"""GLVQ example using the Iris dataset.""" import argparse import numpy as np import pytorch_lightning as pl import torch from matplotlib import pyplot as plt from prototorch.models.glvq import GLVQ from sklearn.datasets import load_iris from torch.utils.data import DataLoader, TensorDataset class NumpyDataset(TensorDataset): def __init__(self, *arrays): tensors = [torch.from_numpy(arr) for arr in arrays] super().__init__(*tensors) class VisualizationCallback(pl.Callback): def __init__(self, x_train, y_train, title="Prototype Visualization", cmap="viridis"): super().__init__() self.x_train = x_train self.y_train = y_train self.title = title self.fig = plt.figure(self.title) self.cmap = cmap def on_epoch_end(self, trainer, pl_module): protos = pl_module.prototypes plabels = pl_module.prototype_labels ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter(protos[:, 0], protos[:, 1], c=plabels, cmap=self.cmap, edgecolor="k", marker="D", s=50) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) plt.pause(0.1) if __name__ == "__main__": # Hyperparameters parser = argparse.ArgumentParser() parser.add_argument("--epochs", type=int, default=100, help="Epochs to train.") parser.add_argument("--lr", type=float, default=0.001, help="Learning rate.") parser.add_argument("--batch_size", type=int, default=256, help="Batch size.") parser.add_argument("--gpus", type=int, default=0, help="Number of GPUs to use.") parser.add_argument("--ppc", type=int, default=1, help="Prototypes-Per-Class.") args = parser.parse_args() # https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html # Dataset x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] train_ds = NumpyDataset(x_train, y_train) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) # Initialize the model model = GLVQ( input_dim=x_train.shape[1], nclasses=3, prototype_distribution=[2, 7, 5], prototype_initializer="stratified_mean", data=[x_train, y_train], lr=0.01, ) # Model summary print(model) # Callbacks vis = VisualizationCallback(x_train, y_train) # Setup trainer trainer = pl.Trainer( max_epochs=hparams.epochs, auto_lr_find= True, # finds learning rate automatically with `trainer.tune(model)` callbacks=[ vis, # comment this line out to disable the visualization ], ) trainer.tune(model) # Training loop trainer.fit(model, train_loader) # Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate) ckpt = "glvq_iris.ckpt" trainer.save_checkpoint(ckpt) # Load the checkpoint new_model = GLVQ.load_from_checkpoint(checkpoint_path=ckpt) print(new_model)