Compare commits
24 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
1498c4bde5 | ||
|
59b8ab6643 | ||
|
2a4f184163 | ||
|
265e74dd31 | ||
|
daad018a78 | ||
|
eab1ec72c2 | ||
|
b38acd58a8 | ||
|
e87563e10d | ||
|
767206f905 | ||
|
3fa6378c4d | ||
|
30ee287ecc | ||
|
e323f9d4ca | ||
|
f49db0bf2c | ||
|
db38667306 | ||
|
54a8494d86 | ||
|
bf310be97c | ||
|
32ae1b7862 | ||
|
dfddb92aba | ||
|
4a38bb2bfe | ||
|
6680d4b9df | ||
|
1ae2b41edd | ||
|
9300a6d14d | ||
|
3d42876df1 | ||
|
fbadacdbca |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.1.0
|
||||
current_version = 0.1.7
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
|
@@ -17,5 +17,5 @@ deploy:
|
||||
password:
|
||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
||||
tags: true
|
||||
skip_existing: true
|
||||
|
26
README.md
26
README.md
@@ -1,28 +1,25 @@
|
||||
# ProtoTorch Models
|
||||
|
||||
[](https://travis-ci.org/si-cim/prototorch_models)
|
||||
[](https://pypi.org/project/prototorch_models/)
|
||||
|
||||
Pre-packaged prototype-based machine learning models using ProtoTorch and
|
||||
PyTorch-Lightning.
|
||||
|
||||
## Installation
|
||||
|
||||
To install this plugin, first install
|
||||
[ProtoTorch](https://github.com/si-cim/prototorch) with:
|
||||
To install this plugin, simply run the following command:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/si-cim/prototorch.git && cd prototorch
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
and then install the plugin itself with:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/si-cim/prototorch_models.git && cd prototorch_models
|
||||
pip install -e .
|
||||
pip install prototorch_models
|
||||
```
|
||||
|
||||
The plugin should then be available for use in your Python environment as
|
||||
`prototorch.models`.
|
||||
|
||||
*Note: Installing the models plugin should automatically install a suitable
|
||||
version of * [ProtoTorch](https://github.com/si-cim/prototorch).
|
||||
|
||||
## Development setup
|
||||
|
||||
It is recommended that you use a virtual environment for development. If you do
|
||||
@@ -54,17 +51,20 @@ To assist in the development process, you may also find it useful to install
|
||||
|
||||
## Available models
|
||||
|
||||
- K-Nearest Neighbors (KNN)
|
||||
- Learning Vector Quantization 1 (LVQ1)
|
||||
- Generalized Learning Vector Quantization (GLVQ)
|
||||
- Generalized Relevance Learning Vector Quantization (GRLVQ)
|
||||
- Generalized Matrix Learning Vector Quantization (GMLVQ)
|
||||
- Limited-Rank Matrix Learning Vector Quantization (LiRaMLVQ)
|
||||
- Learning Vector Quantization Multi-Layer Network (LVQMLN)
|
||||
- Siamese GLVQ
|
||||
- Neural Gas (NG)
|
||||
|
||||
## Work in Progress
|
||||
|
||||
- Classification-By-Components Network (CBC)
|
||||
- Learning Vector Quantization Multi-Layer Network (LVQMLN)
|
||||
- Learning Vector Quantization 2.1 (LVQ2.1)
|
||||
|
||||
## Planned models
|
||||
|
||||
@@ -73,8 +73,6 @@ To assist in the development process, you may also find it useful to install
|
||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||
- Probabilistic Learning Vector Quantization (PLVQ)
|
||||
- Self-Incremental Learning Vector Quantization (SILVQ)
|
||||
- K-Nearest Neighbors (KNN)
|
||||
- Learning Vector Quantization 1 (LVQ1)
|
||||
|
||||
## FAQ
|
||||
|
||||
|
@@ -17,15 +17,16 @@ if __name__ == "__main__":
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
nclasses = 3
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(hparams)
|
||||
model = pt.models.GLVQ(hparams, optimizer=torch.optim.Adam)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
|
||||
|
@@ -25,10 +25,11 @@ if __name__ == "__main__":
|
||||
batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
nclasses = 2
|
||||
prototypes_per_class = 20
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=20,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-7),
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-1),
|
||||
transfer_function="sigmoid_beta",
|
||||
transfer_beta=10.0,
|
||||
lr=0.01,
|
||||
|
@@ -15,9 +15,10 @@ if __name__ == "__main__":
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
# Hyperparameters
|
||||
nclasses = 3
|
||||
prototypes_per_class = 1
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=1,
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
input_dim=x_train.shape[1],
|
||||
latent_dim=x_train.shape[1],
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
|
37
examples/knn_iris.py
Normal file
37
examples/knn_iris.py
Normal file
@@ -0,0 +1,37 @@
|
||||
"""k-NN example using the Iris dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(k=20)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.KNN(hparams, data=train_ds)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=1, callbacks=[vis])
|
||||
|
||||
# Training loop
|
||||
# This is only for visualization. k-NN has no training phase.
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Recall
|
||||
y_pred = model.predict(torch.tensor(x_train))
|
||||
print(y_pred)
|
@@ -17,9 +17,10 @@ if __name__ == "__main__":
|
||||
batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
nclasses = 2
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=2,
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
|
@@ -24,9 +24,7 @@ class Backbone(torch.nn.Module):
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
@@ -38,11 +36,10 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=pt.components.SMI((x_train, y_train)),
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
distribution=[1, 2, 3],
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
@@ -55,7 +52,7 @@ if __name__ == "__main__":
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=(x_train, y_train), border=0.1)
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||
|
@@ -1,8 +1,10 @@
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .cbc import CBC
|
||||
from .glvq import GLVQ, GMLVQ, GRLVQ, LVQMLN, ImageGLVQ, SiameseGLVQ
|
||||
from .glvq import (GLVQ, GMLVQ, GRLVQ, LVQ1, LVQ21, LVQMLN, ImageGLVQ,
|
||||
SiameseGLVQ)
|
||||
from .knn import KNN
|
||||
from .neural_gas import NeuralGas
|
||||
from .vis import *
|
||||
|
||||
__version__ = "0.1.0"
|
||||
__version__ = "0.1.7"
|
||||
|
@@ -3,9 +3,13 @@ import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
|
||||
class AbstractLightningModel(pl.LightningModule):
|
||||
class AbstractPrototypeModel(pl.LightningModule):
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
scheduler = ExponentialLR(optimizer,
|
||||
gamma=0.99,
|
||||
last_epoch=-1,
|
||||
@@ -15,9 +19,3 @@ class AbstractLightningModel(pl.LightningModule):
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
|
||||
|
||||
class AbstractPrototypeModel(AbstractLightningModel):
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
@@ -5,7 +5,7 @@ from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.losses import glvq_loss
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
||||
@@ -17,19 +17,22 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
self.hparams.setdefault("optimizer", torch.optim.Adam)
|
||||
self.hparams.setdefault("transfer_function", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
self.proto_layer = LabeledComponents(
|
||||
labels=(self.hparams.nclasses, self.hparams.prototypes_per_class),
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=self.hparams.prototype_initializer)
|
||||
|
||||
self.transfer_function = get_activation(self.hparams.transfer_function)
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
|
||||
self.loss = glvq_loss
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
@@ -44,7 +47,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
x = x.view(x.size(0), -1) # flatten
|
||||
dis = self(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
mu = glvq_loss(dis, y, prototype_labels=plabels)
|
||||
mu = self.loss(dis, y, prototype_labels=plabels)
|
||||
batch_loss = self.transfer_function(mu,
|
||||
beta=self.hparams.transfer_beta)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
@@ -76,6 +79,22 @@ class GLVQ(AbstractPrototypeModel):
|
||||
return y_pred.numpy()
|
||||
|
||||
|
||||
class LVQ1(GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq1_loss
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class LVQ21(GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq21_loss
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(GLVQ):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
@@ -112,13 +131,13 @@ class SiameseGLVQ(GLVQ):
|
||||
self.backbone_dependent.load_state_dict(master_state, strict=True)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optim = self.hparams.optimizer
|
||||
proto_opt = optim(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
if list(self.backbone.parameters()):
|
||||
# only add an optimizer is the backbone has trainable parameters
|
||||
# otherwise, the next line fails
|
||||
bb_opt = optim(self.backbone.parameters(), lr=self.hparams.bb_lr)
|
||||
bb_opt = self.optimizer(self.backbone.parameters(),
|
||||
lr=self.hparams.bb_lr)
|
||||
return proto_opt, bb_opt
|
||||
else:
|
||||
return proto_opt
|
||||
|
62
prototorch/models/knn.py
Normal file
62
prototorch/models/knn.py
Normal file
@@ -0,0 +1,62 @@
|
||||
"""The popular K-Nearest-Neighbors classification algorithm."""
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.components import LabeledComponents
|
||||
from prototorch.components.initializers import parse_init_arg
|
||||
from prototorch.functions.competitions import knnc
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
||||
|
||||
class KNN(AbstractPrototypeModel):
|
||||
"""K-Nearest-Neighbors classification algorithm."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("k", 1)
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
|
||||
data = kwargs.get("data")
|
||||
x_train, y_train = parse_init_arg(data)
|
||||
|
||||
self.proto_layer = LabeledComponents(initialized_components=(x_train,
|
||||
y_train))
|
||||
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
dis = self.hparams.distance(x, protos)
|
||||
return dis
|
||||
|
||||
def predict(self, x):
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
d = self(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
y_pred = knnc(d, plabels, k=self.hparams.k)
|
||||
return y_pred.numpy()
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
return 1
|
||||
|
||||
def on_train_batch_start(self,
|
||||
train_batch,
|
||||
batch_idx,
|
||||
dataloader_idx=None):
|
||||
warnings.warn("k-NN has no training, skipping!")
|
||||
return -1
|
||||
|
||||
def configure_optimizers(self):
|
||||
return None
|
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.components.initializers import ZerosInitializer
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
|
||||
@@ -41,12 +42,14 @@ class NeuralGas(AbstractPrototypeModel):
|
||||
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("input_dim", 2)
|
||||
self.hparams.setdefault("agelimit", 10)
|
||||
self.hparams.setdefault("lm", 1)
|
||||
self.hparams.setdefault("prototype_initializer",
|
||||
cinit.ZerosInitializer(self.hparams.input_dim))
|
||||
ZerosInitializer(self.hparams.input_dim))
|
||||
|
||||
self.proto_layer = Components(
|
||||
self.hparams.num_prototypes,
|
||||
|
@@ -298,7 +298,8 @@ class Vis2DAbstract(pl.Callback):
|
||||
def precheck(self, trainer):
|
||||
if self.show_last_only:
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
return
|
||||
return False
|
||||
return True
|
||||
|
||||
def setup_ax(self, xlabel=None, ylabel=None):
|
||||
ax = self.fig.gca()
|
||||
@@ -362,7 +363,8 @@ class Vis2DAbstract(pl.Callback):
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
self.precheck(trainer)
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
@@ -386,7 +388,8 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
self.precheck(trainer)
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
@@ -411,14 +414,15 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
self.precheck(trainer)
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.components
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
@@ -431,7 +435,8 @@ class VisCBC2D(Vis2DAbstract):
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
self.precheck(trainer)
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.prototypes
|
||||
|
5
setup.py
5
setup.py
@@ -19,7 +19,7 @@ DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
|
||||
with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
INSTALL_REQUIRES = ["prototorch", "pytorch_lightning", "torchmetrics"]
|
||||
INSTALL_REQUIRES = ["prototorch>=0.4.4", "pytorch_lightning", "torchmetrics"]
|
||||
DEV = ["bumpversion"]
|
||||
EXAMPLES = ["matplotlib", "scikit-learn"]
|
||||
TESTS = ["codecov", "pytest"]
|
||||
@@ -27,10 +27,11 @@ ALL = DEV + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name=safe_name("prototorch_" + PLUGIN_NAME),
|
||||
version="0.1.0",
|
||||
version="0.1.7",
|
||||
description="Pre-packaged prototype-based "
|
||||
"machine learning models using ProtoTorch and PyTorch-Lightning.",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
author="Alexander Engelsberger",
|
||||
author_email="engelsbe@hs-mittweida.de",
|
||||
url=PROJECT_URL,
|
||||
|
0
tests/__init__.py
Normal file
0
tests/__init__.py
Normal file
6
tests/test_dummy.py
Normal file
6
tests/test_dummy.py
Normal file
@@ -0,0 +1,6 @@
|
||||
import unittest
|
||||
|
||||
|
||||
class TestDummy(unittest.TestCase):
|
||||
def test_one(self):
|
||||
self.assertEqual(True, True)
|
Reference in New Issue
Block a user