55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Growing Neural Gas example using the Iris dataset."""
 | |
| 
 | |
| import argparse
 | |
| 
 | |
| import pytorch_lightning as pl
 | |
| import torch
 | |
| 
 | |
| import prototorch as pt
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     # Command-line arguments
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser = pl.Trainer.add_argparse_args(parser)
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     # Reproducibility
 | |
|     pl.utilities.seed.seed_everything(seed=42)
 | |
| 
 | |
|     # Prepare the data
 | |
|     train_ds = pt.datasets.Iris(dims=[0, 2])
 | |
|     train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
 | |
| 
 | |
|     # Hyperparameters
 | |
|     hparams = dict(
 | |
|         num_prototypes=5,
 | |
|         input_dim=2,
 | |
|         lr=0.1,
 | |
|     )
 | |
| 
 | |
|     # Initialize the model
 | |
|     model = pt.models.GrowingNeuralGas(
 | |
|         hparams,
 | |
|         prototype_initializer=pt.components.Zeros(2),
 | |
|     )
 | |
| 
 | |
|     # Compute intermediate input and output sizes
 | |
|     model.example_input_array = torch.zeros(4, 2)
 | |
| 
 | |
|     # Model summary
 | |
|     print(model)
 | |
| 
 | |
|     # Callbacks
 | |
|     vis = pt.models.VisNG2D(data=train_loader)
 | |
| 
 | |
|     # Setup trainer
 | |
|     trainer = pl.Trainer.from_argparse_args(
 | |
|         args,
 | |
|         max_epochs=100,
 | |
|         callbacks=[vis],
 | |
|         weights_summary="full",
 | |
|     )
 | |
| 
 | |
|     # Training loop
 | |
|     trainer.fit(model, train_loader)
 |