Add basic prototorch functions needed for GLVQ

This commit is contained in:
blackfly 2020-04-06 16:33:51 +02:00
parent f9bc4a29c9
commit 33e8f1297f
5 changed files with 189 additions and 5 deletions

View File

@ -0,0 +1,48 @@
"""ProtoTorch activation functions."""
import torch
ACTIVATIONS = dict()
def register_activation(func):
ACTIVATIONS[func.__name__] = func
return func
@register_activation
def identity(input, **kwargs):
""":math:`f(x) = x`"""
return input
@register_activation
def sigmoid_beta(input, beta=10):
""":math:`f(x) = \\frac{1}{1 + e^{-\\beta x}}`
Keyword Arguments:
beta (float): Parameter :math:`\\beta`
"""
out = torch.reciprocal(1.0 + torch.exp(-beta * input))
return out
@register_activation
def swish_beta(input, beta=10):
""":math:`f(x) = \\frac{x}{1 + e^{-\\beta x}}`
Keyword Arguments:
beta (float): Parameter :math:`\\beta`
"""
out = input * sigmoid_beta(input, beta=beta)
return out
def get_activation(funcname):
if callable(funcname):
return funcname
else:
if funcname in ACTIVATIONS:
return ACTIVATIONS.get(funcname)
else:
raise NameError(f'Activation {funcname} was not found.')

View File

@ -0,0 +1,15 @@
"""ProtoTorch competition functions."""
import torch
def wtac(distances, labels):
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
def knnc(distances, labels, k):
winning_indices = torch.topk(-distances, k=k, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels

View File

@ -33,11 +33,14 @@ def lpnorm_distance(x, y, p):
Expected dimension of x is 2.
Expected dimension of y is 2.
"""
expanded_x = x.unsqueeze(dim=1)
batchwise_difference = y - expanded_x
differences_raised = torch.pow(batchwise_difference, p)
distances_raised = torch.sum(differences_raised, axis=2)
distances = torch.pow(distances_raised, 1.0 / p)
# # DEPRECATED in favor of torch.cdist
# expanded_x = x.unsqueeze(dim=1)
# batchwise_difference = y - expanded_x
# differences_raised = torch.pow(batchwise_difference, p)
# distances_raised = torch.sum(differences_raised, axis=2)
# distances = torch.pow(distances_raised, 1.0 / p)
# return distances
distances = torch.cdist(x, y, p=p)
return distances

View File

@ -0,0 +1,93 @@
"""ProtoTorch initialization functions."""
from itertools import chain
import torch
INITIALIZERS = dict()
def register_initializer(func):
INITIALIZERS[func.__name__] = func
return func
def labels_from(distribution):
"""Takes a distribution tensor and returns a labels tensor."""
nclasses = distribution.shape[0]
llist = [[i] * n for i, n in zip(range(nclasses), distribution)]
# labels = [l for cl in llist for l in cl] # flatten the list of lists
labels = list(chain(*llist)) # flatten using itertools.chain
return torch.tensor(labels, requires_grad=False)
@register_initializer
def ones(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.ones(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def zeros(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.zeros(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def rand(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.rand(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def randn(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.randn(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def stratified_mean(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution)
for i, l in enumerate(plabels):
xl = x_train[y_train == l]
mean_xl = torch.mean(xl, dim=0)
protos[i] = mean_xl
return protos, plabels
@register_initializer
def stratified_random(x_train, y_train, prototype_distribution):
gen = torch.manual_seed(torch.initial_seed())
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution)
for i, l in enumerate(plabels):
xl = x_train[y_train == l]
rand_index = torch.zeros(1).long().random_(0,
xl.shape[1] - 1,
generator=gen)
random_xl = xl[rand_index]
protos[i] = random_xl
return protos, plabels
def get_initializer(funcname):
if callable(funcname):
return funcname
else:
if funcname in INITIALIZERS:
return INITIALIZERS.get(funcname)
else:
raise NameError(f'Initializer {funcname} was not found.')

View File

@ -0,0 +1,25 @@
"""ProtoTorch loss functions."""
import torch
def glvq_loss(distances, target_labels, prototype_labels):
"""GLVQ loss function with support for one-hot labels."""
matcher = torch.eq(target_labels.unsqueeze(dim=1), prototype_labels)
if prototype_labels.ndim == 2:
# if the labels are one-hot vectors
nclasses = target_labels.size()[1]
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
not_matcher = torch.bitwise_not(matcher)
dplus_criterion = distances * matcher > 0.0
dminus_criterion = distances * not_matcher > 0.0
inf = torch.full_like(distances, fill_value=float('inf'))
distances_to_wpluses = torch.where(dplus_criterion, distances, inf)
distances_to_wminuses = torch.where(dminus_criterion, distances, inf)
dpluses = torch.min(distances_to_wpluses, dim=1, keepdim=True).values
dminuses = torch.min(distances_to_wminuses, dim=1, keepdim=True).values
mu = (dpluses - dminuses) / (dpluses + dminuses)
return mu