"""Dynamically update the number of prototypes in GLVQ.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import Callback class PrototypeScheduler(Callback): def __init__(self, train_ds, freq=20): self.train_ds = train_ds self.freq = freq def on_epoch_end(self, trainer, pl_module): if (trainer.current_epoch + 1) % self.freq == 0: pl_module.increase_prototypes( pt.components.SMI(self.train_ds), distribution=[1, 1, 1], ) if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris(dims=[0, 2]) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32) # Hyperparameters hparams = dict( distribution=[1, 1, 1], transfer_function="sigmoid_beta", transfer_beta=10.0, lr=0.01, ) # Initialize the model model = pt.models.GLVQ( hparams, prototype_initializer=pt.components.SMI(train_ds), ) # Summary print(model) # Callbacks vis = pt.models.VisGLVQ2D(train_ds) proto_scheduler = PrototypeScheduler(train_ds, 10) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, max_epochs=100, callbacks=[ vis, proto_scheduler, ], terminate_on_nan=True, weights_summary=None, accelerator="ddp", ) # Training loop trainer.fit(model, train_loader)