132 lines
4.1 KiB
Python
132 lines
4.1 KiB
Python
"""GLVQ example using the Iris dataset."""
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from matplotlib import pyplot as plt
|
|
from sklearn.datasets import load_iris
|
|
from torch.utils.data import DataLoader
|
|
|
|
from prototorch.datasets.abstract import NumpyDataset
|
|
from prototorch.models.glvq import GLVQ
|
|
|
|
|
|
class GLVQIris(GLVQ):
|
|
@staticmethod
|
|
def add_model_specific_args(parent_parser):
|
|
parser = argparse.ArgumentParser(parents=[parent_parser],
|
|
add_help=False)
|
|
parser.add_argument("--epochs", type=int, default=1)
|
|
parser.add_argument("--lr", type=float, default=1e-1)
|
|
parser.add_argument("--batch_size", type=int, default=150)
|
|
parser.add_argument("--input_dim", type=int, default=2)
|
|
parser.add_argument("--nclasses", type=int, default=3)
|
|
parser.add_argument("--prototypes_per_class", type=int, default=3)
|
|
parser.add_argument("--prototype_initializer",
|
|
type=str,
|
|
default="stratified_mean")
|
|
return parser
|
|
|
|
|
|
class VisualizationCallback(pl.Callback):
|
|
def __init__(self,
|
|
x_train,
|
|
y_train,
|
|
title="Prototype Visualization",
|
|
cmap="viridis"):
|
|
super().__init__()
|
|
self.x_train = x_train
|
|
self.y_train = y_train
|
|
self.title = title
|
|
self.fig = plt.figure(self.title)
|
|
self.cmap = cmap
|
|
|
|
def on_epoch_end(self, trainer, pl_module):
|
|
protos = pl_module.prototypes
|
|
plabels = pl_module.prototype_labels
|
|
ax = self.fig.gca()
|
|
ax.cla()
|
|
ax.set_title(self.title)
|
|
ax.set_xlabel("Data dimension 1")
|
|
ax.set_ylabel("Data dimension 2")
|
|
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
|
ax.scatter(
|
|
protos[:, 0],
|
|
protos[:, 1],
|
|
c=plabels,
|
|
cmap=self.cmap,
|
|
edgecolor="k",
|
|
marker="D",
|
|
s=50,
|
|
)
|
|
x = np.vstack((x_train, protos))
|
|
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
|
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
|
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
|
np.arange(y_min, y_max, 1 / 50))
|
|
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
|
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
|
y_pred = y_pred.reshape(xx.shape)
|
|
|
|
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
|
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
|
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
|
plt.pause(0.1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# For best-practices when using `argparse` with `pytorch_lightning`, see
|
|
# https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Dataset
|
|
x_train, y_train = load_iris(return_X_y=True)
|
|
x_train = x_train[:, [0, 2]]
|
|
train_ds = NumpyDataset(x_train, y_train)
|
|
|
|
# Dataloaders
|
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
|
|
# Add model specific args
|
|
parser = GLVQIris.add_model_specific_args(parser)
|
|
|
|
# Callbacks
|
|
vis = VisualizationCallback(x_train, y_train)
|
|
|
|
# Automatically add trainer-specific-args like `--gpus`, `--num_nodes` etc.
|
|
parser = pl.Trainer.add_argparse_args(parser)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer.from_argparse_args(
|
|
parser,
|
|
max_epochs=10,
|
|
callbacks=[
|
|
vis,
|
|
], # comment this line out to disable the visualization
|
|
)
|
|
# trainer.tune(model)
|
|
|
|
# Initialize the model
|
|
args = parser.parse_args()
|
|
model = GLVQIris(args, data=[x_train, y_train])
|
|
|
|
# Model summary
|
|
print(model)
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader)
|
|
|
|
# Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate)
|
|
ckpt = "glvq_iris.ckpt"
|
|
trainer.save_checkpoint(ckpt)
|
|
|
|
# Load the checkpoint
|
|
new_model = GLVQIris.load_from_checkpoint(checkpoint_path=ckpt)
|
|
|
|
print(new_model)
|
|
|
|
# Continue training
|
|
trainer.fit(new_model, train_loader) # TODO See why this fails!
|