63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
"""The popular K-Nearest-Neighbors classification algorithm."""
|
|
|
|
import warnings
|
|
|
|
import torch
|
|
import torchmetrics
|
|
from prototorch.components import LabeledComponents
|
|
from prototorch.components.initializers import parse_init_arg
|
|
from prototorch.functions.competitions import knnc
|
|
from prototorch.functions.distances import euclidean_distance
|
|
|
|
from .abstract import AbstractPrototypeModel
|
|
|
|
|
|
class KNN(AbstractPrototypeModel):
|
|
"""K-Nearest-Neighbors classification algorithm."""
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__()
|
|
|
|
self.save_hyperparameters(hparams)
|
|
|
|
# Default Values
|
|
self.hparams.setdefault("k", 1)
|
|
self.hparams.setdefault("distance", euclidean_distance)
|
|
|
|
data = kwargs.get("data")
|
|
x_train, y_train = parse_init_arg(data)
|
|
|
|
self.proto_layer = LabeledComponents(initialized_components=(x_train,
|
|
y_train))
|
|
|
|
self.train_acc = torchmetrics.Accuracy()
|
|
|
|
@property
|
|
def prototype_labels(self):
|
|
return self.proto_layer.component_labels.detach().cpu()
|
|
|
|
def forward(self, x):
|
|
protos, _ = self.proto_layer()
|
|
dis = self.hparams.distance(x, protos)
|
|
return dis
|
|
|
|
def predict(self, x):
|
|
# model.eval() # ?!
|
|
with torch.no_grad():
|
|
d = self(x)
|
|
plabels = self.proto_layer.component_labels
|
|
y_pred = knnc(d, plabels, k=self.hparams.k)
|
|
return y_pred.numpy()
|
|
|
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
|
return 1
|
|
|
|
def on_train_batch_start(self,
|
|
train_batch,
|
|
batch_idx,
|
|
dataloader_idx=None):
|
|
warnings.warn("k-NN has no training, skipping!")
|
|
return -1
|
|
|
|
def configure_optimizers(self):
|
|
return None
|