"""Growing Neural Gas example using the Iris dataset.""" import argparse import pytorch_lightning as pl import torch import prototorch as pt if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Reproducibility pl.utilities.seed.seed_everything(seed=42) # Prepare the data train_ds = pt.datasets.Iris(dims=[0, 2]) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) # Hyperparameters hparams = dict( num_prototypes=5, input_dim=2, lr=0.1, ) # Initialize the model model = pt.models.GrowingNeuralGas( hparams, prototype_initializer=pt.components.Zeros(2), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Model summary print(model) # Callbacks vis = pt.models.VisNG2D(data=train_loader) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, max_epochs=100, callbacks=[vis], weights_summary="full", ) # Training loop trainer.fit(model, train_loader)