"""Siamese GLVQ example using all four dimensions of the Iris dataset.""" import numpy as np import pytorch_lightning as pl import torch from matplotlib import pyplot as plt from sklearn.datasets import load_iris from torch.utils.data import DataLoader from prototorch.datasets.abstract import NumpyDataset from prototorch.models.glvq import SiameseGLVQ class VisualizationCallback(pl.Callback): def __init__(self, x_train, y_train, title="Prototype Visualization", cmap="viridis"): super().__init__() self.x_train = x_train self.y_train = y_train self.title = title self.fig = plt.figure(self.title) self.cmap = cmap def on_epoch_end(self, trainer, pl_module): protos = pl_module.prototypes plabels = pl_module.prototype_labels x_train, y_train = self.x_train, self.y_train x_train = pl_module.backbone(torch.Tensor(x_train)).detach() protos = pl_module.backbone(torch.Tensor(protos)).detach() ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.axis("off") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c=plabels, cmap=self.cmap, edgecolor="k", marker="D", s=50, ) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 0.2, x[:, 0].max() + 0.2 y_min, y_max = x[:, 1].min() - 0.2, x[:, 1].max() + 0.2 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict_latent(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) tb = pl_module.logger.experiment tb.add_figure( tag=f"{self.title}", figure=self.fig, global_step=trainer.current_epoch, close=False, ) plt.pause(0.1) class Backbone(torch.nn.Module): def __init__(self, input_size=4, hidden_size=10, latent_size=2): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.latent_size = latent_size self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size) self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size) self.relu = torch.nn.ReLU() def forward(self, x): return self.relu(self.dense2(self.relu(self.dense1(x)))) if __name__ == "__main__": # Dataset x_train, y_train = load_iris(return_X_y=True) train_ds = NumpyDataset(x_train, y_train) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) # Hyperparameters hparams = dict( input_dim=x_train.shape[1], nclasses=3, prototypes_per_class=1, prototype_initializer="stratified_mean", lr=0.01, ) # Initialize the model model = SiameseGLVQ(hparams, backbone_module=Backbone, data=[x_train, y_train]) # Model summary print(model) # Callbacks vis = VisualizationCallback(x_train, y_train) # Setup trainer trainer = pl.Trainer(max_epochs=100, callbacks=[vis]) # Training loop trainer.fit(model, train_loader)