prototorch_models/examples/glvq_iris.py
2021-04-21 19:16:57 +02:00

136 lines
4.2 KiB
Python

"""GLVQ example using the Iris dataset."""
import argparse
import numpy as np
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
from prototorch.models.glvq import GLVQ
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader, TensorDataset
class NumpyDataset(TensorDataset):
def __init__(self, *arrays):
tensors = [torch.from_numpy(arr) for arr in arrays]
super().__init__(*tensors)
class VisualizationCallback(pl.Callback):
def __init__(self,
x_train,
y_train,
title="Prototype Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module):
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(protos[:, 0],
protos[:, 1],
c=plabels,
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50)
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)
if __name__ == "__main__":
# Hyperparameters
parser = argparse.ArgumentParser()
parser.add_argument("--epochs",
type=int,
default=100,
help="Epochs to train.")
parser.add_argument("--lr",
type=float,
default=0.001,
help="Learning rate.")
parser.add_argument("--batch_size",
type=int,
default=256,
help="Batch size.")
parser.add_argument("--gpus",
type=int,
default=0,
help="Number of GPUs to use.")
parser.add_argument("--ppc",
type=int,
default=1,
help="Prototypes-Per-Class.")
args = parser.parse_args()
# https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
# Initialize the model
model = GLVQ(
input_dim=x_train.shape[1],
nclasses=3,
prototype_distribution=[2, 7, 5],
prototype_initializer="stratified_mean",
data=[x_train, y_train],
lr=0.01,
)
# Model summary
print(model)
# Callbacks
vis = VisualizationCallback(x_train, y_train)
# Setup trainer
trainer = pl.Trainer(
max_epochs=hparams.epochs,
auto_lr_find=
True, # finds learning rate automatically with `trainer.tune(model)`
callbacks=[
vis, # comment this line out to disable the visualization
],
)
trainer.tune(model)
# Training loop
trainer.fit(model, train_loader)
# Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate)
ckpt = "glvq_iris.ckpt"
trainer.save_checkpoint(ckpt)
# Load the checkpoint
new_model = GLVQ.load_from_checkpoint(checkpoint_path=ckpt)
print(new_model)