"""GLVQ example using the Iris dataset.""" import argparse import numpy as np import pytorch_lightning as pl import torch from matplotlib import pyplot as plt from sklearn.datasets import load_iris from torch.utils.data import DataLoader from prototorch.datasets.abstract import NumpyDataset from prototorch.models.glvq import GLVQ class GLVQIris(GLVQ): @staticmethod def add_model_specific_args(parent_parser): parser = argparse.ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument("--epochs", type=int, default=1) parser.add_argument("--lr", type=float, default=1e-1) parser.add_argument("--batch_size", type=int, default=150) parser.add_argument("--input_dim", type=int, default=2) parser.add_argument("--nclasses", type=int, default=3) parser.add_argument("--prototypes_per_class", type=int, default=3) parser.add_argument("--prototype_initializer", type=str, default="stratified_mean") return parser class VisualizationCallback(pl.Callback): def __init__(self, x_train, y_train, title="Prototype Visualization", cmap="viridis"): super().__init__() self.x_train = x_train self.y_train = y_train self.title = title self.fig = plt.figure(self.title) self.cmap = cmap def on_epoch_end(self, trainer, pl_module): protos = pl_module.prototypes plabels = pl_module.prototype_labels ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c=plabels, cmap=self.cmap, edgecolor="k", marker="D", s=50, ) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) plt.pause(0.1) if __name__ == "__main__": # For best-practices when using `argparse` with `pytorch_lightning`, see # https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html parser = argparse.ArgumentParser() # Dataset x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] train_ds = NumpyDataset(x_train, y_train) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) # Add model specific args parser = GLVQIris.add_model_specific_args(parser) # Callbacks vis = VisualizationCallback(x_train, y_train) # Automatically add trainer-specific-args like `--gpus`, `--num_nodes` etc. parser = pl.Trainer.add_argparse_args(parser) # Setup trainer trainer = pl.Trainer.from_argparse_args( parser, max_epochs=10, callbacks=[ vis, ], # comment this line out to disable the visualization ) # trainer.tune(model) # Initialize the model args = parser.parse_args() model = GLVQIris(args, data=[x_train, y_train]) # Model summary print(model) # Training loop trainer.fit(model, train_loader) # Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate) ckpt = "glvq_iris.ckpt" trainer.save_checkpoint(ckpt) # Load the checkpoint new_model = GLVQIris.load_from_checkpoint(checkpoint_path=ckpt) print(new_model) # Continue training trainer.fit(new_model, train_loader) # TODO See why this fails!