prototorch_models/examples/dynamic_components.py
2021-05-31 16:53:04 +02:00

72 lines
1.7 KiB
Python

"""Dynamically update the number of prototypes in GLVQ."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import Callback
class PrototypeScheduler(Callback):
def __init__(self, train_ds, freq=20):
self.train_ds = train_ds
self.freq = freq
def on_epoch_end(self, trainer, pl_module):
if (trainer.current_epoch + 1) % self.freq == 0:
pl_module.increase_prototypes(
pt.components.SMI(self.train_ds),
distribution=[1, 1, 1],
)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
# Hyperparameters
hparams = dict(
distribution=[1, 1, 1],
transfer_function="sigmoid_beta",
transfer_beta=10.0,
lr=0.01,
)
# Initialize the model
model = pt.models.GLVQ(
hparams,
prototype_initializer=pt.components.SMI(train_ds),
)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(train_ds)
proto_scheduler = PrototypeScheduler(train_ds, 10)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=100,
callbacks=[
vis,
proto_scheduler,
],
terminate_on_nan=True,
weights_summary=None,
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)