prototorch_models/examples/siamese_glvq_iris.py
2021-04-27 15:41:44 +02:00

116 lines
3.6 KiB
Python

"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
import numpy as np
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
from prototorch.datasets.abstract import NumpyDataset
from prototorch.models.glvq import SiameseGLVQ
class VisualizationCallback(pl.Callback):
def __init__(self,
x_train,
y_train,
title="Prototype Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module):
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train
x_train = pl_module.backbone(torch.Tensor(x_train)).detach()
protos = pl_module.backbone(torch.Tensor(protos)).detach()
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.axis("off")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=plabels,
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50,
)
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 0.2, x[:, 0].max() + 0.2
y_min, y_max = x[:, 1].min() - 0.2, x[:, 1].max() + 0.2
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict_latent(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
tb = pl_module.logger.experiment
tb.add_figure(
tag=f"{self.title}",
figure=self.fig,
global_step=trainer.current_epoch,
close=False,
)
plt.pause(0.1)
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.latent_size = latent_size
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.relu(self.dense2(self.relu(self.dense1(x))))
if __name__ == "__main__":
# Dataset
x_train, y_train = load_iris(return_X_y=True)
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
# Hyperparameters
hparams = dict(
input_dim=x_train.shape[1],
nclasses=3,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
lr=0.01,
)
# Initialize the model
model = SiameseGLVQ(hparams,
backbone_module=Backbone,
data=[x_train, y_train])
# Model summary
print(model)
# Callbacks
vis = VisualizationCallback(x_train, y_train)
# Setup trainer
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
# Training loop
trainer.fit(model, train_loader)