Compare commits

..

6 Commits

Author SHA1 Message Date
Alexander Engelsberger
5ce326ce62
feat: CLCC register torchmetrics added 2021-10-15 15:18:02 +02:00
Alexander Engelsberger
d1985571b3
feat: Improve 2D visualization with Voronoi Cells 2021-10-15 13:01:01 +02:00
Alexander Engelsberger
967953442b
feat: Add basic GLVQ with new architecture 2021-10-14 15:49:12 +02:00
Alexander Engelsberger
d4448f2bc9
chore(pre-commit): Update plugin versions and rerun all files 2021-10-13 10:54:53 +02:00
Alexander Engelsberger
a8829945f5
chore: Move mixins into seperate file 2021-10-11 16:05:12 +02:00
Alexander Engelsberger
a8336ee213
chore: Remove relative imports 2021-10-11 15:45:43 +02:00
51 changed files with 1228 additions and 2210 deletions

View File

@ -1,13 +1,13 @@
[bumpversion] [bumpversion]
current_version = 0.7.1 current_version = 0.3.0
commit = True commit = True
tag = True tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+) parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
serialize = {major}.{minor}.{patch} serialize = {major}.{minor}.{patch}
message = build: bump version {current_version} → {new_version} message = build: bump version {current_version} → {new_version}
[bumpversion:file:pyproject.toml] [bumpversion:file:setup.py]
[bumpversion:file:./src/prototorch/models/__init__.py] [bumpversion:file:./prototorch/models/__init__.py]
[bumpversion:file:./docs/source/conf.py] [bumpversion:file:./docs/source/conf.py]

15
.codacy.yml Normal file
View File

@ -0,0 +1,15 @@
# To validate the contents of your configuration file
# run the following command in the folder where the configuration file is located:
# codacy-analysis-cli validate-configuration --directory `pwd`
# To analyse, run:
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
---
engines:
pylintpython3:
exclude_paths:
- config/engines.yml
remark-lint:
exclude_paths:
- config/engines.yml
exclude_paths:
- 'tests/**'

2
.codecov.yml Normal file
View File

@ -0,0 +1,2 @@
comment:
require_changes: yes

View File

@ -1,25 +0,0 @@
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: examples
on:
push:
paths:
- "examples/**.py"
jobs:
cpu:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Run examples
run: |
./tests/test_examples.sh examples/

View File

@ -1,75 +0,0 @@
# This workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: tests
on:
push:
pull_request:
branches: [master]
jobs:
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- uses: pre-commit/action@v3.0.0
compatibility:
needs: style
strategy:
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, windows-latest]
exclude:
- os: windows-latest
python-version: "3.8"
- os: windows-latest
python-version: "3.9"
- os: windows-latest
python-version: "3.10"
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Test with pytest
run: |
pytest
publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install build
- name: Build package
run: python -m build . -C verbose
- name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@ -2,53 +2,53 @@
# See https://pre-commit.com/hooks.html for more hooks # See https://pre-commit.com/hooks.html for more hooks
repos: repos:
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0 rev: v4.0.1
hooks: hooks:
- id: trailing-whitespace - id: trailing-whitespace
- id: end-of-file-fixer - id: end-of-file-fixer
- id: check-yaml - id: check-yaml
- id: check-added-large-files - id: check-added-large-files
- id: check-ast - id: check-ast
- id: check-case-conflict - id: check-case-conflict
- repo: https://github.com/myint/autoflake - repo: https://github.com/myint/autoflake
rev: v2.1.1 rev: v1.4
hooks: hooks:
- id: autoflake - id: autoflake
- repo: http://github.com/PyCQA/isort - repo: http://github.com/PyCQA/isort
rev: 5.12.0 rev: 5.9.3
hooks: hooks:
- id: isort - id: isort
- repo: https://github.com/pre-commit/mirrors-mypy - repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.3.0 rev: v0.910-1
hooks: hooks:
- id: mypy - id: mypy
files: prototorch files: prototorch
additional_dependencies: [types-pkg_resources] additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf - repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0 rev: v0.31.0
hooks: hooks:
- id: yapf - id: yapf
additional_dependencies: ["toml"]
- repo: https://github.com/pre-commit/pygrep-hooks - repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.10.0 rev: v1.9.0
hooks: hooks:
- id: python-use-type-annotations - id: python-use-type-annotations
- id: python-no-log-warn - id: python-no-log-warn
- id: python-check-blanket-noqa - id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade - repo: https://github.com/asottile/pyupgrade
rev: v3.7.0 rev: v2.29.0
hooks: hooks:
- id: pyupgrade - id: pyupgrade
args: [--py36-plus]
- repo: https://github.com/si-cim/gitlint - repo: https://github.com/si-cim/gitlint
rev: v0.15.2-unofficial rev: v0.15.2-unofficial
hooks: hooks:
- id: gitlint - id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename] args: [--contrib=CT1, --ignore=B6, --msg-filename]

44
.travis.yml Normal file
View File

@ -0,0 +1,44 @@
dist: bionic
sudo: false
language: python
python:
- 3.9
- 3.8
- 3.7
- 3.6
cache:
directories:
- "$HOME/.cache/pip"
- "./tests/artifacts"
- "$HOME/datasets"
install:
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
- pip install .[all] --progress-bar off
script:
- coverage run -m pytest
- ./tests/test_examples.sh examples/
after_success:
- bash <(curl -s https://codecov.io/bash)
# Publish on PyPI
jobs:
include:
- stage: build
python: 3.9
script: echo "Starting Pypi build"
deploy:
provider: pypi
username: __token__
distributions: "sdist bdist_wheel"
password:
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
on:
tags: true
skip_existing: true
# The password is encrypted with:
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
# See https://docs.travis-ci.com/user/deployment/pypi and
# https://github.com/travis-ci/travis.rb#installation
# for more details
# Note: The encrypt command does not work well in ZSH.

View File

@ -1,5 +1,6 @@
# ProtoTorch Models # ProtoTorch Models
[![Build Status](https://api.travis-ci.com/si-cim/prototorch_models.svg?branch=main)](https://travis-ci.com/github/si-cim/prototorch_models)
[![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch_models?color=yellow&label=version)](https://github.com/si-cim/prototorch_models/releases) [![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch_models?color=yellow&label=version)](https://github.com/si-cim/prototorch_models/releases)
[![PyPI](https://img.shields.io/pypi/v/prototorch_models)](https://pypi.org/project/prototorch_models/) [![PyPI](https://img.shields.io/pypi/v/prototorch_models)](https://pypi.org/project/prototorch_models/)
[![GitHub license](https://img.shields.io/github/license/si-cim/prototorch_models)](https://github.com/si-cim/prototorch_models/blob/master/LICENSE) [![GitHub license](https://img.shields.io/github/license/si-cim/prototorch_models)](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)

View File

@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags # The full version, including alpha/beta/rc tags
# #
release = "0.7.1" release = "0.3.0"
# -- General configuration --------------------------------------------------- # -- General configuration ---------------------------------------------------

View File

@ -2,252 +2,223 @@
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "7ac5eff0",
"metadata": {},
"source": [ "source": [
"# A short tutorial for the `prototorch.models` plugin" "# A short tutorial for the `prototorch.models` plugin"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "beb83780",
"metadata": {},
"source": [ "source": [
"## Introduction" "## Introduction"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "43b74278",
"metadata": {},
"source": [ "source": [
"This is a short tutorial for the [models](https://github.com/si-cim/prototorch_models) plugin of the [ProtoTorch](https://github.com/si-cim/prototorch) framework. This is by no means a comprehensive look at all the features that the framework has to offer, but it should help you get up and running.\n", "This is a short tutorial for the [models](https://github.com/si-cim/prototorch_models) plugin of the [ProtoTorch](https://github.com/si-cim/prototorch) framework.\n",
"\n", "\n",
"[ProtoTorch](https://github.com/si-cim/prototorch) provides [torch.nn](https://pytorch.org/docs/stable/nn.html) modules and utilities to implement prototype-based models. However, it is up to the user to put these modules together into models and handle the training of these models. Expert machine-learning practioners and researchers sometimes prefer this level of control. However, this leads to a lot of boilerplate code that is essentially same across many projects. Needless to say, this is a source of a lot of frustration. [PyTorch-Lightning](https://pytorch-lightning.readthedocs.io/en/latest/) is a framework that helps avoid a lot of this frustration by handling the boilerplate code for you so you don't have to reinvent the wheel every time you need to implement a new model.\n", "[ProtoTorch](https://github.com/si-cim/prototorch) provides [torch.nn](https://pytorch.org/docs/stable/nn.html) modules and utilities to implement prototype-based models. However, it is up to the user to put these modules together into models and handle the training of these models. Expert machine-learning practioners and researchers sometimes prefer this level of control. However, this leads to a lot of boilerplate code that is essentially same across many projects. Needless to say, this is a source of a lot of frustration. [PyTorch-Lightning](https://pytorch-lightning.readthedocs.io/en/latest/) is a framework that helps avoid a lot of this frustration by handling the boilerplate code for you so you don't have to reinvent the wheel every time you need to implement a new model.\n",
"\n", "\n",
"With the [prototorch.models](https://github.com/si-cim/prototorch_models) plugin, we've gone one step further and pre-packaged commonly used prototype-models like GMLVQ as [Lightning-Modules](https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.lightning.html?highlight=lightning%20module#pytorch_lightning.core.lightning.LightningModule). With only a few lines to code, it is now possible to build and train prototype-models. It quite simply cannot get any simpler than this." "With the [prototorch.models](https://github.com/si-cim/prototorch_models) plugin, we've gone one step further and pre-packaged commonly used prototype-models like GMLVQ as [Lightning-Modules](https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.lightning.html?highlight=lightning%20module#pytorch_lightning.core.lightning.LightningModule). With only a few lines to code, it is now possible to build and train prototype-models. It quite simply cannot get any simpler than this."
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "4e5d1fad",
"metadata": {},
"source": [ "source": [
"## Basics" "## Basics"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "1244b66b",
"metadata": {},
"source": [ "source": [
"First things first. When working with the models plugin, you'll probably need `torch`, `prototorch` and `pytorch_lightning`. So, we recommend that you import all three like so:" "First things first. When working with the models plugin, you'll probably need `torch`, `prototorch` and `pytorch_lightning`. So, we recommend that you import all three like so:"
] ],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "dcb88e8a",
"metadata": {},
"outputs": [],
"source": [ "source": [
"import prototorch as pt\n", "import prototorch as pt\n",
"import pytorch_lightning as pl\n", "import pytorch_lightning as pl\n",
"import torch" "import torch"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "1adbe2f8",
"metadata": {},
"source": [ "source": [
"### Building Models" "### Building Models"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "96663ab1",
"metadata": {},
"source": [ "source": [
"Let's start by building a `GLVQ` model. It is one of the simplest models to build. The only requirements are a prototype distribution and an initializer." "Let's start by building a `GLVQ` model. It is one of the simplest models to build. The only requirements are a prototype distribution and an initializer."
] ],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "819ba756",
"metadata": {},
"outputs": [],
"source": [ "source": [
"model = pt.models.GLVQ(\n", "model = pt.models.GLVQ(\n",
" hparams=dict(distribution=[1, 1, 1]),\n", " hparams=dict(distribution=[1, 1, 1]),\n",
" prototypes_initializer=pt.initializers.ZerosCompInitializer(2),\n", " prototypes_initializer=pt.initializers.ZerosCompInitializer(2),\n",
")" ")"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "1b37e97c",
"metadata": {},
"outputs": [],
"source": [ "source": [
"print(model)" "print(model)"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "d2c86903",
"metadata": {},
"source": [ "source": [
"The key `distribution` in the `hparams` argument describes the prototype distribution. If it is a Python [list](https://docs.python.org/3/tutorial/datastructures.html), it is assumed that there are as many entries in this list as there are classes, and the number at each location of this list describes the number of prototypes to be used for that particular class. So, `[1, 1, 1]` implies that we have three classes with one prototype per class. If it is a Python [tuple](https://docs.python.org/3/tutorial/datastructures.html), a shorthand of `(num_classes, prototypes_per_class)` is assumed. If it is a Python [dictionary](https://docs.python.org/3/tutorial/datastructures.html), the key-value pairs describe the class label and the number of prototypes for that class respectively. So, `{0: 2, 1: 2, 2: 2}` implies that we have three classes with labels `{1, 2, 3}`, each equipped with two prototypes. If however, the dictionary contains the keys `\"num_classes\"` and `\"per_class\"`, they are parsed to use their values as one might expect.\n", "The key `distribution` in the `hparams` argument describes the prototype distribution. If it is a Python [list](https://docs.python.org/3/tutorial/datastructures.html), it is assumed that there are as many entries in this list as there are classes, and the number at each location of this list describes the number of prototypes to be used for that particular class. So, `[1, 1, 1]` implies that we have three classes with one prototype per class. If it is a Python [tuple](https://docs.python.org/3/tutorial/datastructures.html), a shorthand of `(num_classes, prototypes_per_class)` is assumed. If it is a Python [dictionary](https://docs.python.org/3/tutorial/datastructures.html), the key-value pairs describe the class label and the number of prototypes for that class respectively. So, `{0: 2, 1: 2, 2: 2}` implies that we have three classes with labels `{1, 2, 3}`, each equipped with two prototypes. If however, the dictionary contains the keys `\"num_classes\"` and `\"per_class\"`, they are parsed to use their values as one might expect.\n",
"\n", "\n",
"The `prototypes_initializer` argument describes how the prototypes are meant to be initialized. This argument has to be an instantiated object of some kind of [AbstractComponentsInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L18). If this is a [ShapeAwareCompInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L41), this only requires a `shape` arugment that describes the shape of the prototypes. So, `pt.initializers.ZerosCompInitializer(3)` creates 3d-vector prototypes all initialized to zeros." "The `prototypes_initializer` argument describes how the prototypes are meant to be initialized. This argument has to be an instantiated object of some kind of [AbstractComponentsInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L18). If this is a [ShapeAwareCompInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L41), this only requires a `shape` arugment that describes the shape of the prototypes. So, `pt.initializers.ZerosCompInitializer(3)` creates 3d-vector prototypes all initialized to zeros."
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "45806052",
"metadata": {},
"source": [ "source": [
"### Data" "### Data"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "9d62c4c6",
"metadata": {},
"source": [ "source": [
"The preferred way to working with data in `torch` is to use the [Dataset and Dataloader API](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html). There a few pre-packaged datasets available under `prototorch.datasets`. See [here](https://prototorch.readthedocs.io/en/latest/api.html#module-prototorch.datasets) for a full list of available datasets." "The preferred way to working with data in `torch` is to use the [Dataset and Dataloader API](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html). There a few pre-packaged datasets available under `prototorch.datasets`. See [here](https://prototorch.readthedocs.io/en/latest/api.html#module-prototorch.datasets) for a full list of available datasets."
] ],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "504df02c",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds = pt.datasets.Iris(dims=[0, 2])" "train_ds = pt.datasets.Iris(dims=[0, 2])"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "3b8e7756",
"metadata": {},
"outputs": [],
"source": [ "source": [
"type(train_ds)" "type(train_ds)"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "bce43afa",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds.data.shape, train_ds.targets.shape" "train_ds.data.shape, train_ds.targets.shape"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "26a83328",
"metadata": {},
"source": [ "source": [
"Once we have such a dataset, we could wrap it in a `Dataloader` to load the data in batches, and possibly apply some transformations on the fly." "Once we have such a dataset, we could wrap it in a `Dataloader` to load the data in batches, and possibly apply some transformations on the fly."
] ],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "67b80fbe",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_loader = torch.utils.data.DataLoader(train_ds, batch_size=2)" "train_loader = torch.utils.data.DataLoader(train_ds, batch_size=2)"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c1185f31",
"metadata": {},
"outputs": [],
"source": [ "source": [
"type(train_loader)" "type(train_loader)"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "9b5a8963",
"metadata": {},
"outputs": [],
"source": [ "source": [
"x_batch, y_batch = next(iter(train_loader))\n", "x_batch, y_batch = next(iter(train_loader))\n",
"print(f\"{x_batch=}, {y_batch=}\")" "print(f\"{x_batch=}, {y_batch=}\")"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "dd492ee2",
"metadata": {},
"source": [ "source": [
"This perhaps seems like a lot of work for a small dataset that fits completely in memory. However, this comes in very handy when dealing with huge datasets that can only be processed in batches." "This perhaps seems like a lot of work for a small dataset that fits completely in memory. However, this comes in very handy when dealing with huge datasets that can only be processed in batches."
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "5176b055",
"metadata": {},
"source": [ "source": [
"### Training" "### Training"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "46a7a506",
"metadata": {},
"source": [ "source": [
"If you're familiar with other deep learning frameworks, you might perhaps expect a `.fit(...)` or `.train(...)` method. However, in PyTorch-Lightning, this is done slightly differently. We first create a trainer and then pass the model and the Dataloader to `trainer.fit(...)` instead. So, it is more functional in style than object-oriented." "If you're familiar with other deep learning frameworks, you might perhaps expect a `.fit(...)` or `.train(...)` method. However, in PyTorch-Lightning, this is done slightly differently. We first create a trainer and then pass the model and the Dataloader to `trainer.fit(...)` instead. So, it is more functional in style than object-oriented."
] ],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "279e75b7",
"metadata": {},
"outputs": [],
"source": [ "source": [
"trainer = pl.Trainer(max_epochs=2, weights_summary=None)" "trainer = pl.Trainer(max_epochs=2, weights_summary=None)"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "e496b492",
"metadata": {},
"outputs": [],
"source": [ "source": [
"trainer.fit(model, train_loader)" "trainer.fit(model, train_loader)"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "497fbff6",
"metadata": {},
"source": [ "source": [
"### From data to a trained model - a very minimal example" "### From data to a trained model - a very minimal example"
] ],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ab069c5d",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds = pt.datasets.Iris(dims=[0, 2])\n", "train_ds = pt.datasets.Iris(dims=[0, 2])\n",
"train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)\n", "train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)\n",
@ -259,239 +230,49 @@
"\n", "\n",
"trainer = pl.Trainer(max_epochs=50, weights_summary=None)\n", "trainer = pl.Trainer(max_epochs=50, weights_summary=None)\n",
"trainer.fit(model, train_loader)" "trainer.fit(model, train_loader)"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "30c71a93",
"metadata": {},
"source": [
"### Saving/Loading trained models"
]
},
{
"cell_type": "markdown",
"id": "f74ed2c1",
"metadata": {},
"source": [
"Pytorch Lightning can automatically checkpoint the model during various stages of training, but it also possible to manually save a checkpoint after training."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3156658d",
"metadata": {},
"outputs": [],
"source": [
"ckpt_path = \"./checkpoints/glvq_iris.ckpt\"\n",
"trainer.save_checkpoint(ckpt_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1c34055",
"metadata": {},
"outputs": [],
"source": [
"loaded_model = pt.models.GLVQ.load_from_checkpoint(ckpt_path, strict=False)"
]
},
{
"cell_type": "markdown",
"id": "bbbb08e9",
"metadata": {},
"source": [
"### Visualizing decision boundaries in 2D"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53ca52dc",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisGLVQ2D(data=train_ds).visualize(loaded_model)"
]
},
{
"cell_type": "markdown",
"id": "8373531f",
"metadata": {},
"source": [
"### Saving/Loading trained weights"
]
},
{
"cell_type": "markdown",
"id": "937bc458",
"metadata": {},
"source": [
"In most cases, the checkpointing workflow is sufficient. In some cases however, one might want to only save the trained weights from the model. The disadvantage of this method is that the model has be re-created using compatible initialization parameters before the weights could be loaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f2035af",
"metadata": {},
"outputs": [],
"source": [
"ckpt_path = \"./checkpoints/glvq_iris_weights.pth\"\n",
"torch.save(model.state_dict(), ckpt_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1206021a",
"metadata": {},
"outputs": [],
"source": [
"model = pt.models.GLVQ(\n",
" dict(distribution=(3, 2)),\n",
" prototypes_initializer=pt.initializers.ZerosCompInitializer(2),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f2a4beb",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisGLVQ2D(data=train_ds, title=\"Before loading the weights\").visualize(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "528d2fc2",
"metadata": {},
"outputs": [],
"source": [
"torch.load(ckpt_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ec817e6b",
"metadata": {},
"outputs": [],
"source": [
"model.load_state_dict(torch.load(ckpt_path), strict=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a208eab7",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisGLVQ2D(data=train_ds, title=\"After loading the weights\").visualize(model)"
]
},
{
"cell_type": "markdown",
"id": "f8de748f",
"metadata": {},
"source": [ "source": [
"## Advanced" "## Advanced"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "53a64063",
"metadata": {},
"source": [
"### Warm-start a model with prototypes learned from another model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3177c277",
"metadata": {},
"outputs": [],
"source": [
"trained_model = pt.models.GLVQ.load_from_checkpoint(\"./checkpoints/glvq_iris.ckpt\", strict=False)\n",
"model = pt.models.SiameseGMLVQ(\n",
" dict(input_dim=2,\n",
" latent_dim=2,\n",
" distribution=(3, 2),\n",
" proto_lr=0.0001,\n",
" bb_lr=0.0001),\n",
" optimizer=torch.optim.Adam,\n",
" prototypes_initializer=pt.initializers.LCI(trained_model.prototypes),\n",
" labels_initializer=pt.initializers.LLI(trained_model.prototype_labels),\n",
" omega_initializer=pt.initializers.LLTI(torch.tensor([[0., 1.], [1., 0.]])), # permute axes\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8baee9a2",
"metadata": {},
"outputs": [],
"source": [
"print(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc203088",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisSiameseGLVQ2D(data=train_ds, title=\"GMLVQ - Warm-start state\").visualize(model)"
]
},
{
"cell_type": "markdown",
"id": "1f6a33a5",
"metadata": {},
"source": [ "source": [
"### Initializing prototypes with a subset of a dataset (along with transformations)" "### Initializing prototypes with a subset of a dataset (along with transformations)"
] ],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "946ce341",
"metadata": {},
"outputs": [],
"source": [ "source": [
"import prototorch as pt\n", "import prototorch as pt\n",
"import pytorch_lightning as pl\n", "import pytorch_lightning as pl\n",
"import torch\n", "import torch\n",
"from torchvision import transforms\n", "from torchvision import transforms\n",
"from torchvision.datasets import MNIST\n", "from torchvision.datasets import MNIST"
"from torchvision.utils import make_grid" ],
] "outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "510d9bd4",
"metadata": {},
"outputs": [],
"source": [ "source": [
"from matplotlib import pyplot as plt" "from matplotlib import pyplot as plt"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ea7c1228",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds = MNIST(\n", "train_ds = MNIST(\n",
" \"~/datasets\",\n", " \"~/datasets\",\n",
@ -503,87 +284,59 @@
" transforms.ToTensor(),\n", " transforms.ToTensor(),\n",
" ]),\n", " ]),\n",
")" ")"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "1b9eaf5c",
"metadata": {},
"outputs": [],
"source": [ "source": [
"s = int(0.05 * len(train_ds))\n", "s = int(0.05 * len(train_ds))\n",
"init_ds, rest_ds = torch.utils.data.random_split(train_ds, [s, len(train_ds) - s])" "init_ds, rest_ds = torch.utils.data.random_split(train_ds, [s, len(train_ds) - s])"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "8c32c9f2",
"metadata": {},
"outputs": [],
"source": [ "source": [
"init_ds" "init_ds"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "68a9a8b9",
"metadata": {},
"outputs": [],
"source": [ "source": [
"model = pt.models.ImageGLVQ(\n", "model = pt.models.ImageGLVQ(\n",
" dict(distribution=(10, 1)),\n", " dict(distribution=(10, 5)),\n",
" prototypes_initializer=pt.initializers.SMCI(init_ds),\n", " prototypes_initializer=pt.initializers.SMCI(init_ds),\n",
")" ")"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "6f23df86",
"metadata": {},
"outputs": [],
"source": [ "source": [
"plt.imshow(model.get_prototype_grid(num_columns=5))" "plt.imshow(model.get_prototype_grid(num_columns=10))"
] ],
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "1c23c7b2",
"metadata": {},
"source": [
"We could, of course, just use the initializers in isolation. For example, we could quickly obtain a stratified selection from the data like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30780927",
"metadata": {},
"outputs": [],
"source": [
"protos, plabels = pt.components.LabeledComponents(\n",
" distribution=(10, 5),\n",
" components_initializer=pt.initializers.SMCI(init_ds),\n",
" labels_initializer=pt.initializers.LabelsInitializer(),\n",
")()\n",
"plt.imshow(make_grid(protos, 10).permute(1, 2, 0)[:, :, 0], cmap=\"jet\")"
]
},
{
"cell_type": "markdown",
"id": "4fa69f92",
"metadata": {},
"source": [ "source": [
"## FAQs" "## FAQs"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "fa20f9ac",
"metadata": {},
"source": [ "source": [
"### How do I Retrieve the prototypes and their respective labels from the model?\n", "### How do I Retrieve the prototypes and their respective labels from the model?\n",
"\n", "\n",
@ -598,12 +351,11 @@
"```python\n", "```python\n",
">>> model.prototype_labels\n", ">>> model.prototype_labels\n",
"```" "```"
] ],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "ba8215bf",
"metadata": {},
"source": [ "source": [
"### How do I make inferences/predictions/recall with my trained model?\n", "### How do I make inferences/predictions/recall with my trained model?\n",
"\n", "\n",
@ -618,12 +370,13 @@
"```python\n", "```python\n",
">>> y_pred = model(torch.Tensor(x_train)) # returns probabilities\n", ">>> y_pred = model(torch.Tensor(x_train)) # returns probabilities\n",
"```" "```"
] ],
"metadata": {}
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3 (ipykernel)", "display_name": "Python 3",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@ -637,7 +390,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.12" "version": "3.9.4"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@ -1,32 +1,25 @@
"""CBC example using the Iris dataset.""" """CBC example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
from lightning_fabric.utilities.seed import seed_everything import torch
from prototorch.models import CBC, VisCBC2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=32) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -37,15 +30,15 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = CBC( model = pt.models.CBC(
hparams, hparams,
components_initializer=pt.initializers.SSCI(train_ds, noise=0.1), components_initializer=pt.initializers.SSCI(train_ds, noise=0.01),
reasonings_initializer=pt.initializers. reasonings_iniitializer=pt.initializers.
PurePositiveReasoningsInitializer(), PurePositiveReasoningsInitializer(),
) )
# Callbacks # Callbacks
vis = VisCBC2D( vis = pt.models.Visualize2DVoronoiCallback(
data=train_ds, data=train_ds,
title="CBC Iris Example", title="CBC Iris Example",
resolution=100, resolution=100,
@ -53,16 +46,9 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto", callbacks=[vis],
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
detect_anomaly=True,
log_every_n_steps=1,
max_epochs=1000,
) )
# Training loop # Training loop

View File

@ -1,50 +1,30 @@
"""Dynamically prune 'loser' prototypes in GLVQ-type models.""" """Dynamically prune 'loser' prototypes in GLVQ-type models."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
CELVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
num_classes = 4 num_classes = 4
num_features = 2 num_features = 2
num_clusters = 1 num_clusters = 1
train_ds = pt.datasets.Random( train_ds = pt.datasets.Random(num_samples=500,
num_samples=500, num_classes=num_classes,
num_classes=num_classes, num_features=num_features,
num_features=num_features, num_clusters=num_clusters,
num_clusters=num_clusters, separation=3.0,
separation=3.0, seed=42)
seed=42,
)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=256) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
# Hyperparameters # Hyperparameters
prototypes_per_class = num_clusters * 5 prototypes_per_class = num_clusters * 5
@ -54,7 +34,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = CELVQ( model = pt.models.CELVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.FVCI(2, 3.0), prototypes_initializer=pt.initializers.FVCI(2, 3.0),
) )
@ -63,18 +43,18 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
logging.info(model) print(model)
# Callbacks # Callbacks
vis = VisGLVQ2D(train_ds) vis = pt.models.VisGLVQ2D(train_ds)
pruning = PruneLoserPrototypes( pruning = pt.models.PruneLoserPrototypes(
threshold=0.01, # prune prototype if it wins less than 1% threshold=0.01, # prune prototype if it wins less than 1%
idle_epochs=20, # pruning too early may cause problems idle_epochs=20, # pruning too early may cause problems
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
frequency=1, # prune every epoch frequency=1, # prune every epoch
verbose=True, verbose=True,
) )
es = EarlyStopping( es = pl.callbacks.EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@ -84,18 +64,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
es, es,
], ],
detect_anomaly=True, progress_bar_refresh_rate=0,
log_every_n_steps=1, terminate_on_nan=True,
max_epochs=1000, weights_summary="full",
accelerator="ddp",
) )
# Training loop # Training loop

View File

@ -1,35 +1,24 @@
"""GLVQ example using the Iris dataset.""" """GLVQ example using the Iris dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import prototorch.models.clcc
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=64, num_workers=4) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -41,7 +30,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = GLVQ( model = prototorch.models.GLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
@ -53,30 +42,21 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = VisGLVQ2D(data=train_ds) vis = pt.models.Visualize2DVoronoiCallback(
data=train_ds,
resolution=200,
title="Example: GLVQ on Iris",
x_label="sepal length",
y_label="petal length",
)
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto", callbacks=[vis],
fast_dev_run=args.fast_dev_run, weights_summary="full",
callbacks=[ accelerator="ddp",
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
trainer.fit(model, train_loader) trainer.fit(model, train_loader)
# Manual save
trainer.save_checkpoint("./glvq_iris.ckpt")
# Load saved model
new_model = GLVQ.load_from_checkpoint(
checkpoint_path="./glvq_iris.ckpt",
strict=False,
)
logging.info(new_model)

View File

@ -1,39 +1,22 @@
"""GMLVQ example using the spiral dataset.""" """GLVQ example using the spiral dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GMLVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5) train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=256) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
# Hyperparameters # Hyperparameters
num_classes = 2 num_classes = 2
@ -49,19 +32,19 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = GMLVQ( model = pt.models.GMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
) )
# Callbacks # Callbacks
vis = VisGLVQ2D( vis = pt.models.VisGLVQ2D(
train_ds, train_ds,
show_last_only=False, show_last_only=False,
block=False, block=False,
) )
pruning = PruneLoserPrototypes( pruning = pt.models.PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=10, idle_epochs=10,
prune_quota_per_epoch=5, prune_quota_per_epoch=5,
@ -70,7 +53,7 @@ if __name__ == "__main__":
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
verbose=True, verbose=True,
) )
es = EarlyStopping( es = pl.callbacks.EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=1.0, min_delta=1.0,
patience=5, patience=5,
@ -79,18 +62,14 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
es, es,
pruning, pruning,
], ],
max_epochs=1000, terminate_on_nan=True,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,36 +1,23 @@
"""GMLVQ example using the Iris dataset.""" """GMLVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GMLVQ, VisGMLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=64) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -45,7 +32,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = GMLVQ( model = pt.models.GMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
@ -57,22 +44,15 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 4) model.example_input_array = torch.zeros(4, 4)
# Callbacks # Callbacks
vis = VisGMLVQ2D(data=train_ds) vis = pt.models.VisGMLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto", callbacks=[vis],
fast_dev_run=args.fast_dev_run, weights_summary="full",
callbacks=[ accelerator="ddp",
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
trainer.fit(model, train_loader) trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

View File

@ -1,33 +1,17 @@
"""GMLVQ example using the MNIST dataset.""" """GMLVQ example using the MNIST dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGMLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms from torchvision import transforms
from torchvision.datasets import MNIST from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
@ -49,8 +33,12 @@ if __name__ == "__main__":
) )
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, num_workers=4, batch_size=256) train_loader = torch.utils.data.DataLoader(train_ds,
test_loader = DataLoader(test_ds, num_workers=4, batch_size=256) num_workers=0,
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
# Hyperparameters # Hyperparameters
num_classes = 10 num_classes = 10
@ -64,14 +52,14 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = ImageGMLVQ( model = pt.models.ImageGMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
) )
# Callbacks # Callbacks
vis = VisImgComp( vis = pt.models.VisImgComp(
data=train_ds, data=train_ds,
num_columns=10, num_columns=10,
show=False, show=False,
@ -81,14 +69,14 @@ if __name__ == "__main__":
embedding_data=200, embedding_data=200,
flatten_data=False, flatten_data=False,
) )
pruning = PruneLoserPrototypes( pruning = pt.models.PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=1, idle_epochs=1,
prune_quota_per_epoch=10, prune_quota_per_epoch=10,
frequency=1, frequency=1,
verbose=True, verbose=True,
) )
es = EarlyStopping( es = pl.callbacks.EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=15, patience=15,
@ -97,18 +85,16 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
es, # es,
], ],
max_epochs=1000, terminate_on_nan=True,
log_every_n_steps=1, weights_summary=None,
detect_anomaly=True, # accelerator="ddp",
) )
# Training loop # Training loop

View File

@ -1,33 +1,23 @@
"""Growing Neural Gas example using the Iris dataset.""" """Growing Neural Gas example using the Iris dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GrowingNeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
seed_everything(seed=42) pl.utilities.seed.seed_everything(seed=42)
# Prepare the data # Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = DataLoader(train_ds, batch_size=64) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -37,7 +27,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = GrowingNeuralGas( model = pt.models.GrowingNeuralGas(
hparams, hparams,
prototypes_initializer=pt.initializers.ZCI(2), prototypes_initializer=pt.initializers.ZCI(2),
) )
@ -46,22 +36,17 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Model summary # Model summary
logging.info(model) print(model)
# Callbacks # Callbacks
vis = VisNG2D(data=train_loader) vis = pt.models.VisNG2D(data=train_loader)
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=100, max_epochs=100,
log_every_n_steps=1, callbacks=[vis],
detect_anomaly=True, weights_summary="full",
) )
# Training loop # Training loop

View File

@ -1,77 +0,0 @@
"""GMLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GRLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris([0, 1])
# Dataloaders
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
input_dim=2,
distribution={
"num_classes": 3,
"per_class": 2
},
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = GRLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = VisSiameseGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=5,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

View File

@ -1,119 +0,0 @@
"""GTLVQ example using the MNIST dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGTLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = MNIST(
"~/datasets",
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]),
)
test_ds = MNIST(
"~/datasets",
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]),
)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
# Hyperparameters
num_classes = 10
prototypes_per_class = 1
hparams = dict(
input_dim=28 * 28,
latent_dim=28,
distribution=(num_classes, prototypes_per_class),
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = ImageGTLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
#Use one batch of data for subspace initiator.
omega_initializer=pt.initializers.PCALinearTransformInitializer(
next(iter(train_loader))[0].reshape(256, 28 * 28)))
# Callbacks
vis = VisImgComp(
data=train_ds,
num_columns=10,
show=False,
tensorboard=True,
random_data=100,
add_embedding=True,
embedding_data=200,
flatten_data=False,
)
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=1,
prune_quota_per_epoch=10,
frequency=1,
verbose=True,
)
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=15,
mode="min",
check_on_train_epoch_end=True,
)
# Setup trainer
# using GPUs here is strongly recommended!
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
pruning,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)

View File

@ -1,79 +0,0 @@
"""Localized-GTLVQ example using the Moons dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GTLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Reproducibility
seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = DataLoader(
train_ds,
batch_size=256,
shuffle=True,
)
# Hyperparameters
# Latent_dim should be lower than input dim.
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
# Initialize the model
model = GTLVQ(hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds))
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
logging.info(model)
# Callbacks
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
mode="max",
verbose=False,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)

View File

@ -1,75 +1,60 @@
"""k-NN example using the Iris dataset from scikit-learn.""" """k-NN example using the Iris dataset from scikit-learn."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from prototorch.models import KNN, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
X, y = load_iris(return_X_y=True) X, y = load_iris(return_X_y=True)
X = X[:, 0:3:2] X = X[:, [0, 2]]
X_train, X_test, y_train, y_test = train_test_split( X_train, X_test, y_train, y_test = train_test_split(X,
X, y,
y, test_size=0.5,
test_size=0.5, random_state=42)
random_state=42,
)
train_ds = pt.datasets.NumpyDataset(X_train, y_train) train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test) test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=16) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
test_loader = DataLoader(test_ds, batch_size=16) test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
# Hyperparameters # Hyperparameters
hparams = dict(k=5) hparams = dict(k=5)
# Initialize the model # Initialize the model
model = KNN(hparams, data=train_ds) model = pt.models.KNN(hparams, data=train_ds)
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
logging.info(model) print(model)
# Callbacks # Callbacks
vis = VisGLVQ2D( vis = pt.models.VisGLVQ2D(
data=(X_train, y_train), data=(X_train, y_train),
resolution=200, resolution=200,
block=True, block=True,
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=1, max_epochs=1,
callbacks=[ callbacks=[vis],
vis, weights_summary="full",
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
@ -78,7 +63,7 @@ if __name__ == "__main__":
# Recall # Recall
y_pred = model.predict(torch.tensor(X_train)) y_pred = model.predict(torch.tensor(X_train))
logging.info(y_pred) print(y_pred)
# Test # Test
trainer.test(model, dataloaders=test_loader) trainer.test(model, dataloaders=test_loader)

View File

@ -1,25 +1,15 @@
"""Kohonen Self Organizing Map.""" """Kohonen Self Organizing Map."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from prototorch.models import KohonenSOM
from prototorch.utils.colors import hex_to_rgb from prototorch.utils.colors import hex_to_rgb
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader, TensorDataset
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Vis2DColorSOM(pl.Callback): class Vis2DColorSOM(pl.Callback):
def __init__(self, data, title="ColorSOMe", pause_time=0.1): def __init__(self, data, title="ColorSOMe", pause_time=0.1):
super().__init__() super().__init__()
self.title = title self.title = title
@ -27,7 +17,7 @@ class Vis2DColorSOM(pl.Callback):
self.data = data self.data = data
self.pause_time = pause_time self.pause_time = pause_time
def on_train_epoch_end(self, trainer, pl_module: KohonenSOM): def on_epoch_end(self, trainer, pl_module):
ax = self.fig.gca() ax = self.fig.gca()
ax.cla() ax.cla()
ax.set_title(self.title) ax.set_title(self.title)
@ -40,14 +30,12 @@ class Vis2DColorSOM(pl.Callback):
d = pl_module.compute_distances(self.data) d = pl_module.compute_distances(self.data)
wp = pl_module.predict_from_distances(d) wp = pl_module.predict_from_distances(d)
for i, iloc in enumerate(wp): for i, iloc in enumerate(wp):
plt.text( plt.text(iloc[1],
iloc[1], iloc[0],
iloc[0], cnames[i],
color_names[i], ha="center",
ha="center", va="center",
va="center", bbox=dict(facecolor="white", alpha=0.5, lw=0))
bbox=dict(facecolor="white", alpha=0.5, lw=0),
)
if trainer.current_epoch != trainer.max_epochs - 1: if trainer.current_epoch != trainer.max_epochs - 1:
plt.pause(self.pause_time) plt.pause(self.pause_time)
@ -58,12 +46,11 @@ class Vis2DColorSOM(pl.Callback):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
seed_everything(seed=42) pl.utilities.seed.seed_everything(seed=42)
# Prepare the data # Prepare the data
hex_colors = [ hex_colors = [
@ -71,15 +58,15 @@ if __name__ == "__main__":
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff", "#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500" "#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
] ]
color_names = [ cnames = [
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green", "black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey", "red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
"lightgrey", "olive", "purple", "orange" "lightgrey", "olive", "purple", "orange"
] ]
colors = list(hex_to_rgb(hex_colors)) colors = list(hex_to_rgb(hex_colors))
data = torch.Tensor(colors) / 255.0 data = torch.Tensor(colors) / 255.0
train_ds = TensorDataset(data) train_ds = torch.utils.data.TensorDataset(data)
train_loader = DataLoader(train_ds, batch_size=8) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -90,7 +77,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = KohonenSOM( model = pt.models.KohonenSOM(
hparams, hparams,
prototypes_initializer=pt.initializers.RNCI(3), prototypes_initializer=pt.initializers.RNCI(3),
) )
@ -99,22 +86,17 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 3) model.example_input_array = torch.zeros(4, 3)
# Model summary # Model summary
logging.info(model) print(model)
# Callbacks # Callbacks
vis = Vis2DColorSOM(data=data) vis = Vis2DColorSOM(data=data)
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=500, max_epochs=500,
callbacks=[ callbacks=[vis],
vis, weights_summary="full",
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,36 +1,27 @@
"""Localized-GMLVQ example using the Moons dataset.""" """Localized-GMLVQ example using the Moons dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import LGMLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
seed_everything(seed=2) pl.utilities.seed.seed_everything(seed=2)
# Dataset # Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42) train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=256, shuffle=True) train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -40,7 +31,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = LGMLVQ( model = pt.models.LGMLVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
) )
@ -49,11 +40,11 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
logging.info(model) print(model)
# Callbacks # Callbacks
vis = VisGLVQ2D(data=train_ds) vis = pt.models.VisGLVQ2D(data=train_ds)
es = EarlyStopping( es = pl.callbacks.EarlyStopping(
monitor="train_acc", monitor="train_acc",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@ -63,17 +54,14 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
es, es,
], ],
log_every_n_steps=1, weights_summary="full",
max_epochs=1000, accelerator="ddp",
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,26 +1,13 @@
"""LVQMLN example using all four dimensions of the Iris dataset.""" """LVQMLN example using all four dimensions of the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
LVQMLN,
PruneLoserPrototypes,
VisSiameseGLVQ2D,
)
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module): class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2): def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__() super().__init__()
self.input_size = input_size self.input_size = input_size
@ -39,18 +26,17 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Reproducibility # Reproducibility
seed_everything(seed=42) pl.utilities.seed.seed_everything(seed=42)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=150) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -63,7 +49,7 @@ if __name__ == "__main__":
backbone = Backbone() backbone = Backbone()
# Initialize the model # Initialize the model
model = LVQMLN( model = pt.models.LVQMLN(
hparams, hparams,
prototypes_initializer=pt.initializers.SSCI( prototypes_initializer=pt.initializers.SSCI(
train_ds, train_ds,
@ -72,15 +58,18 @@ if __name__ == "__main__":
backbone=backbone, backbone=backbone,
) )
# Model summary
print(model)
# Callbacks # Callbacks
vis = VisSiameseGLVQ2D( vis = pt.models.VisSiameseGLVQ2D(
data=train_ds, data=train_ds,
map_protos=False, map_protos=False,
border=0.1, border=0.1,
resolution=500, resolution=500,
axis_off=True, axis_off=True,
) )
pruning = PruneLoserPrototypes( pruning = pt.models.PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=20, idle_epochs=20,
prune_quota_per_epoch=2, prune_quota_per_epoch=2,
@ -89,17 +78,12 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
], ],
log_every_n_steps=1,
max_epochs=1000,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,40 +1,28 @@
"""Median-LVQ example using the Iris dataset.""" """Median-LVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import MedianLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = DataLoader( train_loader = torch.utils.data.DataLoader(
train_ds, train_ds,
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
) )
# Initialize the model # Initialize the model
model = MedianLVQ( model = pt.models.MedianLVQ(
hparams=dict(distribution=(3, 2), lr=0.01), hparams=dict(distribution=(3, 2), lr=0.01),
prototypes_initializer=pt.initializers.SSCI(train_ds), prototypes_initializer=pt.initializers.SSCI(train_ds),
) )
@ -43,8 +31,8 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = VisGLVQ2D(data=train_ds) vis = pt.models.VisGLVQ2D(data=train_ds)
es = EarlyStopping( es = pl.callbacks.EarlyStopping(
monitor="train_acc", monitor="train_acc",
min_delta=0.01, min_delta=0.01,
patience=5, patience=5,
@ -54,17 +42,10 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto", callbacks=[vis, es],
fast_dev_run=args.fast_dev_run, weights_summary="full",
callbacks=[
vis,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,35 +1,23 @@
"""Neural Gas example using the Iris dataset.""" """Neural Gas example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import NeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Prepare and pre-process the dataset # Prepare and pre-process the dataset
x_train, y_train = load_iris(return_X_y=True) x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, 0:3:2] x_train = x_train[:, [0, 2]]
scaler = StandardScaler() scaler = StandardScaler()
scaler.fit(x_train) scaler.fit(x_train)
x_train = scaler.transform(x_train) x_train = scaler.transform(x_train)
@ -37,7 +25,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.NumpyDataset(x_train, y_train) train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=150) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -47,7 +35,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = NeuralGas( model = pt.models.NeuralGas(
hparams, hparams,
prototypes_initializer=pt.core.ZCI(2), prototypes_initializer=pt.core.ZCI(2),
lr_scheduler=ExponentialLR, lr_scheduler=ExponentialLR,
@ -57,20 +45,17 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
# Callbacks # Callbacks
vis = VisNG2D(data=train_ds) vis = pt.models.VisNG2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto", callbacks=[vis],
fast_dev_run=args.fast_dev_run, weights_summary="full",
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,34 +1,25 @@
"""RSLVQ example using the Iris dataset.""" """RSLVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import RSLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
seed_everything(seed=42) pl.utilities.seed.seed_everything(seed=42)
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=64) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -42,7 +33,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = RSLVQ( model = pt.models.RSLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
@ -51,20 +42,19 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks # Callbacks
vis = VisGLVQ2D(data=train_ds) vis = pt.models.VisGLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto", callbacks=[vis],
fast_dev_run=args.fast_dev_run, terminate_on_nan=True,
callbacks=[ weights_summary="full",
vis, accelerator="ddp",
],
detect_anomaly=True,
max_epochs=100,
log_every_n_steps=1,
) )
# Training loop # Training loop

View File

@ -1,22 +1,13 @@
"""Siamese GLVQ example using all four dimensions of the Iris dataset.""" """Siamese GLVQ example using all four dimensions of the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module): class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2): def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__() super().__init__()
self.input_size = input_size self.input_size = input_size
@ -35,50 +26,46 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Reproducibility # Reproducibility
seed_everything(seed=2) pl.utilities.seed.seed_everything(seed=2)
# Dataloaders # Dataloaders
train_loader = DataLoader(train_ds, batch_size=150) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
distribution=[1, 2, 3], distribution=[1, 2, 3],
lr=0.01, proto_lr=0.01,
bb_lr=0.01,
) )
# Initialize the backbone # Initialize the backbone
backbone = Backbone() backbone = Backbone()
# Initialize the model # Initialize the model
model = SiameseGLVQ( model = pt.models.SiameseGLVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone, backbone=backbone,
both_path_gradients=False, both_path_gradients=False,
) )
# Model summary
print(model)
# Callbacks # Callbacks
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1) vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto", callbacks=[vis],
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,87 +0,0 @@
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.latent_size = latent_size
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
self.activation = torch.nn.Sigmoid()
def forward(self, x):
x = self.activation(self.dense1(x))
out = self.activation(self.dense2(x))
return out
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Reproducibility
seed_everything(seed=2)
# Dataloaders
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
distribution=[1, 2, 3],
lr=0.01,
input_dim=2,
latent_dim=1,
)
# Initialize the backbone
backbone = Backbone(latent_size=hparams["input_dim"])
# Initialize the model
model = SiameseGTLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)
# Callbacks
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)

View File

@ -1,42 +1,24 @@
"""Warm-starting GLVQ with prototypes from Growing Neural Gas.""" """Warm-starting GLVQ with prototypes from Growing Neural Gas."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GLVQ,
KNN,
GrowingNeuralGas,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0) parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Prepare the data # Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = DataLoader(train_ds, batch_size=64, num_workers=0) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
# Initialize the gng # Initialize the gng
gng = GrowingNeuralGas( gng = pt.models.GrowingNeuralGas(
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1), hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
prototypes_initializer=pt.initializers.ZCI(2), prototypes_initializer=pt.initializers.ZCI(2),
lr_scheduler=ExponentialLR, lr_scheduler=ExponentialLR,
@ -44,7 +26,7 @@ if __name__ == "__main__":
) )
# Callbacks # Callbacks
es = EarlyStopping( es = pl.callbacks.EarlyStopping(
monitor="loss", monitor="loss",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@ -55,14 +37,9 @@ if __name__ == "__main__":
# Setup trainer for GNG # Setup trainer for GNG
trainer = pl.Trainer( trainer = pl.Trainer(
accelerator="cpu", max_epochs=100,
max_epochs=50 if args.fast_dev_run else callbacks=[es],
1000, # 10 epochs fast dev run reproducible DIV error. weights_summary=None,
callbacks=[
es,
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
@ -75,12 +52,12 @@ if __name__ == "__main__":
) )
# Warm-start prototypes # Warm-start prototypes
knn = KNN(dict(k=1), data=train_ds) knn = pt.models.KNN(dict(k=1), data=train_ds)
prototypes = gng.prototypes prototypes = gng.prototypes
plabels = knn.predict(prototypes) plabels = knn.predict(prototypes)
# Initialize the model # Initialize the model
model = GLVQ( model = pt.models.GLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.LCI(prototypes), prototypes_initializer=pt.initializers.LCI(prototypes),
@ -93,15 +70,15 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = VisGLVQ2D(data=train_ds) vis = pt.models.VisGLVQ2D(data=train_ds)
pruning = PruneLoserPrototypes( pruning = pt.models.PruneLoserPrototypes(
threshold=0.02, threshold=0.02,
idle_epochs=2, idle_epochs=2,
prune_quota_per_epoch=5, prune_quota_per_epoch=5,
frequency=1, frequency=1,
verbose=True, verbose=True,
) )
es = EarlyStopping( es = pl.callbacks.EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=10, patience=10,
@ -111,18 +88,15 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer( trainer = pl.Trainer.from_argparse_args(
accelerator="cuda" if args.gpus else "cpu", args,
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
es, es,
], ],
max_epochs=1000, weights_summary="full",
log_every_n_steps=1, accelerator="ddp",
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -8,32 +8,17 @@ from .glvq import (
GLVQ21, GLVQ21,
GMLVQ, GMLVQ,
GRLVQ, GRLVQ,
GTLVQ,
LGMLVQ, LGMLVQ,
LVQMLN, LVQMLN,
ImageGLVQ, ImageGLVQ,
ImageGMLVQ, ImageGMLVQ,
ImageGTLVQ,
SiameseGLVQ, SiameseGLVQ,
SiameseGMLVQ, SiameseGMLVQ,
SiameseGTLVQ,
) )
from .knn import KNN from .knn import KNN
from .lvq import ( from .lvq import LVQ1, LVQ21, MedianLVQ
LVQ1, from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
LVQ21, from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
MedianLVQ,
)
from .probabilistic import (
CELVQ,
RSLVQ,
SLVQ,
)
from .unsupervised import (
GrowingNeuralGas,
KohonenSOM,
NeuralGas,
)
from .vis import * from .vis import *
__version__ = "0.7.1" __version__ = "0.3.0"

View File

@ -1,29 +1,18 @@
"""Abstract classes to be inherited by prototorch models.""" """Abstract classes to be inherited by prototorch models."""
import logging
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
import torch.nn.functional as F
import torchmetrics import torchmetrics
from prototorch.core.competitions import WTAC from prototorch.core.competitions import WTAC
from prototorch.core.components import ( from prototorch.core.components import Components, LabeledComponents
AbstractComponents,
Components,
LabeledComponents,
)
from prototorch.core.distances import euclidean_distance from prototorch.core.distances import euclidean_distance
from prototorch.core.initializers import ( from prototorch.core.initializers import LabelsInitializer
LabelsInitializer,
ZerosCompInitializer,
)
from prototorch.core.pooling import stratified_min_pooling from prototorch.core.pooling import stratified_min_pooling
from prototorch.nn.wrappers import LambdaLayer from prototorch.nn.wrappers import LambdaLayer
class ProtoTorchBolt(pl.LightningModule): class ProtoTorchBolt(pl.LightningModule):
"""All ProtoTorch models are ProtoTorch Bolts.""" """All ProtoTorch models are ProtoTorch Bolts."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__() super().__init__()
@ -39,7 +28,7 @@ class ProtoTorchBolt(pl.LightningModule):
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict()) self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
def configure_optimizers(self): def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"]) optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
if self.lr_scheduler is not None: if self.lr_scheduler is not None:
scheduler = self.lr_scheduler(optimizer, scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs) **self.lr_scheduler_kwargs)
@ -52,10 +41,7 @@ class ProtoTorchBolt(pl.LightningModule):
return optimizer return optimizer
def reconfigure_optimizers(self): def reconfigure_optimizers(self):
if self.trainer: self.trainer.accelerator.setup_optimizers(self.trainer)
self.trainer.strategy.setup_optimizers(self.trainer)
else:
logging.warning("No trainer to reconfigure optimizers!")
def __repr__(self): def __repr__(self):
surep = super().__repr__() surep = super().__repr__()
@ -65,13 +51,11 @@ class ProtoTorchBolt(pl.LightningModule):
class PrototypeModel(ProtoTorchBolt): class PrototypeModel(ProtoTorchBolt):
proto_layer: AbstractComponents
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
distance_fn = kwargs.get("distance_fn", euclidean_distance) distance_fn = kwargs.get("distance_fn", euclidean_distance)
self.distance_layer = LambdaLayer(distance_fn, name="distance_fn") self.distance_layer = LambdaLayer(distance_fn)
@property @property
def num_prototypes(self): def num_prototypes(self):
@ -88,18 +72,14 @@ class PrototypeModel(ProtoTorchBolt):
def add_prototypes(self, *args, **kwargs): def add_prototypes(self, *args, **kwargs):
self.proto_layer.add_components(*args, **kwargs) self.proto_layer.add_components(*args, **kwargs)
self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers() self.reconfigure_optimizers()
def remove_prototypes(self, indices): def remove_prototypes(self, indices):
self.proto_layer.remove_components(indices) self.proto_layer.remove_components(indices)
self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers() self.reconfigure_optimizers()
class UnsupervisedPrototypeModel(PrototypeModel): class UnsupervisedPrototypeModel(PrototypeModel):
proto_layer: Components
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -107,7 +87,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
prototypes_initializer = kwargs.get("prototypes_initializer", None) prototypes_initializer = kwargs.get("prototypes_initializer", None)
if prototypes_initializer is not None: if prototypes_initializer is not None:
self.proto_layer = Components( self.proto_layer = Components(
self.hparams["num_prototypes"], self.hparams.num_prototypes,
initializer=prototypes_initializer, initializer=prototypes_initializer,
) )
@ -122,34 +102,19 @@ class UnsupervisedPrototypeModel(PrototypeModel):
class SupervisedPrototypeModel(PrototypeModel): class SupervisedPrototypeModel(PrototypeModel):
proto_layer: LabeledComponents def __init__(self, hparams, **kwargs):
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Layers # Layers
distribution = hparams.get("distribution", None)
prototypes_initializer = kwargs.get("prototypes_initializer", None) prototypes_initializer = kwargs.get("prototypes_initializer", None)
labels_initializer = kwargs.get("labels_initializer", labels_initializer = kwargs.get("labels_initializer",
LabelsInitializer()) LabelsInitializer())
if not skip_proto_layer: if prototypes_initializer is not None:
# when subclasses do not need a customized prototype layer self.proto_layer = LabeledComponents(
if prototypes_initializer is not None: distribution=self.hparams.distribution,
# when building a new model components_initializer=prototypes_initializer,
self.proto_layer = LabeledComponents( labels_initializer=labels_initializer,
distribution=distribution, )
components_initializer=prototypes_initializer,
labels_initializer=labels_initializer,
)
proto_shape = self.proto_layer.components.shape[1:]
self.hparams["initialized_proto_shape"] = proto_shape
else:
# when restoring a checkpointed model
self.proto_layer = LabeledComponents(
distribution=distribution,
components_initializer=ZerosCompInitializer(
self.hparams["initialized_proto_shape"]),
)
self.competition_layer = WTAC() self.competition_layer = WTAC()
@property @property
@ -169,7 +134,7 @@ class SupervisedPrototypeModel(PrototypeModel):
distances = self.compute_distances(x) distances = self.compute_distances(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
winning = stratified_min_pooling(distances, plabels) winning = stratified_min_pooling(distances, plabels)
y_pred = F.softmin(winning, dim=1) y_pred = torch.nn.functional.softmin(winning)
return y_pred return y_pred
def predict_from_distances(self, distances): def predict_from_distances(self, distances):
@ -186,63 +151,20 @@ class SupervisedPrototypeModel(PrototypeModel):
def log_acc(self, distances, targets, tag): def log_acc(self, distances, targets, tag):
preds = self.predict_from_distances(distances) preds = self.predict_from_distances(distances)
accuracy = torchmetrics.functional.accuracy( accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
preds.int(), # `.int()` because FloatTensors are assumed to be class probabilities
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log( self.log(tag,
tag, accuracy,
accuracy, on_step=False,
on_step=False, on_epoch=True,
on_epoch=True, prog_bar=True,
prog_bar=True, logger=True)
logger=True,
)
def test_step(self, batch, batch_idx): def test_step(self, batch, batch_idx):
x, targets = batch x, targets = batch
preds = self.predict(x) preds = self.predict(x)
accuracy = torchmetrics.functional.accuracy( accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
preds.int(),
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log("test_acc", accuracy) self.log("test_acc", accuracy)
class ProtoTorchMixin:
"""All mixins are ProtoTorchMixins."""
class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization = False
def training_step(self, train_batch, batch_idx):
raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
proto_layer: Components
components: torch.Tensor
def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
from torchvision.utils import make_grid
grid = make_grid(self.components, nrow=num_columns)
if return_channels_last:
grid = grid.permute((1, 2, 0))
return grid.cpu()

View File

@ -1,30 +1,24 @@
"""Lightning Callbacks.""" """Lightning Callbacks."""
import logging import logging
from typing import TYPE_CHECKING
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from prototorch.core.components import Components
from prototorch.core.initializers import LiteralCompInitializer from prototorch.core.initializers import LiteralCompInitializer
from .extras import ConnectionTopology from .extras import ConnectionTopology
if TYPE_CHECKING:
from prototorch.models import GLVQ, GrowingNeuralGas
class PruneLoserPrototypes(pl.Callback): class PruneLoserPrototypes(pl.Callback):
def __init__(self,
def __init__( threshold=0.01,
self, idle_epochs=10,
threshold=0.01, prune_quota_per_epoch=-1,
idle_epochs=10, frequency=1,
prune_quota_per_epoch=-1, replace=False,
frequency=1, prototypes_initializer=None,
replace=False, verbose=False):
prototypes_initializer=None,
verbose=False,
):
self.threshold = threshold # minimum win ratio self.threshold = threshold # minimum win ratio
self.idle_epochs = idle_epochs # epochs to wait before pruning self.idle_epochs = idle_epochs # epochs to wait before pruning
self.prune_quota_per_epoch = prune_quota_per_epoch self.prune_quota_per_epoch = prune_quota_per_epoch
@ -33,7 +27,7 @@ class PruneLoserPrototypes(pl.Callback):
self.verbose = verbose self.verbose = verbose
self.prototypes_initializer = prototypes_initializer self.prototypes_initializer = prototypes_initializer
def on_train_epoch_end(self, trainer, pl_module: "GLVQ"): def on_epoch_end(self, trainer, pl_module):
if (trainer.current_epoch + 1) < self.idle_epochs: if (trainer.current_epoch + 1) < self.idle_epochs:
return None return None
if (trainer.current_epoch + 1) % self.frequency: if (trainer.current_epoch + 1) % self.frequency:
@ -48,44 +42,41 @@ class PruneLoserPrototypes(pl.Callback):
prune_labels = prune_labels[:self.prune_quota_per_epoch] prune_labels = prune_labels[:self.prune_quota_per_epoch]
if len(to_prune) > 0: if len(to_prune) > 0:
logging.debug(f"\nPrototype win ratios: {ratios}") if self.verbose:
logging.debug(f"Pruning prototypes at: {to_prune}") print(f"\nPrototype win ratios: {ratios}")
logging.debug(f"Corresponding labels are: {prune_labels.tolist()}") print(f"Pruning prototypes at: {to_prune}")
print(f"Corresponding labels are: {prune_labels.tolist()}")
cur_num_protos = pl_module.num_prototypes cur_num_protos = pl_module.num_prototypes
pl_module.remove_prototypes(indices=to_prune) pl_module.remove_prototypes(indices=to_prune)
if self.replace: if self.replace:
labels, counts = torch.unique(prune_labels, labels, counts = torch.unique(prune_labels,
sorted=True, sorted=True,
return_counts=True) return_counts=True)
distribution = dict(zip(labels.tolist(), counts.tolist())) distribution = dict(zip(labels.tolist(), counts.tolist()))
if self.verbose:
logging.info(f"Re-adding pruned prototypes...") print(f"Re-adding pruned prototypes...")
logging.debug(f"distribution={distribution}") print(f"distribution={distribution}")
pl_module.add_prototypes( pl_module.add_prototypes(
distribution=distribution, distribution=distribution,
components_initializer=self.prototypes_initializer) components_initializer=self.prototypes_initializer)
new_num_protos = pl_module.num_prototypes new_num_protos = pl_module.num_prototypes
if self.verbose:
logging.info(f"`num_prototypes` changed from {cur_num_protos} " print(f"`num_prototypes` changed from {cur_num_protos} "
f"to {new_num_protos}.") f"to {new_num_protos}.")
return True return True
class PrototypeConvergence(pl.Callback): class PrototypeConvergence(pl.Callback):
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False): def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
self.min_delta = min_delta self.min_delta = min_delta
self.idle_epochs = idle_epochs # epochs to wait self.idle_epochs = idle_epochs # epochs to wait
self.verbose = verbose self.verbose = verbose
def on_train_epoch_end(self, trainer, pl_module): def on_epoch_end(self, trainer, pl_module):
if (trainer.current_epoch + 1) < self.idle_epochs: if (trainer.current_epoch + 1) < self.idle_epochs:
return None return None
if self.verbose:
logging.info("Stopping...") print("Stopping...")
# TODO # TODO
return True return True
@ -98,21 +89,16 @@ class GNGCallback(pl.Callback):
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke. Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
""" """
def __init__(self, reduction=0.1, freq=10): def __init__(self, reduction=0.1, freq=10):
self.reduction = reduction self.reduction = reduction
self.freq = freq self.freq = freq
def on_train_epoch_end( def on_epoch_end(self, trainer: pl.Trainer, pl_module):
self,
trainer: pl.Trainer,
pl_module: "GrowingNeuralGas",
):
if (trainer.current_epoch + 1) % self.freq == 0: if (trainer.current_epoch + 1) % self.freq == 0:
# Get information # Get information
errors = pl_module.errors errors = pl_module.errors
topology: ConnectionTopology = pl_module.topology_layer topology: ConnectionTopology = pl_module.topology_layer
components = pl_module.proto_layer.components components: Components = pl_module.proto_layer.components
# Insertion point # Insertion point
worst = torch.argmax(errors) worst = torch.argmax(errors)
@ -132,9 +118,8 @@ class GNGCallback(pl.Callback):
# Add component # Add component
pl_module.proto_layer.add_components( pl_module.proto_layer.add_components(
1, None,
initializer=LiteralCompInitializer(new_component.unsqueeze(0)), initializer=LiteralCompInitializer(new_component.unsqueeze(0)))
)
# Adjust Topology # Adjust Topology
topology.add_prototype() topology.add_prototype()
@ -149,4 +134,4 @@ class GNGCallback(pl.Callback):
pl_module.errors[ pl_module.errors[
worst_neighbor] = errors[worst_neighbor] * self.reduction worst_neighbor] = errors[worst_neighbor] * self.reduction
trainer.strategy.setup_optimizers(trainer) trainer.accelerator.setup_optimizers(trainer)

View File

@ -7,15 +7,14 @@ from prototorch.core.losses import MarginLoss
from prototorch.core.similarities import euclidean_similarity from prototorch.core.similarities import euclidean_similarity
from prototorch.nn.wrappers import LambdaLayer from prototorch.nn.wrappers import LambdaLayer
from .abstract import ImagePrototypesMixin
from .glvq import SiameseGLVQ from .glvq import SiameseGLVQ
from .mixin import ImagePrototypesMixin
class CBC(SiameseGLVQ): class CBC(SiameseGLVQ):
"""Classification-By-Components.""" """Classification-By-Components."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, skip_proto_layer=True, **kwargs) super().__init__(hparams, **kwargs)
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity) similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
components_initializer = kwargs.get("components_initializer", None) components_initializer = kwargs.get("components_initializer", None)
@ -44,7 +43,7 @@ class CBC(SiameseGLVQ):
probs = self.competition_layer(detections, reasonings) probs = self.competition_layer(detections, reasonings)
return probs return probs
def shared_step(self, batch, batch_idx): def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch x, y = batch
y_pred = self(x) y_pred = self(x)
num_classes = self.num_classes num_classes = self.num_classes
@ -52,23 +51,17 @@ class CBC(SiameseGLVQ):
loss = self.loss(y_pred, y_true).mean() loss = self.loss(y_pred, y_true).mean()
return y_pred, loss return y_pred, loss
def training_step(self, batch, batch_idx): def training_step(self, batch, batch_idx, optimizer_idx=None):
y_pred, train_loss = self.shared_step(batch, batch_idx) y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
preds = torch.argmax(y_pred, dim=1) preds = torch.argmax(y_pred, dim=1)
accuracy = torchmetrics.functional.accuracy( accuracy = torchmetrics.functional.accuracy(preds.int(),
preds.int(), batch[1].int())
batch[1].int(), self.log("train_acc",
"multiclass", accuracy,
num_classes=self.num_classes, on_step=False,
) on_epoch=True,
self.log( prog_bar=True,
"train_acc", logger=True)
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True,
)
return train_loss return train_loss
def predict(self, x): def predict(self, x):

View File

View File

@ -0,0 +1,86 @@
from dataclasses import dataclass
from typing import Callable
import torch
from prototorch.core.competitions import WTAC
from prototorch.core.components import LabeledComponents
from prototorch.core.distances import euclidean_distance
from prototorch.core.initializers import AbstractComponentsInitializer, LabelsInitializer
from prototorch.core.losses import GLVQLoss
from prototorch.models.clcc.clcc_scheme import CLCCScheme
from prototorch.nn.wrappers import LambdaLayer
@dataclass
class GLVQhparams:
distribution: dict
component_initializer: AbstractComponentsInitializer
distance_fn: Callable = euclidean_distance
lr: float = 0.01
margin: float = 0.0
# TODO: make nicer
transfer_fn: str = "identity"
transfer_beta: float = 10.0
optimizer: torch.optim.Optimizer = torch.optim.Adam
class GLVQ(CLCCScheme):
def __init__(self, hparams: GLVQhparams) -> None:
super().__init__(hparams)
self.lr = hparams.lr
self.optimizer = hparams.optimizer
# Initializers
def init_components(self, hparams):
# initialize Component Layer
self.components_layer = LabeledComponents(
distribution=hparams.distribution,
components_initializer=hparams.component_initializer,
labels_initializer=LabelsInitializer(),
)
def init_comparison(self, hparams):
# initialize Distance Layer
self.comparison_layer = LambdaLayer(hparams.distance_fn)
def init_inference(self, hparams):
self.competition_layer = WTAC()
def init_loss(self, hparams):
self.loss_layer = GLVQLoss(
margin=hparams.margin,
transfer_fn=hparams.transfer_fn,
beta=hparams.transfer_beta,
)
# Steps
def comparison(self, batch, components):
comp_tensor, _ = components
batch_tensor, _ = batch
comp_tensor = comp_tensor.unsqueeze(1)
distances = self.comparison_layer(batch_tensor, comp_tensor)
return distances
def inference(self, comparisonmeasures, components):
comp_labels = components[1]
return self.competition_layer(comparisonmeasures, comp_labels)
def loss(self, comparisonmeasures, batch, components):
target = batch[1]
comp_labels = components[1]
return self.loss_layer(comparisonmeasures, target, comp_labels)
def configure_optimizers(self):
return self.optimizer(self.parameters(), lr=self.lr)
# Properties
@property
def prototypes(self):
return self.components_layer.components.detach().cpu()
@property
def prototype_labels(self):
return self.components_layer.labels.detach().cpu()

View File

@ -0,0 +1,192 @@
"""
CLCC Scheme
CLCC is a LVQ scheme containing 4 steps
- Components
- Latent Space
- Comparison
- Competition
"""
from typing import Dict, Set, Type
import pytorch_lightning as pl
import torch
import torchmetrics
class CLCCScheme(pl.LightningModule):
registered_metrics: Dict[Type[torchmetrics.Metric],
torchmetrics.Metric] = {}
registered_metric_names: Dict[Type[torchmetrics.Metric], Set[str]] = {}
def __init__(self, hparams) -> None:
super().__init__()
# Common Steps
self.init_components(hparams)
self.init_latent(hparams)
self.init_comparison(hparams)
self.init_competition(hparams)
# Train Steps
self.init_loss(hparams)
# Inference Steps
self.init_inference(hparams)
# Initialize Model Metrics
self.init_model_metrics()
# internal API, called by models and callbacks
def register_torchmetric(self, name: str, metric: torchmetrics.Metric):
if metric not in self.registered_metrics:
self.registered_metrics[metric] = metric()
self.registered_metric_names[metric] = {name}
else:
self.registered_metric_names[metric].add(name)
# external API
def get_competion(self, batch, components):
latent_batch, latent_components = self.latent(batch, components)
# TODO: => Latent Hook
comparison_tensor = self.comparison(latent_batch, latent_components)
# TODO: => Comparison Hook
return comparison_tensor
def forward(self, batch):
if isinstance(batch, torch.Tensor):
batch = (batch, None)
# TODO: manage different datatypes?
components = self.components_layer()
# TODO: => Component Hook
comparison_tensor = self.get_competion(batch, components)
# TODO: => Competition Hook
return self.inference(comparison_tensor, components)
def predict(self, batch):
"""
Alias for forward
"""
return self.forward(batch)
def loss_forward(self, batch):
# TODO: manage different datatypes?
components = self.components_layer()
# TODO: => Component Hook
comparison_tensor = self.get_competion(batch, components)
# TODO: => Competition Hook
return self.loss(comparison_tensor, batch, components)
# Empty Initialization
# TODO: Type hints
# TODO: Docs
def init_components(self, hparams):
...
def init_latent(self, hparams):
...
def init_comparison(self, hparams):
...
def init_competition(self, hparams):
...
def init_loss(self, hparams):
...
def init_inference(self, hparams):
...
def init_model_metrics(self):
self.register_torchmetric('train_accuracy', torchmetrics.Accuracy)
# Empty Steps
# TODO: Type hints
def components(self):
"""
This step has no input.
It returns the components.
"""
raise NotImplementedError(
"The components step has no reasonable default.")
def latent(self, batch, components):
"""
The latent step receives the data batch and the components.
It can transform both by an arbitrary function.
It returns the transformed batch and components, each of the same length as the original input.
"""
return batch, components
def comparison(self, batch, components):
"""
Takes a batch of size N and the componentsset of size M.
It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
"""
raise NotImplementedError(
"The comparison step has no reasonable default.")
def competition(self, comparisonmeasures, components):
"""
Takes the tensor of comparison measures.
Assigns a competition vector to each class.
"""
raise NotImplementedError(
"The competition step has no reasonable default.")
def loss(self, comparisonmeasures, batch, components):
"""
Takes the tensor of competition measures.
Calculates a single loss value
"""
raise NotImplementedError("The loss step has no reasonable default.")
def inference(self, comparisonmeasures, components):
"""
Takes the tensor of competition measures.
Returns the inferred vector.
"""
raise NotImplementedError(
"The inference step has no reasonable default.")
def update_metrics_step(self, batch):
x, y = batch
preds = self(x)
for metric in self.registered_metrics:
instance = self.registered_metrics[metric].to(self.device)
value = instance(y, preds)
for name in self.registered_metric_names[metric]:
self.log(name, value)
def update_metrics_epoch(self):
for metric in self.registered_metrics:
instance = self.registered_metrics[metric].to(self.device)
value = instance.compute()
for name in self.registered_metric_names[metric]:
self.log(name, value)
# Lightning Hooks
def training_step(self, batch, batch_idx, optimizer_idx=None):
self.update_metrics_step(batch)
return self.loss_forward(batch)
def train_epoch_end(self, outs) -> None:
self.update_metrics_epoch()
def validation_step(self, batch, batch_idx):
return self.loss_forward(batch)
def test_step(self, batch, batch_idx):
return self.loss_forward(batch)

View File

@ -0,0 +1,76 @@
from typing import Optional
import matplotlib.pyplot as plt
import prototorch as pt
import pytorch_lightning as pl
import torch
import torchmetrics
from prototorch.core.initializers import SMCI, RandomNormalCompInitializer
from prototorch.models.clcc.clcc_glvq import GLVQ, GLVQhparams
from prototorch.models.clcc.clcc_scheme import CLCCScheme
from prototorch.models.vis import Visualize2DVoronoiCallback
# NEW STUFF
# ##############################################################################
# TODO: Metrics
class MetricsTestCallback(pl.Callback):
metric_name = "test_cb_acc"
def setup(self,
trainer: pl.Trainer,
pl_module: CLCCScheme,
stage: Optional[str] = None) -> None:
pl_module.register_torchmetric(self.metric_name, torchmetrics.Accuracy)
def on_epoch_end(self, trainer: pl.Trainer,
pl_module: pl.LightningModule) -> None:
metric = trainer.logged_metrics[self.metric_name]
if metric > 0.95:
trainer.should_stop = True
# TODO: Pruning
# ##############################################################################
if __name__ == "__main__":
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=64,
num_workers=8)
components_initializer = SMCI(train_ds)
hparams = GLVQhparams(
distribution=dict(
num_classes=3,
per_class=2,
),
component_initializer=components_initializer,
)
model = GLVQ(hparams)
print(model)
# Callbacks
vis = Visualize2DVoronoiCallback(
data=train_ds,
resolution=500,
)
metrics = MetricsTestCallback()
# Train
trainer = pl.Trainer(
callbacks=[
#vis,
metrics,
],
gpus=1,
max_epochs=100,
weights_summary=None,
log_every_n_steps=1,
)
trainer.fit(model, train_loader)

View File

@ -14,46 +14,7 @@ def rank_scaled_gaussian(distances, lambd):
return torch.exp(-torch.exp(-ranks / lambd) * distances) return torch.exp(-torch.exp(-ranks / lambd) * distances)
def orthogonalization(tensors):
"""Orthogonalization via polar decomposition """
u, _, v = torch.svd(tensors, compute_uv=True)
u_shape = tuple(list(u.shape))
v_shape = tuple(list(v.shape))
# reshape to (num x N x M)
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
out = u @ v.permute([0, 2, 1])
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
return out
def ltangent_distance(x, y, omegas):
r"""Localized Tangent distance.
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
:param `torch.tensor` omegas: Three dimensional matrix
:rtype: `torch.tensor`
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
omegas, omegas.permute([0, 2, 1]))
projected_x = x @ p
projected_y = torch.diagonal(y @ p).T
expanded_y = torch.unsqueeze(projected_y, dim=1)
batchwise_difference = expanded_y - projected_x
differences_squared = batchwise_difference**2
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
distances = distances.permute(1, 0)
return distances
class GaussianPrior(torch.nn.Module): class GaussianPrior(torch.nn.Module):
def __init__(self, variance): def __init__(self, variance):
super().__init__() super().__init__()
self.variance = variance self.variance = variance
@ -63,7 +24,6 @@ class GaussianPrior(torch.nn.Module):
class RankScaledGaussianPrior(torch.nn.Module): class RankScaledGaussianPrior(torch.nn.Module):
def __init__(self, lambd): def __init__(self, lambd):
super().__init__() super().__init__()
self.lambd = lambd self.lambd = lambd
@ -73,7 +33,6 @@ class RankScaledGaussianPrior(torch.nn.Module):
class ConnectionTopology(torch.nn.Module): class ConnectionTopology(torch.nn.Module):
def __init__(self, agelimit, num_prototypes): def __init__(self, agelimit, num_prototypes):
super().__init__() super().__init__()
self.agelimit = agelimit self.agelimit = agelimit

View File

@ -2,28 +2,19 @@
import torch import torch
from prototorch.core.competitions import wtac from prototorch.core.competitions import wtac
from prototorch.core.distances import ( from prototorch.core.distances import lomega_distance, omega_distance, squared_euclidean_distance
lomega_distance, from prototorch.core.initializers import EyeTransformInitializer
omega_distance, from prototorch.core.losses import GLVQLoss, lvq1_loss, lvq21_loss
squared_euclidean_distance,
)
from prototorch.core.initializers import EyeLinearTransformInitializer
from prototorch.core.losses import (
GLVQLoss,
lvq1_loss,
lvq21_loss,
)
from prototorch.core.transforms import LinearTransform from prototorch.core.transforms import LinearTransform
from prototorch.nn.wrappers import LambdaLayer, LossLayer from prototorch.nn.wrappers import LambdaLayer, LossLayer
from torch.nn.parameter import Parameter from torch.nn.parameter import Parameter
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel from .abstract import SupervisedPrototypeModel
from .extras import ltangent_distance, orthogonalization from .mixin import ImagePrototypesMixin
class GLVQ(SupervisedPrototypeModel): class GLVQ(SupervisedPrototypeModel):
"""Generalized Learning Vector Quantization.""" """Generalized Learning Vector Quantization."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -34,21 +25,17 @@ class GLVQ(SupervisedPrototypeModel):
# Loss # Loss
self.loss = GLVQLoss( self.loss = GLVQLoss(
margin=self.hparams["margin"], margin=self.hparams.margin,
transfer_fn=self.hparams["transfer_fn"], transfer_fn=self.hparams.transfer_fn,
beta=self.hparams["transfer_beta"], beta=self.hparams.transfer_beta,
) )
# def on_save_checkpoint(self, checkpoint):
# if "prototype_win_ratios" in checkpoint["state_dict"]:
# del checkpoint["state_dict"]["prototype_win_ratios"]
def initialize_prototype_win_ratios(self): def initialize_prototype_win_ratios(self):
self.register_buffer( self.register_buffer(
"prototype_win_ratios", "prototype_win_ratios",
torch.zeros(self.num_prototypes, device=self.device)) torch.zeros(self.num_prototypes, device=self.device))
def on_train_epoch_start(self): def on_epoch_start(self):
self.initialize_prototype_win_ratios() self.initialize_prototype_win_ratios()
def log_prototype_win_ratios(self, distances): def log_prototype_win_ratios(self, distances):
@ -66,15 +53,15 @@ class GLVQ(SupervisedPrototypeModel):
prototype_wr, prototype_wr,
]) ])
def shared_step(self, batch, batch_idx): def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch x, y = batch
out = self.compute_distances(x) out = self.compute_distances(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
loss = self.loss(out, y, plabels) loss = self.loss(out, y, plabels)
return out, loss return out, loss
def training_step(self, batch, batch_idx): def training_step(self, batch, batch_idx, optimizer_idx=None):
out, train_loss = self.shared_step(batch, batch_idx) out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
self.log_prototype_win_ratios(out) self.log_prototype_win_ratios(out)
self.log("train_loss", train_loss) self.log("train_loss", train_loss)
self.log_acc(out, batch[-1], tag="train_acc") self.log_acc(out, batch[-1], tag="train_acc")
@ -99,6 +86,10 @@ class GLVQ(SupervisedPrototypeModel):
test_loss += batch_loss.item() test_loss += batch_loss.item()
self.log("test_loss", test_loss) self.log("test_loss", test_loss)
# TODO
# def predict_step(self, batch, batch_idx, dataloader_idx=None):
# pass
class SiameseGLVQ(GLVQ): class SiameseGLVQ(GLVQ):
"""GLVQ in a Siamese setting. """GLVQ in a Siamese setting.
@ -108,7 +99,6 @@ class SiameseGLVQ(GLVQ):
transformation pipeline are only learned from the inputs. transformation pipeline are only learned from the inputs.
""" """
def __init__(self, def __init__(self,
hparams, hparams,
backbone=torch.nn.Identity(), backbone=torch.nn.Identity(),
@ -119,17 +109,33 @@ class SiameseGLVQ(GLVQ):
self.backbone = backbone self.backbone = backbone
self.both_path_gradients = both_path_gradients self.both_path_gradients = both_path_gradients
def configure_optimizers(self):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
# Only add a backbone optimizer if backbone has trainable parameters
bb_params = list(self.backbone.parameters())
if (bb_params):
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
optimizers = [proto_opt, bb_opt]
else:
optimizers = [proto_opt]
if self.lr_scheduler is not None:
schedulers = []
for optimizer in optimizers:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
schedulers.append(scheduler)
return optimizers, schedulers
else:
return optimizers
def compute_distances(self, x): def compute_distances(self, x):
protos, _ = self.proto_layer() protos, _ = self.proto_layer()
x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos)) x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
latent_x = self.backbone(x) latent_x = self.backbone(x)
self.backbone.requires_grad_(self.both_path_gradients)
bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
self.backbone.requires_grad_(bb_grad and self.both_path_gradients)
latent_protos = self.backbone(protos) latent_protos = self.backbone(protos)
self.backbone.requires_grad_(bb_grad) self.backbone.requires_grad_(True)
distances = self.distance_layer(latent_x, latent_protos) distances = self.distance_layer(latent_x, latent_protos)
return distances return distances
@ -159,7 +165,6 @@ class LVQMLN(SiameseGLVQ):
rather in the embedding space. rather in the embedding space.
""" """
def compute_distances(self, x): def compute_distances(self, x):
latent_protos, _ = self.proto_layer() latent_protos, _ = self.proto_layer()
latent_x = self.backbone(x) latent_x = self.backbone(x)
@ -175,22 +180,17 @@ class GRLVQ(SiameseGLVQ):
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise. TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
""" """
_relevances: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Additional parameters # Additional parameters
relevances = torch.ones(self.hparams["input_dim"], device=self.device) relevances = torch.ones(self.hparams.input_dim, device=self.device)
self.register_parameter("_relevances", Parameter(relevances)) self.register_parameter("_relevances", Parameter(relevances))
# Override the backbone # Override the backbone
self.backbone = LambdaLayer(self._apply_relevances, self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances),
name="relevance scaling") name="relevance scaling")
def _apply_relevances(self, x):
return x @ torch.diag(self._relevances)
@property @property
def relevance_profile(self): def relevance_profile(self):
return self._relevances.detach().cpu() return self._relevances.detach().cpu()
@ -205,16 +205,15 @@ class SiameseGMLVQ(SiameseGLVQ):
Implemented as a Siamese network with a linear transformation backbone. Implemented as a Siamese network with a linear transformation backbone.
""" """
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Override the backbone # Override the backbone
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get("omega_initializer",
EyeLinearTransformInitializer()) EyeTransformInitializer())
self.backbone = LinearTransform( self.backbone = LinearTransform(
self.hparams["input_dim"], self.hparams.input_dim,
self.hparams["latent_dim"], self.hparams.output_dim,
initializer=omega_initializer, initializer=omega_initializer,
) )
@ -224,7 +223,7 @@ class SiameseGMLVQ(SiameseGLVQ):
@property @property
def lambda_matrix(self): def lambda_matrix(self):
omega = self.backbone.weights # (input_dim, latent_dim) omega = self.backbone.weight # (input_dim, latent_dim)
lam = omega @ omega.T lam = omega @ omega.T
return lam.detach().cpu() return lam.detach().cpu()
@ -236,20 +235,18 @@ class GMLVQ(GLVQ):
function. This makes it easier to implement a localized variant. function. This makes it easier to implement a localized variant.
""" """
# Parameters
_omega: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", omega_distance) distance_fn = kwargs.pop("distance_fn", omega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs) super().__init__(hparams, distance_fn=distance_fn, **kwargs)
# Additional parameters # Additional parameters
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get("omega_initializer",
EyeLinearTransformInitializer()) EyeTransformInitializer())
omega = omega_initializer.generate(self.hparams["input_dim"], omega = omega_initializer.generate(self.hparams.input_dim,
self.hparams["latent_dim"]) self.hparams.latent_dim)
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
self.backbone = LambdaLayer(lambda x: x @ self._omega,
name="omega matrix")
@property @property
def omega_matrix(self): def omega_matrix(self):
@ -272,7 +269,6 @@ class GMLVQ(GLVQ):
class LGMLVQ(GMLVQ): class LGMLVQ(GMLVQ):
"""Localized and Generalized Matrix Learning Vector Quantization.""" """Localized and Generalized Matrix Learning Vector Quantization."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", lomega_distance) distance_fn = kwargs.pop("distance_fn", lomega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs) super().__init__(hparams, distance_fn=distance_fn, **kwargs)
@ -280,59 +276,15 @@ class LGMLVQ(GMLVQ):
# Re-register `_omega` to override the one from the super class. # Re-register `_omega` to override the one from the super class.
omega = torch.randn( omega = torch.randn(
self.num_prototypes, self.num_prototypes,
self.hparams["input_dim"], self.hparams.input_dim,
self.hparams["latent_dim"], self.hparams.latent_dim,
device=self.device, device=self.device,
) )
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
class GTLVQ(LGMLVQ):
"""Localized and Generalized Tangent Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
omega_initializer = kwargs.get("omega_initializer")
if omega_initializer is not None:
subspace = omega_initializer.generate(
self.hparams["input_dim"],
self.hparams["latent_dim"],
)
omega = torch.repeat_interleave(
subspace.unsqueeze(0),
self.num_prototypes,
dim=0,
)
else:
omega = torch.rand(
self.num_prototypes,
self.hparams["input_dim"],
self.hparams["latent_dim"],
device=self.device,
)
# Re-register `_omega` to override the one from the super class.
self.register_parameter("_omega", Parameter(omega))
def on_train_batch_end(self, outputs, batch, batch_idx):
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
"""Generalized Tangent Learning Vector Quantization.
Implemented as a Siamese network with a linear transformation backbone.
"""
class GLVQ1(GLVQ): class GLVQ1(GLVQ):
"""Generalized Learning Vector Quantization 1.""" """Generalized Learning Vector Quantization 1."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.loss = LossLayer(lvq1_loss) self.loss = LossLayer(lvq1_loss)
@ -341,7 +293,6 @@ class GLVQ1(GLVQ):
class GLVQ21(GLVQ): class GLVQ21(GLVQ):
"""Generalized Learning Vector Quantization 2.1.""" """Generalized Learning Vector Quantization 2.1."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.loss = LossLayer(lvq21_loss) self.loss = LossLayer(lvq21_loss)
@ -364,18 +315,3 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
after updates. after updates.
""" """
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
"""GTLVQ for training on image data.
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))

View File

@ -4,10 +4,7 @@ import warnings
from prototorch.core.competitions import KNNC from prototorch.core.competitions import KNNC
from prototorch.core.components import LabeledComponents from prototorch.core.components import LabeledComponents
from prototorch.core.initializers import ( from prototorch.core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
LiteralCompInitializer,
LiteralLabelsInitializer,
)
from prototorch.utils.utils import parse_data_arg from prototorch.utils.utils import parse_data_arg
from .abstract import SupervisedPrototypeModel from .abstract import SupervisedPrototypeModel
@ -15,9 +12,8 @@ from .abstract import SupervisedPrototypeModel
class KNN(SupervisedPrototypeModel): class KNN(SupervisedPrototypeModel):
"""K-Nearest-Neighbors classification algorithm.""" """K-Nearest-Neighbors classification algorithm."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, skip_proto_layer=True, **kwargs) super().__init__(hparams, **kwargs)
# Default hparams # Default hparams
self.hparams.setdefault("k", 1) self.hparams.setdefault("k", 1)
@ -29,15 +25,18 @@ class KNN(SupervisedPrototypeModel):
# Layers # Layers
self.proto_layer = LabeledComponents( self.proto_layer = LabeledComponents(
distribution=len(data) * [1], distribution=[],
components_initializer=LiteralCompInitializer(data), components_initializer=LiteralCompInitializer(data),
labels_initializer=LiteralLabelsInitializer(targets)) labels_initializer=LiteralLabelsInitializer(targets))
self.competition_layer = KNNC(k=self.hparams.k) self.competition_layer = KNNC(k=self.hparams.k)
def training_step(self, train_batch, batch_idx): def training_step(self, train_batch, batch_idx, optimizer_idx=None):
return 1 # skip training step return 1 # skip training step
def on_train_batch_start(self, train_batch, batch_idx): def on_train_batch_start(self,
train_batch,
batch_idx,
dataloader_idx=None):
warnings.warn("k-NN has no training, skipping!") warnings.warn("k-NN has no training, skipping!")
return -1 return -1

View File

@ -1,19 +1,16 @@
"""LVQ models that are optimized using non-gradient methods.""" """LVQ models that are optimized using non-gradient methods."""
import logging
from prototorch.core.losses import _get_dp_dm from prototorch.core.losses import _get_dp_dm
from prototorch.nn.activations import get_activation from prototorch.nn.activations import get_activation
from prototorch.nn.wrappers import LambdaLayer from prototorch.nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin
from .glvq import GLVQ from .glvq import GLVQ
from .mixin import NonGradientMixin
class LVQ1(NonGradientMixin, GLVQ): class LVQ1(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 1.""" """Learning Vector Quantization 1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
protos, plables = self.proto_layer() protos, plables = self.proto_layer()
x, y = train_batch x, y = train_batch
dis = self.compute_distances(x) dis = self.compute_distances(x)
@ -32,8 +29,8 @@ class LVQ1(NonGradientMixin, GLVQ):
self.proto_layer.load_state_dict({"_components": updated_protos}, self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False) strict=False)
logging.debug(f"dis={dis}") print(f"dis={dis}")
logging.debug(f"y={y}") print(f"y={y}")
# Logging # Logging
self.log_acc(dis, y, tag="train_acc") self.log_acc(dis, y, tag="train_acc")
@ -42,8 +39,7 @@ class LVQ1(NonGradientMixin, GLVQ):
class LVQ21(NonGradientMixin, GLVQ): class LVQ21(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 2.1.""" """Learning Vector Quantization 2.1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
protos, plabels = self.proto_layer() protos, plabels = self.proto_layer()
x, y = train_batch x, y = train_batch
@ -75,8 +71,8 @@ class MedianLVQ(NonGradientMixin, GLVQ):
# TODO Avoid computing distances over and over # TODO Avoid computing distances over and over
""" """
def __init__(self, hparams, verbose=True, **kwargs):
def __init__(self, hparams, **kwargs): self.verbose = verbose
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.transfer_layer = LambdaLayer( self.transfer_layer = LambdaLayer(
@ -100,7 +96,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
lower_bound = (gamma * f.log()).sum() lower_bound = (gamma * f.log()).sum()
return lower_bound return lower_bound
def training_step(self, train_batch, batch_idx): def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos, plabels = self.proto_layer() protos, plabels = self.proto_layer()
x, y = train_batch x, y = train_batch
@ -117,7 +113,8 @@ class MedianLVQ(NonGradientMixin, GLVQ):
_protos[i] = xk _protos[i] = xk
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma) _lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
if _lower_bound > lower_bound: if _lower_bound > lower_bound:
logging.debug(f"Updating prototype {i} to data {k}...") if self.verbose:
print(f"Updating prototype {i} to data {k}...")
self.proto_layer.load_state_dict({"_components": _protos}, self.proto_layer.load_state_dict({"_components": _protos},
strict=False) strict=False)
break break

View File

@ -0,0 +1,27 @@
class ProtoTorchMixin:
"""All mixins are ProtoTorchMixins."""
pass
class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
from torchvision.utils import make_grid
grid = make_grid(self.components, nrow=num_columns)
if return_channels_last:
grid = grid.permute((1, 2, 0))
return grid.cpu()

View File

@ -2,11 +2,8 @@
import torch import torch
from prototorch.core.losses import nllr_loss, rslvq_loss from prototorch.core.losses import nllr_loss, rslvq_loss
from prototorch.core.pooling import ( from prototorch.core.pooling import stratified_min_pooling, stratified_sum_pooling
stratified_min_pooling, from prototorch.nn.wrappers import LambdaLayer, LossLayer
stratified_sum_pooling,
)
from prototorch.nn.wrappers import LossLayer
from .extras import GaussianPrior, RankScaledGaussianPrior from .extras import GaussianPrior, RankScaledGaussianPrior
from .glvq import GLVQ, SiameseGMLVQ from .glvq import GLVQ, SiameseGMLVQ
@ -14,14 +11,13 @@ from .glvq import GLVQ, SiameseGMLVQ
class CELVQ(GLVQ): class CELVQ(GLVQ):
"""Cross-Entropy Learning Vector Quantization.""" """Cross-Entropy Learning Vector Quantization."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Loss # Loss
self.loss = torch.nn.CrossEntropyLoss() self.loss = torch.nn.CrossEntropyLoss()
def shared_step(self, batch, batch_idx): def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch x, y = batch
out = self.compute_distances(x) # [None, num_protos] out = self.compute_distances(x) # [None, num_protos]
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
@ -33,28 +29,20 @@ class CELVQ(GLVQ):
class ProbabilisticLVQ(GLVQ): class ProbabilisticLVQ(GLVQ):
def __init__(self, hparams, rejection_confidence=0.0, **kwargs): def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.conditional_distribution = None
self.rejection_confidence = rejection_confidence self.rejection_confidence = rejection_confidence
self._conditional_distribution = None
def forward(self, x): def forward(self, x):
distances = self.compute_distances(x) distances = self.compute_distances(x)
conditional = self.conditional_distribution(distances) conditional = self.conditional_distribution(distances)
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes, prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
device=self.device) device=self.device)
posterior = conditional * prior posterior = conditional * prior
plabels = self.proto_layer._labels plabels = self.proto_layer._labels
if isinstance(plabels, torch.LongTensor) or isinstance( y_pred = stratified_sum_pooling(posterior, plabels)
plabels, torch.cuda.LongTensor): # type: ignore
y_pred = stratified_sum_pooling(posterior, plabels) # type: ignore
else:
raise ValueError("Labels must be LongTensor.")
return y_pred return y_pred
def predict(self, x): def predict(self, x):
@ -63,7 +51,7 @@ class ProbabilisticLVQ(GLVQ):
prediction[confidence < self.rejection_confidence] = -1 prediction[confidence < self.rejection_confidence] = -1
return prediction return prediction
def training_step(self, batch, batch_idx): def training_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch x, y = batch
out = self.forward(x) out = self.forward(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
@ -71,39 +59,21 @@ class ProbabilisticLVQ(GLVQ):
loss = batch_loss.sum() loss = batch_loss.sum()
return loss return loss
def conditional_distribution(self, distances):
"""Conditional distribution of distances."""
if self._conditional_distribution is None:
raise ValueError("Conditional distribution is not set.")
return self._conditional_distribution(distances)
class SLVQ(ProbabilisticLVQ): class SLVQ(ProbabilisticLVQ):
"""Soft Learning Vector Quantization.""" """Soft Learning Vector Quantization."""
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
# Default hparams
self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance")
self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(nllr_loss) self.loss = LossLayer(nllr_loss)
self.conditional_distribution = GaussianPrior(self.hparams.variance)
class RSLVQ(ProbabilisticLVQ): class RSLVQ(ProbabilisticLVQ):
"""Robust Soft Learning Vector Quantization.""" """Robust Soft Learning Vector Quantization."""
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
# Default hparams
self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance")
self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(rslvq_loss) self.loss = LossLayer(rslvq_loss)
self.conditional_distribution = GaussianPrior(self.hparams.variance)
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ): class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
@ -111,19 +81,14 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
TODO: Use Backbone LVQ instead TODO: Use Backbone LVQ instead
""" """
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.conditional_distribution = RankScaledGaussianPrior(
# Default hparams self.hparams.lambd)
self.hparams.setdefault("lambda", 1.0)
lam = self.hparams.get("lambda", 1.0)
self.conditional_distribution = RankScaledGaussianPrior(lam)
self.loss = torch.nn.KLDivLoss() self.loss = torch.nn.KLDivLoss()
# FIXME # FIXME
# def training_step(self, batch, batch_idx): # def training_step(self, batch, batch_idx, optimizer_idx=None):
# x, y = batch # x, y = batch
# y_pred = self(x) # y_pred = self(x)
# batch_loss = self.loss(y_pred, y) # batch_loss = self.loss(y_pred, y)

View File

@ -5,10 +5,12 @@ import torch
from prototorch.core.competitions import wtac from prototorch.core.competitions import wtac
from prototorch.core.distances import squared_euclidean_distance from prototorch.core.distances import squared_euclidean_distance
from prototorch.core.losses import NeuralGasEnergy from prototorch.core.losses import NeuralGasEnergy
from prototorch.nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel from .abstract import UnsupervisedPrototypeModel
from .callbacks import GNGCallback from .callbacks import GNGCallback
from .extras import ConnectionTopology from .extras import ConnectionTopology
from .mixin import NonGradientMixin
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel): class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
@ -17,8 +19,6 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
TODO Allow non-2D grids TODO Allow non-2D grids
""" """
_grid: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
h, w = hparams.get("shape") h, w = hparams.get("shape")
# Ignore `num_prototypes` # Ignore `num_prototypes`
@ -35,7 +35,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
# Additional parameters # Additional parameters
x, y = torch.arange(h), torch.arange(w) x, y = torch.arange(h), torch.arange(w)
grid = torch.stack(torch.meshgrid(x, y, indexing="ij"), dim=-1) grid = torch.stack(torch.meshgrid(x, y), dim=-1)
self.register_buffer("_grid", grid) self.register_buffer("_grid", grid)
self._sigma = self.hparams.sigma self._sigma = self.hparams.sigma
self._lr = self.hparams.lr self._lr = self.hparams.lr
@ -58,12 +58,10 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
diff = x.unsqueeze(dim=1) - protos diff = x.unsqueeze(dim=1) - protos
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
updated_protos = protos + delta.sum(dim=0) updated_protos = protos + delta.sum(dim=0)
self.proto_layer.load_state_dict( self.proto_layer.load_state_dict({"_components": updated_protos},
{"_components": updated_protos}, strict=False)
strict=False,
)
def on_training_epoch_end(self, training_step_outputs): def training_epoch_end(self, training_step_outputs):
self._sigma = self.hparams.sigma * np.exp( self._sigma = self.hparams.sigma * np.exp(
-self.current_epoch / self.trainer.max_epochs) -self.current_epoch / self.trainer.max_epochs)
@ -72,7 +70,6 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
class HeskesSOM(UnsupervisedPrototypeModel): class HeskesSOM(UnsupervisedPrototypeModel):
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -82,7 +79,6 @@ class HeskesSOM(UnsupervisedPrototypeModel):
class NeuralGas(UnsupervisedPrototypeModel): class NeuralGas(UnsupervisedPrototypeModel):
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -90,13 +86,13 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.save_hyperparameters(hparams) self.save_hyperparameters(hparams)
# Default hparams # Default hparams
self.hparams.setdefault("age_limit", 10) self.hparams.setdefault("agelimit", 10)
self.hparams.setdefault("lm", 1) self.hparams.setdefault("lm", 1)
self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"]) self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
self.topology_layer = ConnectionTopology( self.topology_layer = ConnectionTopology(
agelimit=self.hparams["age_limit"], agelimit=self.hparams.agelimit,
num_prototypes=self.hparams["num_prototypes"], num_prototypes=self.hparams.num_prototypes,
) )
def training_step(self, train_batch, batch_idx): def training_step(self, train_batch, batch_idx):
@ -109,10 +105,12 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.log("loss", loss) self.log("loss", loss)
return loss return loss
# def training_epoch_end(self, training_step_outputs):
# print(f"{self.trainer.lr_schedulers}")
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
class GrowingNeuralGas(NeuralGas): class GrowingNeuralGas(NeuralGas):
errors: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -121,10 +119,7 @@ class GrowingNeuralGas(NeuralGas):
self.hparams.setdefault("insert_reduction", 0.1) self.hparams.setdefault("insert_reduction", 0.1)
self.hparams.setdefault("insert_freq", 10) self.hparams.setdefault("insert_freq", 10)
errors = torch.zeros( errors = torch.zeros(self.hparams.num_prototypes, device=self.device)
self.hparams["num_prototypes"],
device=self.device,
)
self.register_buffer("errors", errors) self.register_buffer("errors", errors)
def training_step(self, train_batch, _batch_idx): def training_step(self, train_batch, _batch_idx):
@ -139,7 +134,7 @@ class GrowingNeuralGas(NeuralGas):
dp = d * mask dp = d * mask
self.errors += torch.sum(dp * dp) self.errors += torch.sum(dp * dp)
self.errors *= self.hparams["step_reduction"] self.errors *= self.hparams.step_reduction
self.topology_layer(d) self.topology_layer(d)
self.log("loss", loss) self.log("loss", loss)
@ -147,8 +142,6 @@ class GrowingNeuralGas(NeuralGas):
def configure_callbacks(self): def configure_callbacks(self):
return [ return [
GNGCallback( GNGCallback(reduction=self.hparams.insert_reduction,
reduction=self.hparams["insert_reduction"], freq=self.hparams.insert_freq)
freq=self.hparams["insert_freq"],
)
] ]

View File

@ -1,28 +1,23 @@
"""Visualization Callbacks.""" """Visualization Callbacks."""
import warnings
from typing import Sized
import numpy as np import numpy as np
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
import torchvision import torchvision
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from prototorch.utils.colors import get_colors, get_legend_handles from prototorch.utils.utils import generate_mesh, mesh2d
from prototorch.utils.utils import mesh2d
from pytorch_lightning.loggers import TensorBoardLogger
from torch.utils.data import DataLoader, Dataset from torch.utils.data import DataLoader, Dataset
COLOR_UNLABELED = 'w'
class Vis2DAbstract(pl.Callback): class Vis2DAbstract(pl.Callback):
def __init__(self, def __init__(self,
data=None, data,
title="Prototype Visualization", title=None,
x_label=None,
y_label=None,
cmap="viridis", cmap="viridis",
xlabel="Data dimension 1",
ylabel="Data dimension 2",
legend_labels=None,
border=0.1, border=0.1,
resolution=100, resolution=100,
flatten_data=True, flatten_data=True,
@ -35,36 +30,26 @@ class Vis2DAbstract(pl.Callback):
block=False): block=False):
super().__init__() super().__init__()
if data: if isinstance(data, Dataset):
if isinstance(data, Dataset): x, y = next(iter(DataLoader(data, batch_size=len(data))))
if isinstance(data, Sized): elif isinstance(data, torch.utils.data.DataLoader):
x, y = next(iter(DataLoader(data, batch_size=len(data)))) x = torch.tensor([])
else: y = torch.tensor([])
# TODO: Add support for non-sized datasets for x_b, y_b in data:
raise NotImplementedError( x = torch.cat([x, x_b])
"Data must be a dataset with a __len__ method.") y = torch.cat([y, y_b])
elif isinstance(data, DataLoader):
x = torch.tensor([])
y = torch.tensor([])
for x_b, y_b in data:
x = torch.cat([x, x_b])
y = torch.cat([y, y_b])
else:
x, y = data
if flatten_data:
x = x.reshape(len(x), -1)
self.x_train = x
self.y_train = y
else: else:
self.x_train = None x, y = data
self.y_train = None
if flatten_data:
x = x.reshape(len(x), -1)
self.x_train = x
self.y_train = y
self.title = title self.title = title
self.xlabel = xlabel self.x_label = x_label
self.ylabel = ylabel self.y_label = y_label
self.legend_labels = legend_labels
self.fig = plt.figure(self.title) self.fig = plt.figure(self.title)
self.cmap = cmap self.cmap = cmap
self.border = border self.border = border
@ -77,18 +62,19 @@ class Vis2DAbstract(pl.Callback):
self.pause_time = pause_time self.pause_time = pause_time
self.block = block self.block = block
def precheck(self, trainer): def show_on_current_epoch(self, trainer):
if self.show_last_only: if self.show_last_only and trainer.current_epoch != trainer.max_epochs - 1:
if trainer.current_epoch != trainer.max_epochs - 1: return False
return False
return True return True
def setup_ax(self): def setup_ax(self):
ax = self.fig.gca() ax = self.fig.gca()
ax.cla() ax.cla()
ax.set_title(self.title) ax.set_title(self.title)
ax.set_xlabel(self.xlabel) if self.x_label:
ax.set_ylabel(self.ylabel) ax.set_xlabel(self.x_label)
if self.x_label:
ax.set_ylabel(self.y_label)
if self.axis_off: if self.axis_off:
ax.axis("off") ax.axis("off")
return ax return ax
@ -131,47 +117,81 @@ class Vis2DAbstract(pl.Callback):
else: else:
plt.show(block=self.block) plt.show(block=self.block)
def on_train_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
self.visualize(pl_module)
self.log_and_display(trainer, pl_module)
def on_train_end(self, trainer, pl_module): def on_train_end(self, trainer, pl_module):
plt.close() plt.close()
def visualize(self, pl_module):
raise NotImplementedError
class Visualize2DVoronoiCallback(Vis2DAbstract):
def __init__(self, data, **kwargs):
super().__init__(data, **kwargs)
class VisGLVQ2D(Vis2DAbstract): self.data_min = torch.min(self.x_train, axis=0).values
self.data_max = torch.max(self.x_train, axis=0).values
def visualize(self, pl_module): def current_span(self, proto_values):
protos = pl_module.prototypes proto_min = torch.min(proto_values, axis=0).values
plabels = pl_module.prototype_labels proto_max = torch.max(proto_values, axis=0).values
x_train, y_train = self.x_train, self.y_train
ax = self.setup_ax() overall_min = torch.minimum(proto_min, self.data_min)
self.plot_protos(ax, protos, plabels) overall_max = torch.maximum(proto_max, self.data_max)
if x_train is not None:
self.plot_data(ax, x_train, y_train) return overall_min, overall_max
mesh_input, xx, yy = mesh2d(np.vstack([x_train, protos]),
self.border, self.resolution) def get_voronoi_diagram(self, min, max, model):
mesh_input, (xx, yy) = generate_mesh(
min,
max,
border=self.border,
resolution=self.resolution,
device=model.device,
)
y_pred = model.predict(mesh_input)
return xx, yy, y_pred.reshape(xx.shape)
def on_epoch_end(self, trainer, pl_module):
if not self.show_on_current_epoch(trainer):
return True
# Extract Prototypes
proto_values = pl_module.prototypes
if hasattr(pl_module, "prototype_labels"):
proto_labels = pl_module.prototype_labels
else: else:
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution) proto_labels = COLOR_UNLABELED
_components = pl_module.proto_layer._components
mesh_input = torch.from_numpy(mesh_input).type_as(_components) # Calculate Voronoi Diagram
y_pred = pl_module.predict(mesh_input) overall_min, overall_max = self.current_span(proto_values)
y_pred = y_pred.cpu().reshape(xx.shape) xx, yy, y_pred = self.get_voronoi_diagram(
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) overall_min,
overall_max,
pl_module,
)
ax = self.setup_ax()
ax.contourf(
xx.cpu(),
yy.cpu(),
y_pred.cpu(),
cmap=self.cmap,
alpha=0.35,
)
self.plot_data(ax, self.x_train, self.y_train)
self.plot_protos(ax, proto_values, proto_labels)
self.log_and_display(trainer, pl_module)
class VisSiameseGLVQ2D(Vis2DAbstract): class VisSiameseGLVQ2D(Vis2DAbstract):
def __init__(self, *args, map_protos=True, **kwargs): def __init__(self, *args, map_protos=True, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.map_protos = map_protos self.map_protos = map_protos
def visualize(self, pl_module): def on_epoch_end(self, trainer, pl_module):
if not self.show_on_current_epoch(trainer):
return True
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
@ -198,14 +218,18 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
y_pred = y_pred.cpu().reshape(xx.shape) y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
self.log_and_display(trainer, pl_module)
class VisGMLVQ2D(Vis2DAbstract): class VisGMLVQ2D(Vis2DAbstract):
def __init__(self, *args, ev_proj=True, **kwargs): def __init__(self, *args, ev_proj=True, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.ev_proj = ev_proj self.ev_proj = ev_proj
def visualize(self, pl_module): def on_epoch_end(self, trainer, pl_module):
if not self.show_on_current_epoch(trainer):
return True
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
@ -227,28 +251,14 @@ class VisGMLVQ2D(Vis2DAbstract):
if self.show_protos: if self.show_protos:
self.plot_protos(ax, protos, plabels) self.plot_protos(ax, protos, plabels)
self.log_and_display(trainer, pl_module)
class VisCBC2D(Vis2DAbstract):
def visualize(self, pl_module):
x_train, y_train = self.x_train, self.y_train
protos = pl_module.components
ax = self.setup_ax()
self.plot_data(ax, x_train, y_train)
self.plot_protos(ax, protos, "w")
x = np.vstack((x_train, protos))
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
_components = pl_module.components_layer._components
y_pred = pl_module.predict(
torch.Tensor(mesh_input).type_as(_components))
y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
class VisNG2D(Vis2DAbstract): class VisNG2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.show_on_current_epoch(trainer):
return True
def visualize(self, pl_module):
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
protos = pl_module.prototypes protos = pl_module.prototypes
cmat = pl_module.topology_layer.cmat.cpu().numpy() cmat = pl_module.topology_layer.cmat.cpu().numpy()
@ -267,27 +277,10 @@ class VisNG2D(Vis2DAbstract):
"k-", "k-",
) )
self.log_and_display(trainer, pl_module)
class VisSpectralProtos(Vis2DAbstract):
def visualize(self, pl_module):
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
ax = self.setup_ax()
colors = get_colors(vmax=max(plabels), vmin=min(plabels))
for p, pl in zip(protos, plabels):
ax.plot(p, c=colors[int(pl)])
if self.legend_labels:
handles = get_legend_handles(
colors,
self.legend_labels,
marker="lines",
)
ax.legend(handles=handles)
class VisImgComp(Vis2DAbstract): class VisImgComp(Vis2DAbstract):
def __init__(self, def __init__(self,
*args, *args,
random_data=0, random_data=0,
@ -303,45 +296,30 @@ class VisImgComp(Vis2DAbstract):
self.add_embedding = add_embedding self.add_embedding = add_embedding
self.embedding_data = embedding_data self.embedding_data = embedding_data
def on_train_start(self, _, pl_module): def on_train_start(self, trainer, pl_module):
if isinstance(pl_module.logger, TensorBoardLogger): tb = pl_module.logger.experiment
tb = pl_module.logger.experiment if self.add_embedding:
ind = np.random.choice(len(self.x_train),
size=self.embedding_data,
replace=False)
data = self.x_train[ind]
tb.add_embedding(data.view(len(ind), -1),
label_img=data,
global_step=None,
tag="Data Embedding",
metadata=self.y_train[ind],
metadata_header=None)
# Add embedding if self.random_data:
if self.add_embedding: ind = np.random.choice(len(self.x_train),
if self.x_train is not None and self.y_train is not None: size=self.random_data,
ind = np.random.choice(len(self.x_train), replace=False)
size=self.embedding_data, data = self.x_train[ind]
replace=False) grid = torchvision.utils.make_grid(data, nrow=self.num_columns)
data = self.x_train[ind] tb.add_image(tag="Data",
tb.add_embedding(data.view(len(ind), -1), img_tensor=grid,
label_img=data, global_step=None,
global_step=None, dataformats=self.dataformats)
tag="Data Embedding",
metadata=self.y_train[ind],
metadata_header=None)
else:
raise ValueError("No data for add embedding flag")
# Random Data
if self.random_data:
if self.x_train is not None:
ind = np.random.choice(len(self.x_train),
size=self.random_data,
replace=False)
data = self.x_train[ind]
grid = torchvision.utils.make_grid(data,
nrow=self.num_columns)
tb.add_image(tag="Data",
img_tensor=grid,
global_step=None,
dataformats=self.dataformats)
else:
raise ValueError("No data for random data flag")
else:
warnings.warn(
f"TensorBoardLogger is required, got {type(pl_module.logger)}")
def add_to_tensorboard(self, trainer, pl_module): def add_to_tensorboard(self, trainer, pl_module):
tb = pl_module.logger.experiment tb = pl_module.logger.experiment
@ -355,9 +333,14 @@ class VisImgComp(Vis2DAbstract):
dataformats=self.dataformats, dataformats=self.dataformats,
) )
def visualize(self, pl_module): def on_epoch_end(self, trainer, pl_module):
if not self.show_on_current_epoch(trainer):
return True
if self.show: if self.show:
components = pl_module.components components = pl_module.components
grid = torchvision.utils.make_grid(components, grid = torchvision.utils.make_grid(components,
nrow=self.num_columns) nrow=self.num_columns)
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap) plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
self.log_and_display(trainer, pl_module)

View File

@ -1,90 +0,0 @@
[project]
name = "prototorch-models"
version = "0.7.1"
description = "Pre-packaged prototype-based machine learning models using ProtoTorch and PyTorch-Lightning."
authors = [
{ name = "Jensun Ravichandran", email = "jjensun@gmail.com" },
{ name = "Alexander Engelsberger", email = "engelsbe@hs-mittweida.de" },
]
dependencies = ["lightning>=2.0.0", "prototorch>=0.7.5"]
requires-python = ">=3.8"
readme = "README.md"
license = { text = "MIT" }
classifiers = [
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
]
[project.urls]
Homepage = "https://github.com/si-cim/prototorch_models"
Downloads = "https://github.com/si-cim/prototorch_models.git"
[project.optional-dependencies]
dev = ["bumpversion", "pre-commit", "yapf", "toml"]
examples = ["matplotlib", "scikit-learn"]
ci = ["pytest", "pre-commit"]
docs = [
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
all = [
"bumpversion",
"pre-commit",
"yapf",
"toml",
"pytest",
"matplotlib",
"scikit-learn",
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
[build-system]
requires = ["setuptools>=61", "wheel"]
build-backend = "setuptools.build_meta"
[tool.yapf]
based_on_style = "pep8"
spaces_before_comment = 2
split_before_logical_operator = true
[tool.pylint]
disable = ["too-many-arguments", "too-few-public-methods", "fixme"]
[tool.isort]
profile = "hug"
src_paths = ["isort", "test"]
multi_line_output = 3
include_trailing_comma = true
force_grid_wrap = 3
use_parentheses = true
line_length = 79
[tool.mypy]
explicit_package_bases = true
namespace_packages = true

8
setup.cfg Normal file
View File

@ -0,0 +1,8 @@
[isort]
profile = hug
src_paths = isort, test
[yapf]
based_on_style = pep8
spaces_before_comment = 2
split_before_logical_operator = true

97
setup.py Normal file
View File

@ -0,0 +1,97 @@
"""
######
# # ##### #### ##### #### ##### #### ##### #### # #
# # # # # # # # # # # # # # # # # #
###### # # # # # # # # # # # # # ######
# ##### # # # # # # # # ##### # # #
# # # # # # # # # # # # # # # # #
# # # #### # #### # #### # # #### # #Plugin
ProtoTorch models Plugin Package
"""
from pkg_resources import safe_name
from setuptools import find_namespace_packages, setup
PLUGIN_NAME = "models"
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
with open("README.md") as fh:
long_description = fh.read()
INSTALL_REQUIRES = [
"prototorch>=0.7.0",
"pytorch_lightning>=1.3.5",
"torchmetrics",
]
CLI = [
"jsonargparse",
]
DEV = [
"bumpversion",
"pre-commit",
]
DOCS = [
"recommonmark",
"sphinx",
"nbsphinx",
"ipykernel",
"sphinx_rtd_theme",
"sphinxcontrib-katex",
"sphinxcontrib-bibtex",
]
EXAMPLES = [
"matplotlib",
"scikit-learn",
]
TESTS = [
"codecov",
"pytest",
]
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
setup(
name=safe_name("prototorch_" + PLUGIN_NAME),
version="0.3.0",
description="Pre-packaged prototype-based "
"machine learning models using ProtoTorch and PyTorch-Lightning.",
long_description=long_description,
long_description_content_type="text/markdown",
author="Alexander Engelsberger",
author_email="engelsbe@hs-mittweida.de",
url=PROJECT_URL,
download_url=DOWNLOAD_URL,
license="MIT",
python_requires=">=3.6",
install_requires=INSTALL_REQUIRES,
extras_require={
"dev": DEV,
"examples": EXAMPLES,
"tests": TESTS,
"all": ALL,
},
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.6",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
entry_points={
"prototorch.plugins": f"{PLUGIN_NAME} = prototorch.{PLUGIN_NAME}"
},
packages=find_namespace_packages(include=["prototorch.*"]),
zip_safe=False,
)

14
tests/test_.py Normal file
View File

@ -0,0 +1,14 @@
"""prototorch.models test suite."""
import unittest
class TestDummy(unittest.TestCase):
def setUp(self):
pass
def test_dummy(self):
pass
def tearDown(self):
pass

View File

@ -1,193 +0,0 @@
"""prototorch.models test suite."""
import prototorch.models
def test_glvq_model_build():
model = prototorch.models.GLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_glvq1_model_build():
model = prototorch.models.GLVQ1(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_glvq21_model_build():
model = prototorch.models.GLVQ1(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_gmlvq_model_build():
model = prototorch.models.GMLVQ(
{
"distribution": (3, 2),
"input_dim": 2,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_grlvq_model_build():
model = prototorch.models.GRLVQ(
{
"distribution": (3, 2),
"input_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_gtlvq_model_build():
model = prototorch.models.GTLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_lgmlvq_model_build():
model = prototorch.models.LGMLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_image_glvq_model_build():
model = prototorch.models.ImageGLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_image_gmlvq_model_build():
model = prototorch.models.ImageGMLVQ(
{
"distribution": (3, 2),
"input_dim": 16,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_image_gtlvq_model_build():
model = prototorch.models.ImageGMLVQ(
{
"distribution": (3, 2),
"input_dim": 16,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_siamese_glvq_model_build():
model = prototorch.models.SiameseGLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_siamese_gmlvq_model_build():
model = prototorch.models.SiameseGMLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_siamese_gtlvq_model_build():
model = prototorch.models.SiameseGTLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_knn_model_build():
train_ds = prototorch.datasets.Iris(dims=[0, 2])
model = prototorch.models.KNN(dict(k=3), data=train_ds)
def test_lvq1_model_build():
model = prototorch.models.LVQ1(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_lvq21_model_build():
model = prototorch.models.LVQ21(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_median_lvq_model_build():
model = prototorch.models.MedianLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_celvq_model_build():
model = prototorch.models.CELVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_rslvq_model_build():
model = prototorch.models.RSLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_slvq_model_build():
model = prototorch.models.SLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_growing_neural_gas_model_build():
model = prototorch.models.GrowingNeuralGas(
{"num_prototypes": 5},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_kohonen_som_model_build():
model = prototorch.models.KohonenSOM(
{"shape": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_neural_gas_model_build():
model = prototorch.models.NeuralGas(
{"num_prototypes": 5},
prototypes_initializer=prototorch.initializers.RNCI(2),
)