feat: CLCC register torchmetrics added
This commit is contained in:
parent
d1985571b3
commit
5ce326ce62
@ -8,11 +8,18 @@ CLCC is a LVQ scheme containing 4 steps
|
||||
- Competition
|
||||
|
||||
"""
|
||||
from typing import Dict, Set, Type
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
|
||||
class CLCCScheme(pl.LightningModule):
|
||||
registered_metrics: Dict[Type[torchmetrics.Metric],
|
||||
torchmetrics.Metric] = {}
|
||||
registered_metric_names: Dict[Type[torchmetrics.Metric], Set[str]] = {}
|
||||
|
||||
def __init__(self, hparams) -> None:
|
||||
super().__init__()
|
||||
|
||||
@ -28,7 +35,18 @@ class CLCCScheme(pl.LightningModule):
|
||||
# Inference Steps
|
||||
self.init_inference(hparams)
|
||||
|
||||
# API
|
||||
# Initialize Model Metrics
|
||||
self.init_model_metrics()
|
||||
|
||||
# internal API, called by models and callbacks
|
||||
def register_torchmetric(self, name: str, metric: torchmetrics.Metric):
|
||||
if metric not in self.registered_metrics:
|
||||
self.registered_metrics[metric] = metric()
|
||||
self.registered_metric_names[metric] = {name}
|
||||
else:
|
||||
self.registered_metric_names[metric].add(name)
|
||||
|
||||
# external API
|
||||
def get_competion(self, batch, components):
|
||||
latent_batch, latent_components = self.latent(batch, components)
|
||||
# TODO: => Latent Hook
|
||||
@ -81,6 +99,9 @@ class CLCCScheme(pl.LightningModule):
|
||||
def init_inference(self, hparams):
|
||||
...
|
||||
|
||||
def init_model_metrics(self):
|
||||
self.register_torchmetric('train_accuracy', torchmetrics.Accuracy)
|
||||
|
||||
# Empty Steps
|
||||
# TODO: Type hints
|
||||
def components(self):
|
||||
@ -136,10 +157,34 @@ class CLCCScheme(pl.LightningModule):
|
||||
raise NotImplementedError(
|
||||
"The inference step has no reasonable default.")
|
||||
|
||||
def update_metrics_step(self, batch):
|
||||
x, y = batch
|
||||
preds = self(x)
|
||||
|
||||
for metric in self.registered_metrics:
|
||||
instance = self.registered_metrics[metric].to(self.device)
|
||||
value = instance(y, preds)
|
||||
|
||||
for name in self.registered_metric_names[metric]:
|
||||
self.log(name, value)
|
||||
|
||||
def update_metrics_epoch(self):
|
||||
for metric in self.registered_metrics:
|
||||
instance = self.registered_metrics[metric].to(self.device)
|
||||
value = instance.compute()
|
||||
|
||||
for name in self.registered_metric_names[metric]:
|
||||
self.log(name, value)
|
||||
|
||||
# Lightning Hooks
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
self.update_metrics_step(batch)
|
||||
|
||||
return self.loss_forward(batch)
|
||||
|
||||
def train_epoch_end(self, outs) -> None:
|
||||
self.update_metrics_epoch()
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
return self.loss_forward(batch)
|
||||
|
||||
|
@ -1,20 +1,47 @@
|
||||
from typing import Optional
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.core.initializers import SMCI, RandomNormalCompInitializer
|
||||
from prototorch.models.clcc.clcc_glvq import GLVQ, GLVQhparams
|
||||
from prototorch.models.clcc.clcc_scheme import CLCCScheme
|
||||
from prototorch.models.vis import Visualize2DVoronoiCallback
|
||||
|
||||
# NEW STUFF
|
||||
# ##############################################################################
|
||||
|
||||
|
||||
# TODO: Metrics
|
||||
class MetricsTestCallback(pl.Callback):
|
||||
metric_name = "test_cb_acc"
|
||||
|
||||
def setup(self,
|
||||
trainer: pl.Trainer,
|
||||
pl_module: CLCCScheme,
|
||||
stage: Optional[str] = None) -> None:
|
||||
pl_module.register_torchmetric(self.metric_name, torchmetrics.Accuracy)
|
||||
|
||||
def on_epoch_end(self, trainer: pl.Trainer,
|
||||
pl_module: pl.LightningModule) -> None:
|
||||
metric = trainer.logged_metrics[self.metric_name]
|
||||
if metric > 0.95:
|
||||
trainer.should_stop = True
|
||||
|
||||
|
||||
# TODO: Pruning
|
||||
|
||||
# ##############################################################################
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=64,
|
||||
num_workers=8)
|
||||
|
||||
components_initializer = SMCI(train_ds)
|
||||
|
||||
@ -29,8 +56,21 @@ if __name__ == "__main__":
|
||||
|
||||
print(model)
|
||||
# Callbacks
|
||||
vis = Visualize2DVoronoiCallback(data=train_ds, resolution=500)
|
||||
vis = Visualize2DVoronoiCallback(
|
||||
data=train_ds,
|
||||
resolution=500,
|
||||
)
|
||||
metrics = MetricsTestCallback()
|
||||
|
||||
# Train
|
||||
trainer = pl.Trainer(callbacks=[vis], gpus=1, max_epochs=100)
|
||||
trainer = pl.Trainer(
|
||||
callbacks=[
|
||||
#vis,
|
||||
metrics,
|
||||
],
|
||||
gpus=1,
|
||||
max_epochs=100,
|
||||
weights_summary=None,
|
||||
log_every_n_steps=1,
|
||||
)
|
||||
trainer.fit(model, train_loader)
|
||||
|
Loading…
Reference in New Issue
Block a user