prototorch/prototorch/functions/initializers.py

94 lines
2.9 KiB
Python

"""ProtoTorch initialization functions."""
from itertools import chain
import torch
INITIALIZERS = dict()
def register_initializer(func):
INITIALIZERS[func.__name__] = func
return func
def labels_from(distribution):
"""Takes a distribution tensor and returns a labels tensor."""
nclasses = distribution.shape[0]
llist = [[i] * n for i, n in zip(range(nclasses), distribution)]
# labels = [l for cl in llist for l in cl] # flatten the list of lists
labels = list(chain(*llist)) # flatten using itertools.chain
return torch.tensor(labels, requires_grad=False)
@register_initializer
def ones(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.ones(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def zeros(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.zeros(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def rand(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.rand(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def randn(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
protos = torch.randn(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution)
return protos, plabels
@register_initializer
def stratified_mean(x_train, y_train, prototype_distribution):
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution)
for i, l in enumerate(plabels):
xl = x_train[y_train == l]
mean_xl = torch.mean(xl, dim=0)
protos[i] = mean_xl
return protos, plabels
@register_initializer
def stratified_random(x_train, y_train, prototype_distribution):
gen = torch.manual_seed(torch.initial_seed())
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution)
for i, l in enumerate(plabels):
xl = x_train[y_train == l]
rand_index = torch.zeros(1).long().random_(0,
xl.shape[1] - 1,
generator=gen)
random_xl = xl[rand_index]
protos[i] = random_xl
return protos, plabels
def get_initializer(funcname):
if callable(funcname):
return funcname
else:
if funcname in INITIALIZERS:
return INITIALIZERS.get(funcname)
else:
raise NameError(f'Initializer {funcname} was not found.')