zeros(2, 1, num_components,
|
||||
self.num_classes)
|
||||
probabilities_init.uniform_(0.4, 0.6)
|
||||
# TODO Use `self.register_parameter("param", Paramater(param))` instead
|
||||
self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
pk = self.reasoning_probabilities[0]
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1]
|
||||
ik = 1 - pk - nk
|
||||
img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
|
||||
return img.unsqueeze(1)
|
||||
|
||||
def forward(self, detections):
|
||||
pk = self.reasoning_probabilities[0].clamp(0, 1)
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1].clamp(0, 1)
|
||||
numerator = (detections @ (pk - nk)) + nk.sum(1)
|
||||
probs = numerator / (pk + nk).sum(1)
|
||||
probs = probs.squeeze(0)
|
||||
return probs
|
@@ -1,333 +0,0 @@
|
||||
"""Models based on the GLVQ framework."""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (lomega_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.components import LinearMapping
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
||||
|
||||
|
||||
class GLVQ(SupervisedPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("transfer_fn", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
# Layers
|
||||
transfer_fn = get_activation(self.hparams.transfer_fn)
|
||||
self.transfer_layer = LambdaLayer(transfer_fn)
|
||||
|
||||
# Loss
|
||||
self.loss = LossLayer(glvq_loss)
|
||||
|
||||
# Prototype metrics
|
||||
self.initialize_prototype_win_ratios()
|
||||
|
||||
def initialize_prototype_win_ratios(self):
|
||||
self.register_buffer(
|
||||
"prototype_win_ratios",
|
||||
torch.zeros(self.num_prototypes, device=self.device))
|
||||
|
||||
def on_epoch_start(self):
|
||||
self.initialize_prototype_win_ratios()
|
||||
|
||||
def log_prototype_win_ratios(self, distances):
|
||||
batch_size = len(distances)
|
||||
prototype_wc = torch.zeros(self.num_prototypes,
|
||||
dtype=torch.long,
|
||||
device=self.device)
|
||||
wi, wc = torch.unique(distances.min(dim=-1).indices,
|
||||
sorted=True,
|
||||
return_counts=True)
|
||||
prototype_wc[wi] = wc
|
||||
prototype_wr = prototype_wc / batch_size
|
||||
self.prototype_win_ratios = torch.vstack([
|
||||
self.prototype_win_ratios,
|
||||
prototype_wr,
|
||||
])
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
mu = self.loss(out, y, prototype_labels=plabels)
|
||||
batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return out, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
|
||||
self.log_prototype_win_ratios(out)
|
||||
self.log("train_loss", train_loss)
|
||||
self.log_acc(out, batch[-1], tag="train_acc")
|
||||
return train_loss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
# `model.eval()` and `torch.no_grad()` handled by pl
|
||||
out, val_loss = self.shared_step(batch, batch_idx)
|
||||
self.log("val_loss", val_loss)
|
||||
self.log_acc(out, batch[-1], tag="val_acc")
|
||||
return val_loss
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
# `model.eval()` and `torch.no_grad()` handled by pl
|
||||
out, test_loss = self.shared_step(batch, batch_idx)
|
||||
self.log_acc(out, batch[-1], tag="test_acc")
|
||||
return test_loss
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
test_loss = 0.0
|
||||
for batch_loss in outputs:
|
||||
test_loss += batch_loss.item()
|
||||
self.log("test_loss", test_loss)
|
||||
|
||||
# TODO
|
||||
# def predict_step(self, batch, batch_idx, dataloader_idx=None):
|
||||
# pass
|
||||
|
||||
|
||||
class SiameseGLVQ(GLVQ):
|
||||
"""GLVQ in a Siamese setting.
|
||||
|
||||
GLVQ model that applies an arbitrary transformation on the inputs and the
|
||||
prototypes before computing the distances between them. The weights in the
|
||||
transformation pipeline are only learned from the inputs.
|
||||
|
||||
"""
|
||||
def __init__(self,
|
||||
hparams,
|
||||
backbone=torch.nn.Identity(),
|
||||
both_path_gradients=False,
|
||||
**kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
self.backbone = backbone
|
||||
self.both_path_gradients = both_path_gradients
|
||||
|
||||
def configure_optimizers(self):
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
# Only add a backbone optimizer if backbone has trainable parameters
|
||||
if (bb_params := list(self.backbone.parameters())):
|
||||
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
|
||||
optimizers = [proto_opt, bb_opt]
|
||||
else:
|
||||
optimizers = [proto_opt]
|
||||
if self.lr_scheduler is not None:
|
||||
schedulers = []
|
||||
for optimizer in optimizers:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
schedulers.append(scheduler)
|
||||
return optimizers, schedulers
|
||||
else:
|
||||
return optimizers
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = get_flat(x, protos)
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_protos = self.backbone(protos)
|
||||
self.backbone.requires_grad_(True)
|
||||
distances = self.distance_layer(latent_x, latent_protos)
|
||||
return distances
|
||||
|
||||
def predict_latent(self, x, map_protos=True):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
if map_protos:
|
||||
protos = self.backbone(protos)
|
||||
d = self.distance_layer(x, protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
class LVQMLN(SiameseGLVQ):
|
||||
"""Learning Vector Quantization Multi-Layer Network.
|
||||
|
||||
GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT
|
||||
on the prototypes before computing the distances between them. This of
|
||||
course, means that the prototypes no longer live the input space, but
|
||||
rather in the embedding space.
|
||||
|
||||
"""
|
||||
def compute_distances(self, x):
|
||||
latent_protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
distances = self.distance_layer(latent_x, latent_protos)
|
||||
return distances
|
||||
|
||||
|
||||
class GRLVQ(SiameseGLVQ):
|
||||
"""Generalized Relevance Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
||||
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
relevances = torch.ones(self.hparams.input_dim, device=self.device)
|
||||
self.register_parameter("_relevances", Parameter(relevances))
|
||||
|
||||
# Override the backbone
|
||||
self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances),
|
||||
name="relevance scaling")
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
return self._relevances.detach().cpu()
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(relevances): (shape: {tuple(self._relevances.shape)})"
|
||||
|
||||
|
||||
class SiameseGMLVQ(SiameseGLVQ):
|
||||
"""Generalized Matrix Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Override the backbone
|
||||
self.backbone = torch.nn.Linear(self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
bias=False)
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self.backbone.weight.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self.backbone.weight # (latent_dim, input_dim)
|
||||
lam = omega.T @ omega
|
||||
return lam.detach().cpu()
|
||||
|
||||
|
||||
class GMLVQ(GLVQ):
|
||||
"""Generalized Matrix Learning Vector Quantization.
|
||||
|
||||
Implemented as a regular GLVQ network that simply uses a different distance
|
||||
function. This makes it easier to implement a localized variant.
|
||||
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
omega_initializer = kwargs.get("omega_initializer", None)
|
||||
initialized_omega = kwargs.get("initialized_omega", None)
|
||||
if omega_initializer is not None or initialized_omega is not None:
|
||||
self.omega_layer = LinearMapping(
|
||||
mapping_shape=(self.hparams.input_dim, self.hparams.latent_dim),
|
||||
initializer=omega_initializer,
|
||||
initialized_linearmapping=initialized_omega,
|
||||
)
|
||||
|
||||
self.register_parameter("_omega", Parameter(self.omega_layer.mapping))
|
||||
self.backbone = LambdaLayer(lambda x: x @ self._omega, name = "omega matrix")
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos, self._omega)
|
||||
return distances
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(omega): (shape: {tuple(self._omega.shape)})"
|
||||
|
||||
def predict_latent(self, x, map_protos=True):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
if map_protos:
|
||||
protos = self.backbone(protos)
|
||||
d = squared_euclidean_distance(x, protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
|
||||
|
||||
class LGMLVQ(GMLVQ):
|
||||
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", lomega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Re-register `_omega` to override the one from the super class.
|
||||
omega = torch.randn(
|
||||
self.num_prototypes,
|
||||
self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
device=self.device,
|
||||
)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
|
||||
class GLVQ1(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq1_loss)
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class GLVQ21(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 2.1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq21_loss)
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(ImagePrototypesMixin, GLVQ):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
|
||||
"""GMLVQ for training on image data.
|
||||
|
||||
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
@@ -1,38 +0,0 @@
|
||||
"""ProtoTorch KNN model."""
|
||||
|
||||
import warnings
|
||||
|
||||
from prototorch.components import LabeledComponents
|
||||
from prototorch.modules import KNNC
|
||||
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
|
||||
|
||||
class KNN(SupervisedPrototypeModel):
|
||||
"""K-Nearest-Neighbors classification algorithm."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("k", 1)
|
||||
|
||||
data = kwargs.get("data", None)
|
||||
if data is None:
|
||||
raise ValueError("KNN requires data, but was not provided!")
|
||||
|
||||
# Layers
|
||||
self.proto_layer = LabeledComponents(initialized_components=data)
|
||||
self.competition_layer = KNNC(k=self.hparams.k)
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
return 1 # skip training step
|
||||
|
||||
def on_train_batch_start(self,
|
||||
train_batch,
|
||||
batch_idx,
|
||||
dataloader_idx=None):
|
||||
warnings.warn("k-NN has no training, skipping!")
|
||||
return -1
|
||||
|
||||
def configure_optimizers(self):
|
||||
return None
|
7
prototorch/models/library/__init__.py
Normal file
7
prototorch/models/library/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from .glvq import GLVQ
|
||||
from .gmlvq import GMLVQ
|
||||
|
||||
__all__ = [
|
||||
"GLVQ",
|
||||
"GMLVQ",
|
||||
]
|
35
prototorch/models/library/glvq.py
Normal file
35
prototorch/models/library/glvq.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.models import (
|
||||
SimpleComparisonMixin,
|
||||
SingleLearningRateMixin,
|
||||
SupervisedArchitecture,
|
||||
WTACompetitionMixin,
|
||||
)
|
||||
from prototorch.models.architectures.loss import GLVQLossMixin
|
||||
|
||||
|
||||
class GLVQ(
|
||||
SupervisedArchitecture,
|
||||
SimpleComparisonMixin,
|
||||
GLVQLossMixin,
|
||||
WTACompetitionMixin,
|
||||
SingleLearningRateMixin,
|
||||
):
|
||||
"""
|
||||
Generalized Learning Vector Quantization (GLVQ)
|
||||
|
||||
A GLVQ architecture that uses the winner-take-all strategy and the GLVQ loss.
|
||||
"""
|
||||
|
||||
@dataclass
|
||||
class HyperParameters(
|
||||
SimpleComparisonMixin.HyperParameters,
|
||||
SingleLearningRateMixin.HyperParameters,
|
||||
GLVQLossMixin.HyperParameters,
|
||||
WTACompetitionMixin.HyperParameters,
|
||||
SupervisedArchitecture.HyperParameters,
|
||||
):
|
||||
"""
|
||||
No hyperparameters.
|
||||
"""
|
50
prototorch/models/library/gmlvq.py
Normal file
50
prototorch/models/library/gmlvq.py
Normal file
@@ -0,0 +1,50 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from prototorch.core.distances import omega_distance
|
||||
from prototorch.models import (
|
||||
GLVQLossMixin,
|
||||
MultipleLearningRateMixin,
|
||||
OmegaComparisonMixin,
|
||||
SupervisedArchitecture,
|
||||
WTACompetitionMixin,
|
||||
)
|
||||
|
||||
|
||||
class GMLVQ(
|
||||
SupervisedArchitecture,
|
||||
OmegaComparisonMixin,
|
||||
GLVQLossMixin,
|
||||
WTACompetitionMixin,
|
||||
MultipleLearningRateMixin,
|
||||
):
|
||||
"""
|
||||
Generalized Matrix Learning Vector Quantization (GMLVQ)
|
||||
|
||||
A GMLVQ architecture that uses the winner-take-all strategy and the GLVQ loss.
|
||||
"""
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(
|
||||
MultipleLearningRateMixin.HyperParameters,
|
||||
OmegaComparisonMixin.HyperParameters,
|
||||
GLVQLossMixin.HyperParameters,
|
||||
WTACompetitionMixin.HyperParameters,
|
||||
SupervisedArchitecture.HyperParameters,
|
||||
):
|
||||
"""
|
||||
comparison_fn: The comparison / dissimilarity function to use. Override Default: omega_distance.
|
||||
comparison_args: Keyword arguments for the comparison function. Override Default: {}.
|
||||
"""
|
||||
comparison_fn: Callable = omega_distance
|
||||
comparison_args: dict = field(default_factory=lambda: dict())
|
||||
optimizer: type[torch.optim.Optimizer] = torch.optim.Adam
|
||||
|
||||
lr: dict = field(default_factory=lambda: dict(
|
||||
components_layer=0.1,
|
||||
_omega=0.5,
|
||||
))
|
@@ -1,68 +0,0 @@
|
||||
"""LVQ models that are optimized using non-gradient methods."""
|
||||
|
||||
from prototorch.functions.losses import _get_dp_dm
|
||||
|
||||
from .abstract import NonGradientMixin
|
||||
from .glvq import GLVQ
|
||||
|
||||
|
||||
class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
|
||||
for xi, yi in zip(x, y):
|
||||
d = self.compute_distances(xi.view(1, -1))
|
||||
preds = self.competition_layer(d, plabels)
|
||||
w = d.argmin(1)
|
||||
if yi == preds:
|
||||
shift = xi - protos[w]
|
||||
else:
|
||||
shift = protos[w] - xi
|
||||
updated_protos = protos + 0.0
|
||||
updated_protos[w] = protos[w] + (self.hparams.lr * shift)
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
|
||||
for xi, yi in zip(x, y):
|
||||
xi = xi.view(1, -1)
|
||||
yi = yi.view(1, )
|
||||
d = self.compute_distances(xi)
|
||||
(_, wp), (_, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
|
||||
shiftp = xi - protos[wp]
|
||||
shiftn = protos[wn] - xi
|
||||
updated_protos = protos + 0.0
|
||||
updated_protos[wp] = protos[wp] + (self.hparams.lr * shiftp)
|
||||
updated_protos[wn] = protos[wn] + (self.hparams.lr * shiftn)
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class MedianLVQ(NonGradientMixin, GLVQ):
|
||||
"""Median LVQ"""
|
@@ -1,99 +0,0 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.losses import nllr_loss, rslvq_loss
|
||||
from prototorch.functions.pooling import (stratified_min_pooling,
|
||||
stratified_sum_pooling)
|
||||
from prototorch.functions.transforms import (GaussianPrior,
|
||||
RankScaledGaussianPrior)
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
|
||||
from .glvq import GLVQ, SiameseGMLVQ
|
||||
|
||||
|
||||
class CELVQ(GLVQ):
|
||||
"""Cross-Entropy Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Loss
|
||||
self.loss = torch.nn.CrossEntropyLoss()
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x) # [None, num_protos]
|
||||
plabels = self.proto_layer.component_labels
|
||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||
probs = -1.0 * winning
|
||||
batch_loss = self.loss(probs, y.long())
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return out, loss
|
||||
|
||||
|
||||
class ProbabilisticLVQ(GLVQ):
|
||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.conditional_distribution = None
|
||||
self.rejection_confidence = rejection_confidence
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
conditional = self.conditional_distribution(distances)
|
||||
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
|
||||
device=self.device)
|
||||
posterior = conditional * prior
|
||||
plabels = self.proto_layer._labels
|
||||
y_pred = stratified_sum_pooling(posterior, plabels)
|
||||
return y_pred
|
||||
|
||||
def predict(self, x):
|
||||
y_pred = self.forward(x)
|
||||
confidence, prediction = torch.max(y_pred, dim=1)
|
||||
prediction[confidence < self.rejection_confidence] = -1
|
||||
return prediction
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
batch_loss = self.loss(out, y, plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return loss
|
||||
|
||||
|
||||
class SLVQ(ProbabilisticLVQ):
|
||||
"""Soft Learning Vector Quantization."""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(nllr_loss)
|
||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
||||
|
||||
|
||||
class RSLVQ(ProbabilisticLVQ):
|
||||
"""Robust Soft Learning Vector Quantization."""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss = LossLayer(rslvq_loss)
|
||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
||||
|
||||
|
||||
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
"""Probabilistic Learning Vector Quantization.
|
||||
|
||||
TODO: Use Backbone LVQ instead
|
||||
"""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.conditional_distribution = RankScaledGaussianPrior(
|
||||
self.hparams.lambd)
|
||||
self.loss = torch.nn.KLDivLoss()
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
y_dist = torch.nn.functional.one_hot(
|
||||
y.long(), num_classes=self.num_classes).float()
|
||||
batch_loss = self.loss(out, y_dist)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return loss
|
@@ -1,146 +0,0 @@
|
||||
"""Unsupervised prototype learning algorithms."""
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import squared_euclidean_distance
|
||||
from prototorch.modules import LambdaLayer
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
|
||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
||||
from .callbacks import GNGCallback
|
||||
from .extras import ConnectionTopology
|
||||
|
||||
|
||||
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
"""Kohonen Self-Organizing-Map.
|
||||
|
||||
TODO Allow non-2D grids
|
||||
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
h, w = hparams.get("shape")
|
||||
# Ignore `num_prototypes`
|
||||
hparams["num_prototypes"] = h * w
|
||||
distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Hyperparameters
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("alpha", 0.3)
|
||||
self.hparams.setdefault("sigma", max(h, w) / 2.0)
|
||||
|
||||
# Additional parameters
|
||||
x, y = torch.arange(h), torch.arange(w)
|
||||
grid = torch.stack(torch.meshgrid(x, y), dim=-1)
|
||||
self.register_buffer("_grid", grid)
|
||||
self._sigma = self.hparams.sigma
|
||||
self._lr = self.hparams.lr
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
grid = self._grid.view(-1, 2)
|
||||
wp = wtac(distances, grid)
|
||||
return wp
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
# x = train_batch
|
||||
# TODO Check if the batch has labels
|
||||
x = train_batch[0]
|
||||
d = self.compute_distances(x)
|
||||
wp = self.predict_from_distances(d)
|
||||
grid = self._grid.view(-1, 2)
|
||||
gd = squared_euclidean_distance(wp, grid)
|
||||
nh = torch.exp(-gd / self._sigma**2)
|
||||
protos = self.proto_layer.components
|
||||
diff = x.unsqueeze(dim=1) - protos
|
||||
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
||||
updated_protos = protos + delta.sum(dim=0)
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
def training_epoch_end(self, training_step_outputs):
|
||||
self._sigma = self.hparams.sigma * np.exp(
|
||||
-self.current_epoch / self.trainer.max_epochs)
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(grid): (shape: {tuple(self._grid.shape)})"
|
||||
|
||||
|
||||
class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
# TODO Implement me!
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class NeuralGas(UnsupervisedPrototypeModel):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Hyperparameters
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("agelimit", 10)
|
||||
self.hparams.setdefault("lm", 1)
|
||||
|
||||
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
|
||||
self.topology_layer = ConnectionTopology(
|
||||
agelimit=self.hparams.agelimit,
|
||||
num_prototypes=self.hparams.num_prototypes,
|
||||
)
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
# x = train_batch
|
||||
# TODO Check if the batch has labels
|
||||
x = train_batch[0]
|
||||
d = self.compute_distances(x)
|
||||
loss, _ = self.energy_layer(d)
|
||||
self.topology_layer(d)
|
||||
self.log("loss", loss)
|
||||
return loss
|
||||
|
||||
# def training_epoch_end(self, training_step_outputs):
|
||||
# print(f"{self.trainer.lr_schedulers}")
|
||||
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
|
||||
|
||||
|
||||
class GrowingNeuralGas(NeuralGas):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Defaults
|
||||
self.hparams.setdefault("step_reduction", 0.5)
|
||||
self.hparams.setdefault("insert_reduction", 0.1)
|
||||
self.hparams.setdefault("insert_freq", 10)
|
||||
|
||||
errors = torch.zeros(self.hparams.num_prototypes, device=self.device)
|
||||
self.register_buffer("errors", errors)
|
||||
|
||||
def training_step(self, train_batch, _batch_idx):
|
||||
# x = train_batch
|
||||
# TODO Check if the batch has labels
|
||||
x = train_batch[0]
|
||||
d = self.compute_distances(x)
|
||||
loss, order = self.energy_layer(d)
|
||||
winner = order[:, 0]
|
||||
mask = torch.zeros_like(d)
|
||||
mask[torch.arange(len(mask)), winner] = 1.0
|
||||
dp = d * mask
|
||||
|
||||
self.errors += torch.sum(dp * dp, dim=0)
|
||||
self.errors *= self.hparams.step_reduction
|
||||
|
||||
self.topology_layer(d)
|
||||
self.log("loss", loss)
|
||||
return loss
|
||||
|
||||
def configure_callbacks(self):
|
||||
return [
|
||||
GNGCallback(reduction=self.hparams.insert_reduction,
|
||||
freq=self.hparams.insert_freq)
|
||||
]
|
@@ -1,18 +1,28 @@
|
||||
"""Visualization Callbacks."""
|
||||
|
||||
import warnings
|
||||
from typing import Sized
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.utils.colors import get_colors, get_legend_handles
|
||||
from prototorch.utils.utils import mesh2d
|
||||
from pytorch_lightning.loggers import TensorBoardLogger
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
|
||||
def __init__(self,
|
||||
data,
|
||||
data=None,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2",
|
||||
legend_labels=None,
|
||||
border=0.1,
|
||||
resolution=100,
|
||||
flatten_data=True,
|
||||
@@ -25,24 +35,36 @@ class Vis2DAbstract(pl.Callback):
|
||||
block=False):
|
||||
super().__init__()
|
||||
|
||||
if isinstance(data, Dataset):
|
||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||
elif isinstance(data, torch.utils.data.DataLoader):
|
||||
x = torch.tensor([])
|
||||
y = torch.tensor([])
|
||||
for x_b, y_b in data:
|
||||
x = torch.cat([x, x_b])
|
||||
y = torch.cat([y, y_b])
|
||||
if data:
|
||||
if isinstance(data, Dataset):
|
||||
if isinstance(data, Sized):
|
||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||
else:
|
||||
# TODO: Add support for non-sized datasets
|
||||
raise NotImplementedError(
|
||||
"Data must be a dataset with a __len__ method.")
|
||||
elif isinstance(data, DataLoader):
|
||||
x = torch.tensor([])
|
||||
y = torch.tensor([])
|
||||
for x_b, y_b in data:
|
||||
x = torch.cat([x, x_b])
|
||||
y = torch.cat([y, y_b])
|
||||
else:
|
||||
x, y = data
|
||||
|
||||
if flatten_data:
|
||||
x = x.reshape(len(x), -1)
|
||||
|
||||
self.x_train = x
|
||||
self.y_train = y
|
||||
else:
|
||||
x, y = data
|
||||
|
||||
if flatten_data:
|
||||
x = x.reshape(len(x), -1)
|
||||
|
||||
self.x_train = x
|
||||
self.y_train = y
|
||||
self.x_train = None
|
||||
self.y_train = None
|
||||
|
||||
self.title = title
|
||||
self.xlabel = xlabel
|
||||
self.ylabel = ylabel
|
||||
self.legend_labels = legend_labels
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.border = border
|
||||
@@ -61,35 +83,17 @@ class Vis2DAbstract(pl.Callback):
|
||||
return False
|
||||
return True
|
||||
|
||||
def setup_ax(self, xlabel=None, ylabel=None):
|
||||
def setup_ax(self):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
if xlabel:
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
if ylabel:
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.set_xlabel(self.xlabel)
|
||||
ax.set_ylabel(self.ylabel)
|
||||
if self.axis_off:
|
||||
ax.axis("off")
|
||||
return ax
|
||||
|
||||
def get_mesh_input(self, x):
|
||||
x_shift = self.border * np.ptp(x[:, 0])
|
||||
y_shift = self.border * np.ptp(x[:, 1])
|
||||
x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
|
||||
y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
|
||||
xx, yy = np.meshgrid(np.linspace(x_min, x_max, self.resolution),
|
||||
np.linspace(y_min, y_max, self.resolution))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
return mesh_input, xx, yy
|
||||
|
||||
def perform_pca_2D(self, data):
|
||||
(_, eigVal, eigVec) = torch.pca_lowrank(data, q=2)
|
||||
return data @ eigVec
|
||||
|
||||
def plot_data(self, ax, x, y, pca=False):
|
||||
if pca:
|
||||
x = self.perform_pca_2D(x)
|
||||
def plot_data(self, ax, x, y):
|
||||
ax.scatter(
|
||||
x[:, 0],
|
||||
x[:, 1],
|
||||
@@ -100,9 +104,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
s=30,
|
||||
)
|
||||
|
||||
def plot_protos(self, ax, protos, plabels, pca=False):
|
||||
if pca:
|
||||
protos = self.perform_pca_2D(protos)
|
||||
def plot_protos(self, ax, protos, plabels):
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
@@ -129,42 +131,47 @@ class Vis2DAbstract(pl.Callback):
|
||||
else:
|
||||
plt.show(block=self.block)
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
self.visualize(pl_module)
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
def on_train_end(self, trainer, pl_module):
|
||||
plt.close()
|
||||
|
||||
def visualize(self, pl_module):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
ax = self.setup_ax()
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
if x_train is not None:
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(np.vstack([x_train, protos]),
|
||||
self.border, self.resolution)
|
||||
else:
|
||||
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
@@ -181,9 +188,9 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
else:
|
||||
mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict_latent(mesh_input,
|
||||
@@ -191,87 +198,62 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = pl_module.backbone(torch.Tensor(x_train).to(device))
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.map_protos:
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = pl_module.backbone(torch.Tensor(protos).to(device))
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
if x_train.shape[1] > 2:
|
||||
self.plot_data(ax, x_train, y_train, pca=True)
|
||||
else:
|
||||
self.plot_data(ax, x_train, y_train, pca=False)
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
if protos.shape[1] > 2:
|
||||
self.plot_protos(ax, protos, plabels, pca=True)
|
||||
else:
|
||||
self.plot_protos(ax, protos, plabels, pca=False)
|
||||
### something to work on: meshgrid with pca
|
||||
# x = np.vstack((x_train, protos))
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
#else:
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
#_components = pl_module.proto_layer._components
|
||||
#mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
#y_pred = pl_module.predict_latent(mesh_input,
|
||||
# map_protos=self.map_protos)
|
||||
#y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
#ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
self.log_and_display(trainer, pl_module)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.components
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
_components = pl_module.component_layer._components
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.components_layer._components
|
||||
y_pred = pl_module.predict(
|
||||
torch.Tensor(mesh_input).type_as(_components))
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.prototypes
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
|
||||
@@ -285,10 +267,27 @@ class VisNG2D(Vis2DAbstract):
|
||||
"k-",
|
||||
)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
class VisSpectralProtos(Vis2DAbstract):
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
ax = self.setup_ax()
|
||||
colors = get_colors(vmax=max(plabels), vmin=min(plabels))
|
||||
for p, pl in zip(protos, plabels):
|
||||
ax.plot(p, c=colors[int(pl)])
|
||||
if self.legend_labels:
|
||||
handles = get_legend_handles(
|
||||
colors,
|
||||
self.legend_labels,
|
||||
marker="lines",
|
||||
)
|
||||
ax.legend(handles=handles)
|
||||
|
||||
|
||||
class VisImgComp(Vis2DAbstract):
|
||||
|
||||
def __init__(self,
|
||||
*args,
|
||||
random_data=0,
|
||||
@@ -304,32 +303,45 @@ class VisImgComp(Vis2DAbstract):
|
||||
self.add_embedding = add_embedding
|
||||
self.embedding_data = embedding_data
|
||||
|
||||
def on_train_start(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
if self.add_embedding:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.embedding_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
# print(f"{data.shape=}")
|
||||
# print(f"{self.y_train[ind].shape=}")
|
||||
tb.add_embedding(data.view(len(ind), -1),
|
||||
label_img=data,
|
||||
global_step=None,
|
||||
tag="Data Embedding",
|
||||
metadata=self.y_train[ind],
|
||||
metadata_header=None)
|
||||
def on_train_start(self, _, pl_module):
|
||||
if isinstance(pl_module.logger, TensorBoardLogger):
|
||||
tb = pl_module.logger.experiment
|
||||
|
||||
if self.random_data:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.random_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
grid = torchvision.utils.make_grid(data, nrow=self.num_columns)
|
||||
tb.add_image(tag="Data",
|
||||
img_tensor=grid,
|
||||
global_step=None,
|
||||
dataformats=self.dataformats)
|
||||
# Add embedding
|
||||
if self.add_embedding:
|
||||
if self.x_train is not None and self.y_train is not None:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.embedding_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
tb.add_embedding(data.view(len(ind), -1),
|
||||
label_img=data,
|
||||
global_step=None,
|
||||
tag="Data Embedding",
|
||||
metadata=self.y_train[ind],
|
||||
metadata_header=None)
|
||||
else:
|
||||
raise ValueError("No data for add embedding flag")
|
||||
|
||||
# Random Data
|
||||
if self.random_data:
|
||||
if self.x_train is not None:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.random_data,
|
||||
replace=False)
|
||||
data = self.x_train[ind]
|
||||
grid = torchvision.utils.make_grid(data,
|
||||
nrow=self.num_columns)
|
||||
tb.add_image(tag="Data",
|
||||
img_tensor=grid,
|
||||
global_step=None,
|
||||
dataformats=self.dataformats)
|
||||
else:
|
||||
raise ValueError("No data for random data flag")
|
||||
|
||||
else:
|
||||
warnings.warn(
|
||||
f"TensorBoardLogger is required, got {type(pl_module.logger)}")
|
||||
|
||||
def add_to_tensorboard(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
@@ -343,14 +355,9 @@ class VisImgComp(Vis2DAbstract):
|
||||
dataformats=self.dataformats,
|
||||
)
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
def visualize(self, pl_module):
|
||||
if self.show:
|
||||
components = pl_module.components
|
||||
grid = torchvision.utils.make_grid(components,
|
||||
nrow=self.num_columns)
|
||||
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
23
setup.cfg
Normal file
23
setup.cfg
Normal file
@@ -0,0 +1,23 @@
|
||||
[yapf]
|
||||
based_on_style = pep8
|
||||
spaces_before_comment = 2
|
||||
split_before_logical_operator = true
|
||||
|
||||
[pylint]
|
||||
disable =
|
||||
too-many-arguments,
|
||||
too-few-public-methods,
|
||||
fixme,
|
||||
|
||||
|
||||
[pycodestyle]
|
||||
max-line-length = 79
|
||||
|
||||
[isort]
|
||||
profile = hug
|
||||
src_paths = isort, test
|
||||
multi_line_output = 3
|
||||
include_trailing_comma = True
|
||||
force_grid_wrap = 3
|
||||
use_parentheses = True
|
||||
line_length = 79
|
14
setup.py
14
setup.py
@@ -22,9 +22,10 @@ with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
INSTALL_REQUIRES = [
|
||||
"prototorch>=0.5.0,<0.6.0",
|
||||
"pytorch_lightning>=1.3.5",
|
||||
"prototorch>=0.7.3",
|
||||
"pytorch_lightning>=1.6.0",
|
||||
"torchmetrics",
|
||||
"protobuf<3.20.0",
|
||||
]
|
||||
CLI = [
|
||||
"jsonargparse",
|
||||
@@ -37,6 +38,7 @@ DOCS = [
|
||||
"recommonmark",
|
||||
"sphinx",
|
||||
"nbsphinx",
|
||||
"ipykernel",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-katex",
|
||||
"sphinxcontrib-bibtex",
|
||||
@@ -53,7 +55,7 @@ ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name=safe_name("prototorch_" + PLUGIN_NAME),
|
||||
version="0.1.8",
|
||||
version="1.0.0-a6",
|
||||
description="Pre-packaged prototype-based "
|
||||
"machine learning models using ProtoTorch and PyTorch-Lightning.",
|
||||
long_description=long_description,
|
||||
@@ -63,7 +65,7 @@ setup(
|
||||
url=PROJECT_URL,
|
||||
download_url=DOWNLOAD_URL,
|
||||
license="MIT",
|
||||
python_requires=">=3.9",
|
||||
python_requires=">=3.7",
|
||||
install_requires=INSTALL_REQUIRES,
|
||||
extras_require={
|
||||
"dev": DEV,
|
||||
@@ -79,7 +81,11 @@ setup(
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Natural Language :: English",
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.7",
|
||||
"Operating System :: OS Independent",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
|
@@ -1,14 +0,0 @@
|
||||
"""prototorch.models test suite."""
|
||||
|
||||
import unittest
|
||||
|
||||
|
||||
class TestDummy(unittest.TestCase):
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
def test_dummy(self):
|
||||
pass
|
||||
|
||||
def tearDown(self):
|
||||
pass
|
@@ -1,17 +1,35 @@
|
||||
#! /bin/bash
|
||||
|
||||
|
||||
# Read Flags
|
||||
gpu=0
|
||||
while [ -n "$1" ]; do
|
||||
case "$1" in
|
||||
--gpu) gpu=1;;
|
||||
-g) gpu=1;;
|
||||
*) path=$1;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
python --version
|
||||
echo "Using GPU: " $gpu
|
||||
|
||||
# Loop
|
||||
failed=0
|
||||
|
||||
for example in $(find $1 -maxdepth 1 -name "*.py")
|
||||
for example in $(find $path -maxdepth 1 -name "*.py")
|
||||
do
|
||||
echo -n "$x" $example '... '
|
||||
export DISPLAY= && python $example --fast_dev_run 1 &> /dev/null
|
||||
export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
|
||||
if [[ $? -ne 0 ]]; then
|
||||
echo "FAILED!!"
|
||||
cat run_log.txt
|
||||
failed=1
|
||||
else
|
||||
echo "SUCCESS!"
|
||||
fi
|
||||
rm run_log.txt
|
||||
done
|
||||
|
||||
exit $failed
|
||||
|
Reference in New Issue
Block a user