Compare commits
	
		
			40 Commits
		
	
	
		
			v0.5.2
			...
			feature/be
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					9bb2e20dce | ||
| 
						 | 
					6748951b63 | ||
| 
						 | 
					c547af728b | ||
| 
						 | 
					482044ec87 | ||
| 
						 | 
					45f01f39d4 | ||
| 
						 | 
					9ab864fbdf | ||
| 
						 | 
					365e0fb931 | ||
| 
						 | 
					ba50dfba50 | ||
| 
						 | 
					16ca409f07 | ||
| 
						 | 
					c3cad19853 | ||
| 
						 | 
					ec294bdd37 | ||
| 
						 | 
					e0abb1f3de | ||
| 
						 | 
					918e599c6a | ||
| 
						 | 
					ec61881ca8 | ||
| 
						 | 
					5a89f24c10 | ||
| 
						 | 
					bcf9c6bdb1 | ||
| 
						 | 
					736565b768 | ||
| 
						 | 
					94730f492b | ||
| 
						 | 
					46ec7b07d7 | ||
| 
						 | 
					07dab5a5ca | ||
| 
						 | 
					ed83138e1f | ||
| 
						 | 
					1be7d7ec09 | ||
| 
						 | 
					60d2a1d2c9 | ||
| 
						 | 
					be7d7f43bd | ||
| 
						 | 
					fe729781fc | ||
| 
						 | 
					a7df7be1c8 | ||
| 
						 | 
					696719600b | ||
| 
						 | 
					48e7c029fa | ||
| 
						 | 
					5de3a480c7 | ||
| 
						 | 
					626f51ce80 | ||
| 
						 | 
					6d7d93c8e8 | ||
| 
						 | 
					93b1d0bd46 | ||
| 
						 | 
					b7992c01db | ||
| 
						 | 
					23d1a71b31 | ||
| 
						 | 
					e922aae432 | ||
| 
						 | 
					3e50d0d817 | ||
| 
						 | 
					dc4f31d700 | ||
| 
						 | 
					02954044d7 | ||
| 
						 | 
					8f08ba66ea | ||
| 
						 | 
					e0b92e9ac2 | 
@@ -1,9 +1,11 @@
 | 
			
		||||
[bumpversion]
 | 
			
		||||
current_version = 0.5.2
 | 
			
		||||
current_version = 1.0.0a8
 | 
			
		||||
commit = True
 | 
			
		||||
tag = True
 | 
			
		||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
 | 
			
		||||
serialize = {major}.{minor}.{patch}
 | 
			
		||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)((?P<release>[a-zA-Z0-9_.-]+))?
 | 
			
		||||
serialize = 
 | 
			
		||||
	{major}.{minor}.{patch}-{release}
 | 
			
		||||
	{major}.{minor}.{patch}
 | 
			
		||||
message = build: bump version {current_version} → {new_version}
 | 
			
		||||
 | 
			
		||||
[bumpversion:file:setup.py]
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										5
									
								
								.github/workflows/pythonapp.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										5
									
								
								.github/workflows/pythonapp.yml
									
									
									
									
										vendored
									
									
								
							@@ -21,7 +21,7 @@ jobs:
 | 
			
		||||
      run: |
 | 
			
		||||
        python -m pip install --upgrade pip
 | 
			
		||||
        pip install .[all]
 | 
			
		||||
    - uses: pre-commit/action@v2.0.3
 | 
			
		||||
    - uses: pre-commit/action@v3.0.0
 | 
			
		||||
  compatibility:
 | 
			
		||||
    needs: style
 | 
			
		||||
    strategy:
 | 
			
		||||
@@ -36,7 +36,8 @@ jobs:
 | 
			
		||||
          python-version: "3.8"
 | 
			
		||||
        - os: windows-latest
 | 
			
		||||
          python-version: "3.9"
 | 
			
		||||
 | 
			
		||||
        - os: windows-latest
 | 
			
		||||
          python-version: "3.11"
 | 
			
		||||
    runs-on: ${{ matrix.os }}
 | 
			
		||||
    steps:
 | 
			
		||||
    - uses: actions/checkout@v2
 | 
			
		||||
 
 | 
			
		||||
@@ -3,9 +3,10 @@
 | 
			
		||||
 | 
			
		||||
repos:
 | 
			
		||||
- repo: https://github.com/pre-commit/pre-commit-hooks
 | 
			
		||||
  rev: v4.2.0
 | 
			
		||||
  rev: v4.3.0
 | 
			
		||||
  hooks:
 | 
			
		||||
  - id: trailing-whitespace
 | 
			
		||||
    exclude: (^\.bumpversion\.cfg$|cli_messages\.py)
 | 
			
		||||
  - id: end-of-file-fixer
 | 
			
		||||
  - id: check-yaml
 | 
			
		||||
  - id: check-added-large-files
 | 
			
		||||
@@ -13,7 +14,7 @@ repos:
 | 
			
		||||
  - id: check-case-conflict
 | 
			
		||||
 | 
			
		||||
- repo: https://github.com/myint/autoflake
 | 
			
		||||
  rev: v1.4
 | 
			
		||||
  rev: v1.7.7
 | 
			
		||||
  hooks:
 | 
			
		||||
  - id: autoflake
 | 
			
		||||
 | 
			
		||||
@@ -23,7 +24,7 @@ repos:
 | 
			
		||||
  - id: isort
 | 
			
		||||
 | 
			
		||||
- repo: https://github.com/pre-commit/mirrors-mypy
 | 
			
		||||
  rev: v0.950
 | 
			
		||||
  rev: v0.982
 | 
			
		||||
  hooks:
 | 
			
		||||
  - id: mypy
 | 
			
		||||
    files: prototorch
 | 
			
		||||
@@ -42,7 +43,7 @@ repos:
 | 
			
		||||
  - id: python-check-blanket-noqa
 | 
			
		||||
 | 
			
		||||
- repo: https://github.com/asottile/pyupgrade
 | 
			
		||||
  rev: v2.32.1
 | 
			
		||||
  rev: v3.1.0
 | 
			
		||||
  hooks:
 | 
			
		||||
  - id: pyupgrade
 | 
			
		||||
 | 
			
		||||
@@ -51,3 +52,8 @@ repos:
 | 
			
		||||
  hooks:
 | 
			
		||||
  - id: gitlint
 | 
			
		||||
    args: [--contrib=CT1, --ignore=B6, --msg-filename]
 | 
			
		||||
 | 
			
		||||
- repo: https://github.com/dosisod/refurb
 | 
			
		||||
  rev: v1.4.0
 | 
			
		||||
  hooks:
 | 
			
		||||
    - id: refurb
 | 
			
		||||
 
 | 
			
		||||
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
 | 
			
		||||
 | 
			
		||||
# The full version, including alpha/beta/rc tags
 | 
			
		||||
#
 | 
			
		||||
release = "0.5.2"
 | 
			
		||||
release = "1.0.0-a8"
 | 
			
		||||
 | 
			
		||||
# -- General configuration ---------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -23,6 +23,13 @@ ProtoTorch Models Plugins
 | 
			
		||||
 | 
			
		||||
   custom
 | 
			
		||||
 | 
			
		||||
.. toctree::
 | 
			
		||||
   :hidden:
 | 
			
		||||
   :maxdepth: 3
 | 
			
		||||
   :caption: Proto Y Architecture
 | 
			
		||||
 | 
			
		||||
   y-architecture
 | 
			
		||||
 | 
			
		||||
About
 | 
			
		||||
-----------------------------------------
 | 
			
		||||
`Prototorch Models <https://github.com/si-cim/prototorch_models>`_ is a Plugin
 | 
			
		||||
@@ -33,8 +40,10 @@ prototype-based Machine Learning algorithms using `PyTorch-Lightning
 | 
			
		||||
Library
 | 
			
		||||
-----------------------------------------
 | 
			
		||||
Prototorch Models delivers many application ready models.
 | 
			
		||||
These models have been published in the past and have been adapted to the Prototorch library.
 | 
			
		||||
These models have been published in the past and have been adapted to the
 | 
			
		||||
Prototorch library.
 | 
			
		||||
 | 
			
		||||
Customizable
 | 
			
		||||
-----------------------------------------
 | 
			
		||||
Prototorch Models also contains the building blocks to build own models with PyTorch-Lightning and Prototorch.
 | 
			
		||||
Prototorch Models also contains the building blocks to build own models with
 | 
			
		||||
PyTorch-Lightning and Prototorch.
 | 
			
		||||
 
 | 
			
		||||
@@ -71,7 +71,7 @@ Probabilistic Models
 | 
			
		||||
Probabilistic variants assume, that the prototypes generate a probability distribution over the classes.
 | 
			
		||||
For a test sample they return a distribution instead of a class assignment.
 | 
			
		||||
 | 
			
		||||
The following two algorihms were presented by :cite:t:`seo2003` .
 | 
			
		||||
The following two algorithms were presented by :cite:t:`seo2003` .
 | 
			
		||||
Every prototypes is a center of a gaussian distribution of its class, generating a mixture model.
 | 
			
		||||
 | 
			
		||||
.. autoclass:: prototorch.models.probabilistic.SLVQ
 | 
			
		||||
@@ -80,7 +80,7 @@ Every prototypes is a center of a gaussian distribution of its class, generating
 | 
			
		||||
.. autoclass:: prototorch.models.probabilistic.RSLVQ
 | 
			
		||||
   :members:
 | 
			
		||||
 | 
			
		||||
:cite:t:`villmann2018` proposed two changes to RSLVQ: First incooperate the winning rank into the prior probability calculation.
 | 
			
		||||
:cite:t:`villmann2018` proposed two changes to RSLVQ: First incorporate the winning rank into the prior probability calculation.
 | 
			
		||||
And second use divergence as loss function.
 | 
			
		||||
 | 
			
		||||
.. autoclass:: prototorch.models.probabilistic.PLVQ
 | 
			
		||||
@@ -106,7 +106,7 @@ Visualization
 | 
			
		||||
Visualization is very specific to its application.
 | 
			
		||||
PrototorchModels delivers visualization for two dimensional data and image data.
 | 
			
		||||
 | 
			
		||||
The visulizations can be shown in a seperate window and inside a tensorboard.
 | 
			
		||||
The visualizations can be shown in a separate window and inside a tensorboard.
 | 
			
		||||
 | 
			
		||||
.. automodule:: prototorch.models.vis
 | 
			
		||||
   :members:
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										71
									
								
								docs/source/y-architecture.rst
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								docs/source/y-architecture.rst
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,71 @@
 | 
			
		||||
.. Documentation of the updated Architecture.
 | 
			
		||||
 | 
			
		||||
Proto Y Architecture
 | 
			
		||||
========================================
 | 
			
		||||
 | 
			
		||||
Overview
 | 
			
		||||
****************************************
 | 
			
		||||
 | 
			
		||||
The Proto Y Architecture is a framework for abstract prototype learning methods.
 | 
			
		||||
 | 
			
		||||
It divides the problem into multiple steps:
 | 
			
		||||
 | 
			
		||||
    * **Components** : Recalling the position and metadata of the components/prototypes.
 | 
			
		||||
    * **Backbone** : Apply a mapping function to data and prototypes.
 | 
			
		||||
    * **Comparison** : Calculate a dissimilarity based on the latent positions.
 | 
			
		||||
    * **Competition** : Calculate competition values based on the comparison and the metadata.
 | 
			
		||||
    * **Loss** : Calculate the loss based on the competition values
 | 
			
		||||
    * **Inference** : Predict the output based on the competition values.
 | 
			
		||||
 | 
			
		||||
Depending on the phase (Training or Testing) Loss or Inference is used.
 | 
			
		||||
 | 
			
		||||
Inheritance Structure
 | 
			
		||||
****************************************
 | 
			
		||||
 | 
			
		||||
The Proto Y Architecture has a single base class that defines all steps and hooks
 | 
			
		||||
of the architecture.
 | 
			
		||||
 | 
			
		||||
.. autoclass:: prototorch.y.architectures.base.BaseYArchitecture
 | 
			
		||||
 | 
			
		||||
    **Steps**
 | 
			
		||||
 | 
			
		||||
    Components
 | 
			
		||||
 | 
			
		||||
    .. automethod:: init_components
 | 
			
		||||
    .. automethod:: components
 | 
			
		||||
 | 
			
		||||
    Backbone
 | 
			
		||||
 | 
			
		||||
    .. automethod:: init_backbone
 | 
			
		||||
    .. automethod:: backbone
 | 
			
		||||
 | 
			
		||||
    Comparison
 | 
			
		||||
 | 
			
		||||
    .. automethod:: init_comparison
 | 
			
		||||
    .. automethod:: comparison
 | 
			
		||||
 | 
			
		||||
    Competition
 | 
			
		||||
 | 
			
		||||
    .. automethod:: init_competition
 | 
			
		||||
    .. automethod:: competition
 | 
			
		||||
 | 
			
		||||
    Loss
 | 
			
		||||
 | 
			
		||||
    .. automethod:: init_loss
 | 
			
		||||
    .. automethod:: loss
 | 
			
		||||
 | 
			
		||||
    Inference
 | 
			
		||||
 | 
			
		||||
    .. automethod:: init_inference
 | 
			
		||||
    .. automethod:: inference
 | 
			
		||||
 | 
			
		||||
    **Hooks**
 | 
			
		||||
 | 
			
		||||
    Torchmetric
 | 
			
		||||
 | 
			
		||||
    .. automethod:: register_torchmetric
 | 
			
		||||
 | 
			
		||||
Hyperparameters
 | 
			
		||||
****************************************
 | 
			
		||||
Every model implemented with the Proto Y Architecture has a set of hyperparameters,
 | 
			
		||||
which is stored in the ``HyperParameters`` attribute of the architecture.
 | 
			
		||||
@@ -1,67 +0,0 @@
 | 
			
		||||
"""CBC example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
from prototorch.models import CBC, VisCBC2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=32)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[1, 0, 3],
 | 
			
		||||
        margin=0.1,
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = CBC(
 | 
			
		||||
        hparams,
 | 
			
		||||
        components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
 | 
			
		||||
        reasonings_initializer=pt.initializers.
 | 
			
		||||
        PurePositiveReasoningsInitializer(),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisCBC2D(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        title="CBC Iris Example",
 | 
			
		||||
        resolution=100,
 | 
			
		||||
        axis_off=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,99 +0,0 @@
 | 
			
		||||
"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    CELVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    num_classes = 4
 | 
			
		||||
    num_features = 2
 | 
			
		||||
    num_clusters = 1
 | 
			
		||||
    train_ds = pt.datasets.Random(
 | 
			
		||||
        num_samples=500,
 | 
			
		||||
        num_classes=num_classes,
 | 
			
		||||
        num_features=num_features,
 | 
			
		||||
        num_clusters=num_clusters,
 | 
			
		||||
        separation=3.0,
 | 
			
		||||
        seed=42,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    prototypes_per_class = num_clusters * 5
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=(num_classes, prototypes_per_class),
 | 
			
		||||
        lr=0.2,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = CELVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.FVCI(2, 3.0),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(train_ds)
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,  # prune prototype if it wins less than 1%
 | 
			
		||||
        idle_epochs=20,  # pruning too early may cause problems
 | 
			
		||||
        prune_quota_per_epoch=2,  # prune at most 2 prototypes per epoch
 | 
			
		||||
        frequency=1,  # prune every epoch
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        verbose=True,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,79 +0,0 @@
 | 
			
		||||
"""GLVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import GLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution={
 | 
			
		||||
            "num_classes": 3,
 | 
			
		||||
            "per_class": 4
 | 
			
		||||
        },
 | 
			
		||||
        lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
 | 
			
		||||
    # Manual save
 | 
			
		||||
    trainer.save_checkpoint("./glvq_iris.ckpt")
 | 
			
		||||
 | 
			
		||||
    # Load saved model
 | 
			
		||||
    new_model = GLVQ.load_from_checkpoint(
 | 
			
		||||
        checkpoint_path="./glvq_iris.ckpt",
 | 
			
		||||
        strict=False,
 | 
			
		||||
    )
 | 
			
		||||
    logging.info(new_model)
 | 
			
		||||
@@ -1,73 +1,144 @@
 | 
			
		||||
"""GMLVQ example using the Iris dataset."""
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import GMLVQ, VisGMLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
import torchmetrics
 | 
			
		||||
from prototorch.core import SMCI, PCALinearTransformInitializer
 | 
			
		||||
from prototorch.datasets import Iris
 | 
			
		||||
from prototorch.models.architectures.base import Steps
 | 
			
		||||
from prototorch.models.callbacks import (
 | 
			
		||||
    LogTorchmetricCallback,
 | 
			
		||||
    PlotLambdaMatrixToTensorboard,
 | 
			
		||||
    VisGMLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.models.library.gmlvq import GMLVQ
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from torch.utils.data import DataLoader, random_split
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
logging.basicConfig(level=logging.INFO)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
# ##############################################################################
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
def main():
 | 
			
		||||
    # ------------------------------------------------------------
 | 
			
		||||
    # DATA
 | 
			
		||||
    # ------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
    full_dataset = Iris()
 | 
			
		||||
    full_count = len(full_dataset)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64)
 | 
			
		||||
    train_count = int(full_count * 0.5)
 | 
			
		||||
    val_count = int(full_count * 0.4)
 | 
			
		||||
    test_count = int(full_count * 0.1)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
    train_dataset, val_dataset, test_dataset = random_split(
 | 
			
		||||
        full_dataset, (train_count, val_count, test_count))
 | 
			
		||||
 | 
			
		||||
    # Dataloader
 | 
			
		||||
    train_loader = DataLoader(
 | 
			
		||||
        train_dataset,
 | 
			
		||||
        batch_size=1,
 | 
			
		||||
        num_workers=4,
 | 
			
		||||
        shuffle=True,
 | 
			
		||||
    )
 | 
			
		||||
    val_loader = DataLoader(
 | 
			
		||||
        val_dataset,
 | 
			
		||||
        batch_size=1,
 | 
			
		||||
        num_workers=4,
 | 
			
		||||
        shuffle=False,
 | 
			
		||||
    )
 | 
			
		||||
    test_loader = DataLoader(
 | 
			
		||||
        test_dataset,
 | 
			
		||||
        batch_size=1,
 | 
			
		||||
        num_workers=0,
 | 
			
		||||
        shuffle=False,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # ------------------------------------------------------------
 | 
			
		||||
    # HYPERPARAMETERS
 | 
			
		||||
    # ------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
    # Select Initializer
 | 
			
		||||
    components_initializer = SMCI(full_dataset)
 | 
			
		||||
 | 
			
		||||
    # Define Hyperparameters
 | 
			
		||||
    hyperparameters = GMLVQ.HyperParameters(
 | 
			
		||||
        lr=dict(components_layer=0.1, _omega=0),
 | 
			
		||||
        input_dim=4,
 | 
			
		||||
        latent_dim=4,
 | 
			
		||||
        distribution={
 | 
			
		||||
            "num_classes": 3,
 | 
			
		||||
            "per_class": 2
 | 
			
		||||
        },
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
        distribution=dict(
 | 
			
		||||
            num_classes=3,
 | 
			
		||||
            per_class=1,
 | 
			
		||||
        ),
 | 
			
		||||
        component_initializer=components_initializer,
 | 
			
		||||
        omega_initializer=PCALinearTransformInitializer,
 | 
			
		||||
        omega_initializer_kwargs=dict(
 | 
			
		||||
            data=train_dataset.dataset[train_dataset.indices][0]))
 | 
			
		||||
 | 
			
		||||
    # Create Model
 | 
			
		||||
    model = GMLVQ(hyperparameters)
 | 
			
		||||
 | 
			
		||||
    # ------------------------------------------------------------
 | 
			
		||||
    # TRAINING
 | 
			
		||||
    # ------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
    # Controlling Callbacks
 | 
			
		||||
    recall = LogTorchmetricCallback(
 | 
			
		||||
        'training_recall',
 | 
			
		||||
        torchmetrics.Recall,
 | 
			
		||||
        num_classes=3,
 | 
			
		||||
        step=Steps.TRAINING,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    stopping_criterion = LogTorchmetricCallback(
 | 
			
		||||
        'validation_recall',
 | 
			
		||||
        torchmetrics.Recall,
 | 
			
		||||
        num_classes=3,
 | 
			
		||||
        step=Steps.VALIDATION,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 4)
 | 
			
		||||
    accuracy = LogTorchmetricCallback(
 | 
			
		||||
        'validation_accuracy',
 | 
			
		||||
        torchmetrics.Accuracy,
 | 
			
		||||
        num_classes=3,
 | 
			
		||||
        step=Steps.VALIDATION,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGMLVQ2D(data=train_ds)
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor=stopping_criterion.name,
 | 
			
		||||
        mode="max",
 | 
			
		||||
        patience=10,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
    # Visualization Callback
 | 
			
		||||
    vis = VisGMLVQ2D(data=full_dataset)
 | 
			
		||||
 | 
			
		||||
    # Define trainer
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            recall,
 | 
			
		||||
            accuracy,
 | 
			
		||||
            stopping_criterion,
 | 
			
		||||
            es,
 | 
			
		||||
            PlotLambdaMatrixToTensorboard(),
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
    # Train
 | 
			
		||||
    trainer.fit(model, train_loader, val_loader)
 | 
			
		||||
    trainer.test(model, test_loader)
 | 
			
		||||
 | 
			
		||||
    # Manual save
 | 
			
		||||
    trainer.save_checkpoint("./y_arch.ckpt")
 | 
			
		||||
 | 
			
		||||
    # Load saved model
 | 
			
		||||
    new_model = GMLVQ.load_from_checkpoint(
 | 
			
		||||
        checkpoint_path="./y_arch.ckpt",
 | 
			
		||||
        strict=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    main()
 | 
			
		||||
 
 | 
			
		||||
@@ -1,112 +0,0 @@
 | 
			
		||||
"""GMLVQ example using the MNIST dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    ImageGMLVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisImgComp,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
from torchvision import transforms
 | 
			
		||||
from torchvision.datasets import MNIST
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = MNIST(
 | 
			
		||||
        "~/datasets",
 | 
			
		||||
        train=True,
 | 
			
		||||
        download=True,
 | 
			
		||||
        transform=transforms.Compose([
 | 
			
		||||
            transforms.ToTensor(),
 | 
			
		||||
        ]),
 | 
			
		||||
    )
 | 
			
		||||
    test_ds = MNIST(
 | 
			
		||||
        "~/datasets",
 | 
			
		||||
        train=False,
 | 
			
		||||
        download=True,
 | 
			
		||||
        transform=transforms.Compose([
 | 
			
		||||
            transforms.ToTensor(),
 | 
			
		||||
        ]),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
 | 
			
		||||
    test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    num_classes = 10
 | 
			
		||||
    prototypes_per_class = 10
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        input_dim=28 * 28,
 | 
			
		||||
        latent_dim=28 * 28,
 | 
			
		||||
        distribution=(num_classes, prototypes_per_class),
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = ImageGMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisImgComp(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        num_columns=10,
 | 
			
		||||
        show=False,
 | 
			
		||||
        tensorboard=True,
 | 
			
		||||
        random_data=100,
 | 
			
		||||
        add_embedding=True,
 | 
			
		||||
        embedding_data=200,
 | 
			
		||||
        flatten_data=False,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=1,
 | 
			
		||||
        prune_quota_per_epoch=10,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=15,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,94 +0,0 @@
 | 
			
		||||
"""GMLVQ example using the spiral dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    GMLVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    num_classes = 2
 | 
			
		||||
    prototypes_per_class = 10
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=(num_classes, prototypes_per_class),
 | 
			
		||||
        transfer_function="swish_beta",
 | 
			
		||||
        transfer_beta=10.0,
 | 
			
		||||
        proto_lr=0.1,
 | 
			
		||||
        bb_lr=0.1,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=2,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(
 | 
			
		||||
        train_ds,
 | 
			
		||||
        show_last_only=False,
 | 
			
		||||
        block=False,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=10,
 | 
			
		||||
        prune_quota_per_epoch=5,
 | 
			
		||||
        frequency=5,
 | 
			
		||||
        replace=True,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=1.0,
 | 
			
		||||
        patience=5,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
            pruning,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,65 +0,0 @@
 | 
			
		||||
"""Growing Neural Gas example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import GrowingNeuralGas, VisNG2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Prepare the data
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        num_prototypes=5,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        lr=0.1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GrowingNeuralGas(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.ZCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Model summary
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisNG2D(data=train_loader)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,116 +0,0 @@
 | 
			
		||||
"""GTLVQ example using the MNIST dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    ImageGTLVQ,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisImgComp,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
from torchvision import transforms
 | 
			
		||||
from torchvision.datasets import MNIST
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = MNIST(
 | 
			
		||||
        "~/datasets",
 | 
			
		||||
        train=True,
 | 
			
		||||
        download=True,
 | 
			
		||||
        transform=transforms.Compose([
 | 
			
		||||
            transforms.ToTensor(),
 | 
			
		||||
        ]),
 | 
			
		||||
    )
 | 
			
		||||
    test_ds = MNIST(
 | 
			
		||||
        "~/datasets",
 | 
			
		||||
        train=False,
 | 
			
		||||
        download=True,
 | 
			
		||||
        transform=transforms.Compose([
 | 
			
		||||
            transforms.ToTensor(),
 | 
			
		||||
        ]),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
 | 
			
		||||
    test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    num_classes = 10
 | 
			
		||||
    prototypes_per_class = 1
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        input_dim=28 * 28,
 | 
			
		||||
        latent_dim=28,
 | 
			
		||||
        distribution=(num_classes, prototypes_per_class),
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = ImageGTLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        #Use one batch of data for subspace initiator.
 | 
			
		||||
        omega_initializer=pt.initializers.PCALinearTransformInitializer(
 | 
			
		||||
            next(iter(train_loader))[0].reshape(256, 28 * 28)))
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisImgComp(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        num_columns=10,
 | 
			
		||||
        show=False,
 | 
			
		||||
        tensorboard=True,
 | 
			
		||||
        random_data=100,
 | 
			
		||||
        add_embedding=True,
 | 
			
		||||
        embedding_data=200,
 | 
			
		||||
        flatten_data=False,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=1,
 | 
			
		||||
        prune_quota_per_epoch=10,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=15,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    # using GPUs here is strongly recommended!
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,76 +0,0 @@
 | 
			
		||||
"""Localized-GTLVQ example using the Moons dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import GTLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(
 | 
			
		||||
        train_ds,
 | 
			
		||||
        batch_size=256,
 | 
			
		||||
        shuffle=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    # Latent_dim should be lower than input dim.
 | 
			
		||||
    hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GTLVQ(hparams,
 | 
			
		||||
                  prototypes_initializer=pt.initializers.SMCI(train_ds))
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_acc",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
        mode="max",
 | 
			
		||||
        verbose=False,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,81 +0,0 @@
 | 
			
		||||
"""k-NN example using the Iris dataset from scikit-learn."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import KNN, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from sklearn.datasets import load_iris
 | 
			
		||||
from sklearn.model_selection import train_test_split
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    X, y = load_iris(return_X_y=True)
 | 
			
		||||
    X = X[:, 0:3:2]
 | 
			
		||||
 | 
			
		||||
    X_train, X_test, y_train, y_test = train_test_split(
 | 
			
		||||
        X,
 | 
			
		||||
        y,
 | 
			
		||||
        test_size=0.5,
 | 
			
		||||
        random_state=42,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    train_ds = pt.datasets.NumpyDataset(X_train, y_train)
 | 
			
		||||
    test_ds = pt.datasets.NumpyDataset(X_test, y_test)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=16)
 | 
			
		||||
    test_loader = DataLoader(test_ds, batch_size=16)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(k=5)
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = KNN(hparams, data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(
 | 
			
		||||
        data=(X_train, y_train),
 | 
			
		||||
        resolution=200,
 | 
			
		||||
        block=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        max_epochs=1,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    # This is only for visualization. k-NN has no training phase.
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
 | 
			
		||||
    # Recall
 | 
			
		||||
    y_pred = model.predict(torch.tensor(X_train))
 | 
			
		||||
    logging.info(y_pred)
 | 
			
		||||
 | 
			
		||||
    # Test
 | 
			
		||||
    trainer.test(model, dataloaders=test_loader)
 | 
			
		||||
@@ -1,118 +0,0 @@
 | 
			
		||||
"""Kohonen Self Organizing Map."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
from prototorch.models import KohonenSOM
 | 
			
		||||
from prototorch.utils.colors import hex_to_rgb
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader, TensorDataset
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Vis2DColorSOM(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, data, title="ColorSOMe", pause_time=0.1):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.title = title
 | 
			
		||||
        self.fig = plt.figure(self.title)
 | 
			
		||||
        self.data = data
 | 
			
		||||
        self.pause_time = pause_time
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
 | 
			
		||||
        ax = self.fig.gca()
 | 
			
		||||
        ax.cla()
 | 
			
		||||
        ax.set_title(self.title)
 | 
			
		||||
        h, w = pl_module._grid.shape[:2]
 | 
			
		||||
        protos = pl_module.prototypes.view(h, w, 3)
 | 
			
		||||
        ax.imshow(protos)
 | 
			
		||||
        ax.axis("off")
 | 
			
		||||
 | 
			
		||||
        # Overlay color names
 | 
			
		||||
        d = pl_module.compute_distances(self.data)
 | 
			
		||||
        wp = pl_module.predict_from_distances(d)
 | 
			
		||||
        for i, iloc in enumerate(wp):
 | 
			
		||||
            plt.text(
 | 
			
		||||
                iloc[1],
 | 
			
		||||
                iloc[0],
 | 
			
		||||
                color_names[i],
 | 
			
		||||
                ha="center",
 | 
			
		||||
                va="center",
 | 
			
		||||
                bbox=dict(facecolor="white", alpha=0.5, lw=0),
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if trainer.current_epoch != trainer.max_epochs - 1:
 | 
			
		||||
            plt.pause(self.pause_time)
 | 
			
		||||
        else:
 | 
			
		||||
            plt.show(block=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Prepare the data
 | 
			
		||||
    hex_colors = [
 | 
			
		||||
        "#000000", "#0000ff", "#00007f", "#1f86ff", "#5466aa", "#997fff",
 | 
			
		||||
        "#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
 | 
			
		||||
        "#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
 | 
			
		||||
    ]
 | 
			
		||||
    color_names = [
 | 
			
		||||
        "black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
 | 
			
		||||
        "red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
 | 
			
		||||
        "lightgrey", "olive", "purple", "orange"
 | 
			
		||||
    ]
 | 
			
		||||
    colors = list(hex_to_rgb(hex_colors))
 | 
			
		||||
    data = torch.Tensor(colors) / 255.0
 | 
			
		||||
    train_ds = TensorDataset(data)
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=8)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        shape=(18, 32),
 | 
			
		||||
        alpha=1.0,
 | 
			
		||||
        sigma=16,
 | 
			
		||||
        lr=0.1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = KohonenSOM(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(3),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 3)
 | 
			
		||||
 | 
			
		||||
    # Model summary
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = Vis2DColorSOM(data=data)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        max_epochs=500,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,77 +0,0 @@
 | 
			
		||||
"""Localized-GMLVQ example using the Moons dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import logging
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import LGMLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[1, 3],
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=2,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = LGMLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Summary
 | 
			
		||||
    logging.info(model)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_acc",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
        mode="max",
 | 
			
		||||
        verbose=False,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,103 +0,0 @@
 | 
			
		||||
"""LVQMLN example using all four dimensions of the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    LVQMLN,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisSiameseGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Backbone(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, input_size=4, hidden_size=10, latent_size=2):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.input_size = input_size
 | 
			
		||||
        self.hidden_size = hidden_size
 | 
			
		||||
        self.latent_size = latent_size
 | 
			
		||||
        self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
 | 
			
		||||
        self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
 | 
			
		||||
        self.activation = torch.nn.Sigmoid()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.activation(self.dense1(x))
 | 
			
		||||
        out = self.activation(self.dense2(x))
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[3, 4, 5],
 | 
			
		||||
        proto_lr=0.001,
 | 
			
		||||
        bb_lr=0.001,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the backbone
 | 
			
		||||
    backbone = Backbone()
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = LVQMLN(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(
 | 
			
		||||
            train_ds,
 | 
			
		||||
            transform=backbone,
 | 
			
		||||
        ),
 | 
			
		||||
        backbone=backbone,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisSiameseGLVQ2D(
 | 
			
		||||
        data=train_ds,
 | 
			
		||||
        map_protos=False,
 | 
			
		||||
        border=0.1,
 | 
			
		||||
        resolution=500,
 | 
			
		||||
        axis_off=True,
 | 
			
		||||
    )
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=20,
 | 
			
		||||
        prune_quota_per_epoch=2,
 | 
			
		||||
        frequency=10,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,68 +0,0 @@
 | 
			
		||||
"""Median-LVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import MedianLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(
 | 
			
		||||
        train_ds,
 | 
			
		||||
        batch_size=len(train_ds),  # MedianLVQ cannot handle mini-batches
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = MedianLVQ(
 | 
			
		||||
        hparams=dict(distribution=(3, 2), lr=0.01),
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_acc",
 | 
			
		||||
        min_delta=0.01,
 | 
			
		||||
        patience=5,
 | 
			
		||||
        mode="max",
 | 
			
		||||
        verbose=True,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,74 +0,0 @@
 | 
			
		||||
"""Neural Gas example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import NeuralGas, VisNG2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from sklearn.datasets import load_iris
 | 
			
		||||
from sklearn.preprocessing import StandardScaler
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Prepare and pre-process the dataset
 | 
			
		||||
    x_train, y_train = load_iris(return_X_y=True)
 | 
			
		||||
    x_train = x_train[:, 0:3:2]
 | 
			
		||||
    scaler = StandardScaler()
 | 
			
		||||
    scaler.fit(x_train)
 | 
			
		||||
    x_train = scaler.transform(x_train)
 | 
			
		||||
 | 
			
		||||
    train_ds = pt.datasets.NumpyDataset(x_train, y_train)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        num_prototypes=30,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        lr=0.03,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = NeuralGas(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.core.ZCI(2),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisNG2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,68 +0,0 @@
 | 
			
		||||
"""RSLVQ example using the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import RSLVQ, VisGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=42)
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[2, 2, 3],
 | 
			
		||||
        proto_lr=0.05,
 | 
			
		||||
        lambd=0.1,
 | 
			
		||||
        variance=1.0,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=2,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = RSLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
        max_epochs=100,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,83 +0,0 @@
 | 
			
		||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Backbone(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, input_size=4, hidden_size=10, latent_size=2):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.input_size = input_size
 | 
			
		||||
        self.hidden_size = hidden_size
 | 
			
		||||
        self.latent_size = latent_size
 | 
			
		||||
        self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
 | 
			
		||||
        self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
 | 
			
		||||
        self.activation = torch.nn.Sigmoid()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.activation(self.dense1(x))
 | 
			
		||||
        out = self.activation(self.dense2(x))
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[1, 2, 3],
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the backbone
 | 
			
		||||
    backbone = Backbone()
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = SiameseGLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        backbone=backbone,
 | 
			
		||||
        both_path_gradients=False,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,85 +0,0 @@
 | 
			
		||||
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
warnings.filterwarnings("ignore", category=UserWarning)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Backbone(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, input_size=4, hidden_size=10, latent_size=2):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.input_size = input_size
 | 
			
		||||
        self.hidden_size = hidden_size
 | 
			
		||||
        self.latent_size = latent_size
 | 
			
		||||
        self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
 | 
			
		||||
        self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
 | 
			
		||||
        self.activation = torch.nn.Sigmoid()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.activation(self.dense1(x))
 | 
			
		||||
        out = self.activation(self.dense2(x))
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Dataset
 | 
			
		||||
    train_ds = pt.datasets.Iris()
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=2)
 | 
			
		||||
 | 
			
		||||
    # Dataloaders
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=150)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[1, 2, 3],
 | 
			
		||||
        proto_lr=0.01,
 | 
			
		||||
        bb_lr=0.01,
 | 
			
		||||
        input_dim=2,
 | 
			
		||||
        latent_dim=1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Initialize the backbone
 | 
			
		||||
    backbone = Backbone(latent_size=hparams["input_dim"])
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = SiameseGTLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        prototypes_initializer=pt.initializers.SMCI(train_ds),
 | 
			
		||||
        backbone=backbone,
 | 
			
		||||
        both_path_gradients=False,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,124 +0,0 @@
 | 
			
		||||
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    GLVQ,
 | 
			
		||||
    KNN,
 | 
			
		||||
    GrowingNeuralGas,
 | 
			
		||||
    PruneLoserPrototypes,
 | 
			
		||||
    VisGLVQ2D,
 | 
			
		||||
)
 | 
			
		||||
from pytorch_lightning.callbacks import EarlyStopping
 | 
			
		||||
from pytorch_lightning.utilities.seed import seed_everything
 | 
			
		||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
 | 
			
		||||
from torch.optim.lr_scheduler import ExponentialLR
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
    # Reproducibility
 | 
			
		||||
    seed_everything(seed=4)
 | 
			
		||||
    # Command-line arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser = pl.Trainer.add_argparse_args(parser)
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    # Prepare the data
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
    train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
 | 
			
		||||
 | 
			
		||||
    # Initialize the gng
 | 
			
		||||
    gng = GrowingNeuralGas(
 | 
			
		||||
        hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
 | 
			
		||||
        prototypes_initializer=pt.initializers.ZCI(2),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=20,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        verbose=False,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer for GNG
 | 
			
		||||
    trainer = pl.Trainer(
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(gng, train_loader)
 | 
			
		||||
 | 
			
		||||
    # Hyperparameters
 | 
			
		||||
    hparams = dict(
 | 
			
		||||
        distribution=[],
 | 
			
		||||
        lr=0.01,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Warm-start prototypes
 | 
			
		||||
    knn = KNN(dict(k=1), data=train_ds)
 | 
			
		||||
    prototypes = gng.prototypes
 | 
			
		||||
    plabels = knn.predict(prototypes)
 | 
			
		||||
 | 
			
		||||
    # Initialize the model
 | 
			
		||||
    model = GLVQ(
 | 
			
		||||
        hparams,
 | 
			
		||||
        optimizer=torch.optim.Adam,
 | 
			
		||||
        prototypes_initializer=pt.initializers.LCI(prototypes),
 | 
			
		||||
        labels_initializer=pt.initializers.LLI(plabels),
 | 
			
		||||
        lr_scheduler=ExponentialLR,
 | 
			
		||||
        lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Compute intermediate input and output sizes
 | 
			
		||||
    model.example_input_array = torch.zeros(4, 2)
 | 
			
		||||
 | 
			
		||||
    # Callbacks
 | 
			
		||||
    vis = VisGLVQ2D(data=train_ds)
 | 
			
		||||
    pruning = PruneLoserPrototypes(
 | 
			
		||||
        threshold=0.02,
 | 
			
		||||
        idle_epochs=2,
 | 
			
		||||
        prune_quota_per_epoch=5,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        verbose=True,
 | 
			
		||||
    )
 | 
			
		||||
    es = EarlyStopping(
 | 
			
		||||
        monitor="train_loss",
 | 
			
		||||
        min_delta=0.001,
 | 
			
		||||
        patience=10,
 | 
			
		||||
        mode="min",
 | 
			
		||||
        verbose=True,
 | 
			
		||||
        check_on_train_epoch_end=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Setup trainer
 | 
			
		||||
    trainer = pl.Trainer.from_argparse_args(
 | 
			
		||||
        args,
 | 
			
		||||
        callbacks=[
 | 
			
		||||
            vis,
 | 
			
		||||
            pruning,
 | 
			
		||||
            es,
 | 
			
		||||
        ],
 | 
			
		||||
        max_epochs=1000,
 | 
			
		||||
        log_every_n_steps=1,
 | 
			
		||||
        detect_anomaly=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Training loop
 | 
			
		||||
    trainer.fit(model, train_loader)
 | 
			
		||||
@@ -1,39 +1,25 @@
 | 
			
		||||
"""`models` plugin for the `prototorch` package."""
 | 
			
		||||
from .architectures.base import BaseYArchitecture
 | 
			
		||||
from .architectures.comparison import (
 | 
			
		||||
    OmegaComparisonMixin,
 | 
			
		||||
    SimpleComparisonMixin,
 | 
			
		||||
)
 | 
			
		||||
from .architectures.competition import WTACompetitionMixin
 | 
			
		||||
from .architectures.components import SupervisedArchitecture
 | 
			
		||||
from .architectures.loss import GLVQLossMixin
 | 
			
		||||
from .architectures.optimization import (
 | 
			
		||||
    MultipleLearningRateMixin,
 | 
			
		||||
    SingleLearningRateMixin,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
 | 
			
		||||
from .cbc import CBC, ImageCBC
 | 
			
		||||
from .glvq import (
 | 
			
		||||
    GLVQ,
 | 
			
		||||
    GLVQ1,
 | 
			
		||||
    GLVQ21,
 | 
			
		||||
    GMLVQ,
 | 
			
		||||
    GRLVQ,
 | 
			
		||||
    GTLVQ,
 | 
			
		||||
    LGMLVQ,
 | 
			
		||||
    LVQMLN,
 | 
			
		||||
    ImageGLVQ,
 | 
			
		||||
    ImageGMLVQ,
 | 
			
		||||
    ImageGTLVQ,
 | 
			
		||||
    SiameseGLVQ,
 | 
			
		||||
    SiameseGMLVQ,
 | 
			
		||||
    SiameseGTLVQ,
 | 
			
		||||
)
 | 
			
		||||
from .knn import KNN
 | 
			
		||||
from .lvq import (
 | 
			
		||||
    LVQ1,
 | 
			
		||||
    LVQ21,
 | 
			
		||||
    MedianLVQ,
 | 
			
		||||
)
 | 
			
		||||
from .probabilistic import (
 | 
			
		||||
    CELVQ,
 | 
			
		||||
    RSLVQ,
 | 
			
		||||
    SLVQ,
 | 
			
		||||
)
 | 
			
		||||
from .unsupervised import (
 | 
			
		||||
    GrowingNeuralGas,
 | 
			
		||||
    KohonenSOM,
 | 
			
		||||
    NeuralGas,
 | 
			
		||||
)
 | 
			
		||||
from .vis import *
 | 
			
		||||
__all__ = [
 | 
			
		||||
    'BaseYArchitecture',
 | 
			
		||||
    "OmegaComparisonMixin",
 | 
			
		||||
    "SimpleComparisonMixin",
 | 
			
		||||
    "SingleLearningRateMixin",
 | 
			
		||||
    "MultipleLearningRateMixin",
 | 
			
		||||
    "SupervisedArchitecture",
 | 
			
		||||
    "WTACompetitionMixin",
 | 
			
		||||
    "GLVQLossMixin",
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
__version__ = "0.5.2"
 | 
			
		||||
__version__ = "1.0.0-a8"
 | 
			
		||||
 
 | 
			
		||||
@@ -1,237 +0,0 @@
 | 
			
		||||
"""Abstract classes to be inherited by prototorch models."""
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torchmetrics
 | 
			
		||||
from prototorch.core.competitions import WTAC
 | 
			
		||||
from prototorch.core.components import (
 | 
			
		||||
    AbstractComponents,
 | 
			
		||||
    Components,
 | 
			
		||||
    LabeledComponents,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.distances import euclidean_distance
 | 
			
		||||
from prototorch.core.initializers import (
 | 
			
		||||
    LabelsInitializer,
 | 
			
		||||
    ZerosCompInitializer,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.pooling import stratified_min_pooling
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProtoTorchBolt(pl.LightningModule):
 | 
			
		||||
    """All ProtoTorch models are ProtoTorch Bolts."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        # Hyperparameters
 | 
			
		||||
        self.save_hyperparameters(hparams)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("lr", 0.01)
 | 
			
		||||
 | 
			
		||||
        # Default config
 | 
			
		||||
        self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
 | 
			
		||||
        self.lr_scheduler = kwargs.get("lr_scheduler", None)
 | 
			
		||||
        self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
 | 
			
		||||
        if self.lr_scheduler is not None:
 | 
			
		||||
            scheduler = self.lr_scheduler(optimizer,
 | 
			
		||||
                                          **self.lr_scheduler_kwargs)
 | 
			
		||||
            sch = {
 | 
			
		||||
                "scheduler": scheduler,
 | 
			
		||||
                "interval": "step",
 | 
			
		||||
            }  # called after each training step
 | 
			
		||||
            return [optimizer], [sch]
 | 
			
		||||
        else:
 | 
			
		||||
            return optimizer
 | 
			
		||||
 | 
			
		||||
    def reconfigure_optimizers(self):
 | 
			
		||||
        if self.trainer:
 | 
			
		||||
            self.trainer.strategy.setup_optimizers(self.trainer)
 | 
			
		||||
        else:
 | 
			
		||||
            logging.warning("No trainer to reconfigure optimizers!")
 | 
			
		||||
 | 
			
		||||
    def __repr__(self):
 | 
			
		||||
        surep = super().__repr__()
 | 
			
		||||
        indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
 | 
			
		||||
        wrapped = f"ProtoTorch Bolt(\n{indented})"
 | 
			
		||||
        return wrapped
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PrototypeModel(ProtoTorchBolt):
 | 
			
		||||
    proto_layer: AbstractComponents
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        distance_fn = kwargs.get("distance_fn", euclidean_distance)
 | 
			
		||||
        self.distance_layer = LambdaLayer(distance_fn)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def num_prototypes(self):
 | 
			
		||||
        return len(self.proto_layer.components)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def prototypes(self):
 | 
			
		||||
        return self.proto_layer.components.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def components(self):
 | 
			
		||||
        """Only an alias for the prototypes."""
 | 
			
		||||
        return self.prototypes
 | 
			
		||||
 | 
			
		||||
    def add_prototypes(self, *args, **kwargs):
 | 
			
		||||
        self.proto_layer.add_components(*args, **kwargs)
 | 
			
		||||
        self.hparams["distribution"] = self.proto_layer.distribution
 | 
			
		||||
        self.reconfigure_optimizers()
 | 
			
		||||
 | 
			
		||||
    def remove_prototypes(self, indices):
 | 
			
		||||
        self.proto_layer.remove_components(indices)
 | 
			
		||||
        self.hparams["distribution"] = self.proto_layer.distribution
 | 
			
		||||
        self.reconfigure_optimizers()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class UnsupervisedPrototypeModel(PrototypeModel):
 | 
			
		||||
    proto_layer: Components
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        prototypes_initializer = kwargs.get("prototypes_initializer", None)
 | 
			
		||||
        if prototypes_initializer is not None:
 | 
			
		||||
            self.proto_layer = Components(
 | 
			
		||||
                self.hparams["num_prototypes"],
 | 
			
		||||
                initializer=prototypes_initializer,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos = self.proto_layer().type_as(x)
 | 
			
		||||
        distances = self.distance_layer(x, protos)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        distances = self.compute_distances(x)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SupervisedPrototypeModel(PrototypeModel):
 | 
			
		||||
    proto_layer: LabeledComponents
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, skip_proto_layer=False, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        distribution = hparams.get("distribution", None)
 | 
			
		||||
        prototypes_initializer = kwargs.get("prototypes_initializer", None)
 | 
			
		||||
        labels_initializer = kwargs.get("labels_initializer",
 | 
			
		||||
                                        LabelsInitializer())
 | 
			
		||||
        if not skip_proto_layer:
 | 
			
		||||
            # when subclasses do not need a customized prototype layer
 | 
			
		||||
            if prototypes_initializer is not None:
 | 
			
		||||
                # when building a new model
 | 
			
		||||
                self.proto_layer = LabeledComponents(
 | 
			
		||||
                    distribution=distribution,
 | 
			
		||||
                    components_initializer=prototypes_initializer,
 | 
			
		||||
                    labels_initializer=labels_initializer,
 | 
			
		||||
                )
 | 
			
		||||
                proto_shape = self.proto_layer.components.shape[1:]
 | 
			
		||||
                self.hparams["initialized_proto_shape"] = proto_shape
 | 
			
		||||
            else:
 | 
			
		||||
                # when restoring a checkpointed model
 | 
			
		||||
                self.proto_layer = LabeledComponents(
 | 
			
		||||
                    distribution=distribution,
 | 
			
		||||
                    components_initializer=ZerosCompInitializer(
 | 
			
		||||
                        self.hparams["initialized_proto_shape"]),
 | 
			
		||||
                )
 | 
			
		||||
        self.competition_layer = WTAC()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def prototype_labels(self):
 | 
			
		||||
        return self.proto_layer.labels.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def num_classes(self):
 | 
			
		||||
        return self.proto_layer.num_classes
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos, _ = self.proto_layer()
 | 
			
		||||
        distances = self.distance_layer(x, protos)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        distances = self.compute_distances(x)
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        winning = stratified_min_pooling(distances, plabels)
 | 
			
		||||
        y_pred = F.softmin(winning, dim=1)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
    def predict_from_distances(self, distances):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            _, plabels = self.proto_layer()
 | 
			
		||||
            y_pred = self.competition_layer(distances, plabels)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
    def predict(self, x):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            distances = self.compute_distances(x)
 | 
			
		||||
        y_pred = self.predict_from_distances(distances)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
    def log_acc(self, distances, targets, tag):
 | 
			
		||||
        preds = self.predict_from_distances(distances)
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
 | 
			
		||||
        # `.int()` because FloatTensors are assumed to be class probabilities
 | 
			
		||||
 | 
			
		||||
        self.log(tag,
 | 
			
		||||
                 accuracy,
 | 
			
		||||
                 on_step=False,
 | 
			
		||||
                 on_epoch=True,
 | 
			
		||||
                 prog_bar=True,
 | 
			
		||||
                 logger=True)
 | 
			
		||||
 | 
			
		||||
    def test_step(self, batch, batch_idx):
 | 
			
		||||
        x, targets = batch
 | 
			
		||||
 | 
			
		||||
        preds = self.predict(x)
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
 | 
			
		||||
 | 
			
		||||
        self.log("test_acc", accuracy)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProtoTorchMixin(object):
 | 
			
		||||
    """All mixins are ProtoTorchMixins."""
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class NonGradientMixin(ProtoTorchMixin):
 | 
			
		||||
    """Mixin for custom non-gradient optimization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        self.automatic_optimization = False
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        raise NotImplementedError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImagePrototypesMixin(ProtoTorchMixin):
 | 
			
		||||
    """Mixin for models with image prototypes."""
 | 
			
		||||
    proto_layer: Components
 | 
			
		||||
    components: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_end(self, outputs, batch, batch_idx):
 | 
			
		||||
        """Constrain the components to the range [0, 1] by clamping after updates."""
 | 
			
		||||
        self.proto_layer.components.data.clamp_(0.0, 1.0)
 | 
			
		||||
 | 
			
		||||
    def get_prototype_grid(self, num_columns=2, return_channels_last=True):
 | 
			
		||||
        from torchvision.utils import make_grid
 | 
			
		||||
        grid = make_grid(self.components, nrow=num_columns)
 | 
			
		||||
        if return_channels_last:
 | 
			
		||||
            grid = grid.permute((1, 2, 0))
 | 
			
		||||
        return grid.cpu()
 | 
			
		||||
							
								
								
									
										290
									
								
								prototorch/models/architectures/base.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										290
									
								
								prototorch/models/architectures/base.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,290 @@
 | 
			
		||||
"""
 | 
			
		||||
Proto Y Architecture
 | 
			
		||||
 | 
			
		||||
Network architecture for Component based Learning.
 | 
			
		||||
"""
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
from dataclasses import asdict, dataclass
 | 
			
		||||
from typing import Any, Callable
 | 
			
		||||
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from torchmetrics import Metric
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Steps(enumerate):
 | 
			
		||||
    TRAINING = "training"
 | 
			
		||||
    VALIDATION = "validation"
 | 
			
		||||
    TEST = "test"
 | 
			
		||||
    PREDICT = "predict"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class BaseYArchitecture(pl.LightningModule):
 | 
			
		||||
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters:
 | 
			
		||||
        """
 | 
			
		||||
        Add all hyperparameters in the inherited class.
 | 
			
		||||
        """
 | 
			
		||||
        ...
 | 
			
		||||
 | 
			
		||||
    # Fields
 | 
			
		||||
    registered_metrics: dict[str, dict[type[Metric], Metric]] = {
 | 
			
		||||
        Steps.TRAINING: {},
 | 
			
		||||
        Steps.VALIDATION: {},
 | 
			
		||||
        Steps.TEST: {},
 | 
			
		||||
    }
 | 
			
		||||
    registered_metric_callbacks: dict[str, dict[type[Metric],
 | 
			
		||||
                                                set[Callable]]] = {
 | 
			
		||||
                                                    Steps.TRAINING: {},
 | 
			
		||||
                                                    Steps.VALIDATION: {},
 | 
			
		||||
                                                    Steps.TEST: {},
 | 
			
		||||
                                                }
 | 
			
		||||
 | 
			
		||||
    # Type Hints for Necessary Fields
 | 
			
		||||
    components_layer: torch.nn.Module
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams) -> None:
 | 
			
		||||
        if isinstance(hparams, dict):
 | 
			
		||||
            self.save_hyperparameters(hparams)
 | 
			
		||||
            # TODO: => Move into Component Child
 | 
			
		||||
            del hparams["initialized_proto_shape"]
 | 
			
		||||
            hparams = self.HyperParameters(**hparams)
 | 
			
		||||
        else:
 | 
			
		||||
            hparams_dict = asdict(hparams)
 | 
			
		||||
            hparams_dict["component_initializer"] = None
 | 
			
		||||
            self.save_hyperparameters(hparams_dict, )
 | 
			
		||||
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        # Common Steps
 | 
			
		||||
        self.init_components(hparams)
 | 
			
		||||
        self.init_backbone(hparams)
 | 
			
		||||
        self.init_comparison(hparams)
 | 
			
		||||
        self.init_competition(hparams)
 | 
			
		||||
 | 
			
		||||
        # Train Steps
 | 
			
		||||
        self.init_loss(hparams)
 | 
			
		||||
 | 
			
		||||
        # Inference Steps
 | 
			
		||||
        self.init_inference(hparams)
 | 
			
		||||
 | 
			
		||||
    # external API
 | 
			
		||||
    def get_competition(self, batch, components):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the output of the competition layer.
 | 
			
		||||
        '''
 | 
			
		||||
        latent_batch, latent_components = self.backbone(batch, components)
 | 
			
		||||
        # TODO: => Latent Hook
 | 
			
		||||
        comparison_tensor = self.comparison(latent_batch, latent_components)
 | 
			
		||||
        # TODO: => Comparison Hook
 | 
			
		||||
        return comparison_tensor
 | 
			
		||||
 | 
			
		||||
    def forward(self, batch):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the prediction.
 | 
			
		||||
        '''
 | 
			
		||||
        if isinstance(batch, torch.Tensor):
 | 
			
		||||
            batch = (batch, None)
 | 
			
		||||
        # TODO: manage different datatypes?
 | 
			
		||||
        components = self.components_layer()
 | 
			
		||||
        # TODO: => Component Hook
 | 
			
		||||
        comparison_tensor = self.get_competition(batch, components)
 | 
			
		||||
        # TODO: => Competition Hook
 | 
			
		||||
        return self.inference(comparison_tensor, components)
 | 
			
		||||
 | 
			
		||||
    def predict(self, batch):
 | 
			
		||||
        """
 | 
			
		||||
        Alias for forward
 | 
			
		||||
        """
 | 
			
		||||
        return self.forward(batch)
 | 
			
		||||
 | 
			
		||||
    def forward_comparison(self, batch):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the Output of the comparison layer.
 | 
			
		||||
        '''
 | 
			
		||||
        if isinstance(batch, torch.Tensor):
 | 
			
		||||
            batch = (batch, None)
 | 
			
		||||
        # TODO: manage different datatypes?
 | 
			
		||||
        components = self.components_layer()
 | 
			
		||||
        # TODO: => Component Hook
 | 
			
		||||
        return self.get_competition(batch, components)
 | 
			
		||||
 | 
			
		||||
    def loss_forward(self, batch):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the output of the loss layer.
 | 
			
		||||
        '''
 | 
			
		||||
        # TODO: manage different datatypes?
 | 
			
		||||
        components = self.components_layer()
 | 
			
		||||
        # TODO: => Component Hook
 | 
			
		||||
        comparison_tensor = self.get_competition(batch, components)
 | 
			
		||||
        # TODO: => Competition Hook
 | 
			
		||||
        return self.loss(comparison_tensor, batch, components)
 | 
			
		||||
 | 
			
		||||
    # Empty Initialization
 | 
			
		||||
    def init_components(self, hparams: HyperParameters) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        All initialization necessary for the components step.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
    def init_backbone(self, hparams: HyperParameters) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        All initialization necessary for the backbone step.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
    def init_comparison(self, hparams: HyperParameters) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        All initialization necessary for the comparison step.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
    def init_competition(self, hparams: HyperParameters) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        All initialization necessary for the competition step.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
    def init_loss(self, hparams: HyperParameters) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        All initialization necessary for the loss step.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
    def init_inference(self, hparams: HyperParameters) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        All initialization necessary for the inference step.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
    # Empty Steps
 | 
			
		||||
    def components(self):
 | 
			
		||||
        """
 | 
			
		||||
        This step has no input.
 | 
			
		||||
 | 
			
		||||
        It returns the components.
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            "The components step has no reasonable default.")
 | 
			
		||||
 | 
			
		||||
    def backbone(self, batch, components):
 | 
			
		||||
        """
 | 
			
		||||
        The backbone step receives the data batch and the components.
 | 
			
		||||
        It can transform both by an arbitrary function.
 | 
			
		||||
 | 
			
		||||
        It returns the transformed batch and components,
 | 
			
		||||
        each of the same length as the original input.
 | 
			
		||||
        """
 | 
			
		||||
        return batch, components
 | 
			
		||||
 | 
			
		||||
    def comparison(self, batch, components):
 | 
			
		||||
        """
 | 
			
		||||
        Takes a batch of size N and the component set of size M.
 | 
			
		||||
 | 
			
		||||
        It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures.
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            "The comparison step has no reasonable default.")
 | 
			
		||||
 | 
			
		||||
    def competition(self, comparison_measures, components):
 | 
			
		||||
        """
 | 
			
		||||
        Takes the tensor of comparison measures.
 | 
			
		||||
 | 
			
		||||
        Assigns a competition vector to each class.
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            "The competition step has no reasonable default.")
 | 
			
		||||
 | 
			
		||||
    def loss(self, comparison_measures, batch, components):
 | 
			
		||||
        """
 | 
			
		||||
        Takes the tensor of competition measures.
 | 
			
		||||
 | 
			
		||||
        Calculates a single loss value
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError("The loss step has no reasonable default.")
 | 
			
		||||
 | 
			
		||||
    def inference(self, comparison_measures, components):
 | 
			
		||||
        """
 | 
			
		||||
        Takes the tensor of competition measures.
 | 
			
		||||
 | 
			
		||||
        Returns the inferred vector.
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            "The inference step has no reasonable default.")
 | 
			
		||||
 | 
			
		||||
    # Y Architecture Hooks
 | 
			
		||||
 | 
			
		||||
    # internal API, called by models and callbacks
 | 
			
		||||
    def register_torchmetric(
 | 
			
		||||
        self,
 | 
			
		||||
        name: Callable,
 | 
			
		||||
        metric: type[Metric],
 | 
			
		||||
        step: str = Steps.TRAINING,
 | 
			
		||||
        **metric_kwargs,
 | 
			
		||||
    ):
 | 
			
		||||
        '''
 | 
			
		||||
        Register a callback for evaluating a torchmetric.
 | 
			
		||||
        '''
 | 
			
		||||
        if step == Steps.PREDICT:
 | 
			
		||||
            raise ValueError("Prediction metrics are not supported.")
 | 
			
		||||
 | 
			
		||||
        if metric not in self.registered_metrics:
 | 
			
		||||
            self.registered_metrics[step][metric] = metric(**metric_kwargs)
 | 
			
		||||
            self.registered_metric_callbacks[step][metric] = {name}
 | 
			
		||||
        else:
 | 
			
		||||
            self.registered_metric_callbacks[step][metric].add(name)
 | 
			
		||||
 | 
			
		||||
    def update_metrics_step(self, batch, step):
 | 
			
		||||
        # Prediction Metrics
 | 
			
		||||
        preds = self(batch)
 | 
			
		||||
 | 
			
		||||
        _, y = batch
 | 
			
		||||
        for metric in self.registered_metrics[step]:
 | 
			
		||||
            instance = self.registered_metrics[step][metric].to(self.device)
 | 
			
		||||
            instance(y, preds.reshape(y.shape))
 | 
			
		||||
 | 
			
		||||
    def update_metrics_epoch(self, step):
 | 
			
		||||
        for metric in self.registered_metrics[step]:
 | 
			
		||||
            instance = self.registered_metrics[step][metric].to(self.device)
 | 
			
		||||
            value = instance.compute()
 | 
			
		||||
 | 
			
		||||
            for callback in self.registered_metric_callbacks[step][metric]:
 | 
			
		||||
                callback(value, self)
 | 
			
		||||
 | 
			
		||||
            instance.reset()
 | 
			
		||||
 | 
			
		||||
    # Lightning steps
 | 
			
		||||
    # -------------------------------------------------------------------------
 | 
			
		||||
    # >>>> Training
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        self.update_metrics_step(batch, Steps.TRAINING)
 | 
			
		||||
 | 
			
		||||
        return self.loss_forward(batch)
 | 
			
		||||
 | 
			
		||||
    def training_epoch_end(self, outputs) -> None:
 | 
			
		||||
        self.update_metrics_epoch(Steps.TRAINING)
 | 
			
		||||
 | 
			
		||||
    # >>>> Validation
 | 
			
		||||
    def validation_step(self, batch, batch_idx):
 | 
			
		||||
        self.update_metrics_step(batch, Steps.VALIDATION)
 | 
			
		||||
 | 
			
		||||
        return self.loss_forward(batch)
 | 
			
		||||
 | 
			
		||||
    def validation_epoch_end(self, outputs) -> None:
 | 
			
		||||
        self.update_metrics_epoch(Steps.VALIDATION)
 | 
			
		||||
 | 
			
		||||
    # >>>> Test
 | 
			
		||||
    def test_step(self, batch, batch_idx):
 | 
			
		||||
        self.update_metrics_step(batch, Steps.TEST)
 | 
			
		||||
        return self.loss_forward(batch)
 | 
			
		||||
 | 
			
		||||
    def test_epoch_end(self, outputs) -> None:
 | 
			
		||||
        self.update_metrics_epoch(Steps.TEST)
 | 
			
		||||
 | 
			
		||||
    # >>>> Prediction
 | 
			
		||||
    def predict_step(self, batch, batch_idx, dataloader_idx=0):
 | 
			
		||||
        return self.predict(batch)
 | 
			
		||||
 | 
			
		||||
    # Check points
 | 
			
		||||
    def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None:
 | 
			
		||||
        # Compatible with Lightning
 | 
			
		||||
        checkpoint["hyper_parameters"] = {
 | 
			
		||||
            'hparams': checkpoint["hyper_parameters"]
 | 
			
		||||
        }
 | 
			
		||||
        return super().on_save_checkpoint(checkpoint)
 | 
			
		||||
							
								
								
									
										148
									
								
								prototorch/models/architectures/comparison.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										148
									
								
								prototorch/models/architectures/comparison.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,148 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
from dataclasses import dataclass, field
 | 
			
		||||
from typing import Callable
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.distances import euclidean_distance
 | 
			
		||||
from prototorch.core.initializers import (
 | 
			
		||||
    AbstractLinearTransformInitializer,
 | 
			
		||||
    EyeLinearTransformInitializer,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.models.architectures.base import BaseYArchitecture
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer
 | 
			
		||||
from torch import Tensor
 | 
			
		||||
from torch.nn.parameter import Parameter
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SimpleComparisonMixin(BaseYArchitecture):
 | 
			
		||||
    """
 | 
			
		||||
    Simple Comparison
 | 
			
		||||
 | 
			
		||||
    A comparison layer that only uses the positions of the components
 | 
			
		||||
    and the batch for dissimilarity computation.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(BaseYArchitecture.HyperParameters):
 | 
			
		||||
        """
 | 
			
		||||
        comparison_fn: The comparison / dissimilarity function to use. Default: euclidean_distance.
 | 
			
		||||
        comparison_args: Keyword arguments for the comparison function. Default: {}.
 | 
			
		||||
        """
 | 
			
		||||
        comparison_fn: Callable = euclidean_distance
 | 
			
		||||
        comparison_args: dict = field(default_factory=dict)
 | 
			
		||||
 | 
			
		||||
        comparison_parameters: dict = field(default_factory=dict)
 | 
			
		||||
 | 
			
		||||
    # Steps
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------
 | 
			
		||||
    def init_comparison(self, hparams: HyperParameters):
 | 
			
		||||
        self.comparison_layer = LambdaLayer(
 | 
			
		||||
            fn=hparams.comparison_fn,
 | 
			
		||||
            **hparams.comparison_args,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.comparison_kwargs: dict[str, Tensor] = {}
 | 
			
		||||
 | 
			
		||||
    def comparison(self, batch, components):
 | 
			
		||||
        comp_tensor, _ = components
 | 
			
		||||
        batch_tensor, _ = batch
 | 
			
		||||
 | 
			
		||||
        comp_tensor = comp_tensor.unsqueeze(1)
 | 
			
		||||
 | 
			
		||||
        distances = self.comparison_layer(
 | 
			
		||||
            batch_tensor,
 | 
			
		||||
            comp_tensor,
 | 
			
		||||
            **self.comparison_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class OmegaComparisonMixin(SimpleComparisonMixin):
 | 
			
		||||
    """
 | 
			
		||||
    Omega Comparison
 | 
			
		||||
 | 
			
		||||
    A comparison layer that uses the positions of the components
 | 
			
		||||
    and the batch for dissimilarity computation.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    _omega: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(SimpleComparisonMixin.HyperParameters):
 | 
			
		||||
        """
 | 
			
		||||
        input_dim: Necessary Field: The dimensionality of the input.
 | 
			
		||||
        latent_dim:
 | 
			
		||||
            The dimensionality of the latent space. Default: 2.
 | 
			
		||||
        omega_initializer:
 | 
			
		||||
            The initializer to use for the omega matrix. Default: EyeLinearTransformInitializer.
 | 
			
		||||
        """
 | 
			
		||||
        input_dim: int | None = None
 | 
			
		||||
        latent_dim: int = 2
 | 
			
		||||
        omega_initializer: type[
 | 
			
		||||
            AbstractLinearTransformInitializer] = EyeLinearTransformInitializer
 | 
			
		||||
        omega_initializer_kwargs: dict = field(default_factory=dict)
 | 
			
		||||
 | 
			
		||||
    # Steps
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------
 | 
			
		||||
    def init_comparison(self, hparams: HyperParameters) -> None:
 | 
			
		||||
        super().init_comparison(hparams)
 | 
			
		||||
 | 
			
		||||
        # Initialize the omega matrix
 | 
			
		||||
        if hparams.input_dim is None:
 | 
			
		||||
            raise ValueError("input_dim must be specified.")
 | 
			
		||||
        else:
 | 
			
		||||
            omega = hparams.omega_initializer(
 | 
			
		||||
                **hparams.omega_initializer_kwargs).generate(
 | 
			
		||||
                    hparams.input_dim,
 | 
			
		||||
                    hparams.latent_dim,
 | 
			
		||||
                )
 | 
			
		||||
            self.register_parameter("_omega", Parameter(omega))
 | 
			
		||||
            self.comparison_kwargs = dict(omega=self._omega)
 | 
			
		||||
 | 
			
		||||
    # Properties
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------
 | 
			
		||||
    @property
 | 
			
		||||
    def omega_matrix(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Omega Matrix. Mapping applied to data and prototypes.
 | 
			
		||||
        '''
 | 
			
		||||
        return self._omega.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def lambda_matrix(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Lambda Matrix.
 | 
			
		||||
        '''
 | 
			
		||||
        omega = self._omega.detach()
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        return lam.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def relevance_profile(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Relevance Profile. Main Diagonal of the Lambda Matrix.
 | 
			
		||||
        '''
 | 
			
		||||
        return self.lambda_matrix.diag().abs()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def classification_influence_profile(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Classification Influence Profile. Influence of each dimension.
 | 
			
		||||
        '''
 | 
			
		||||
        lam = self.lambda_matrix
 | 
			
		||||
        return lam.abs().sum(0)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def parameter_omega(self):
 | 
			
		||||
        return self._omega
 | 
			
		||||
 | 
			
		||||
    @parameter_omega.setter
 | 
			
		||||
    def parameter_omega(self, new_omega):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            self._omega.data.copy_(new_omega)
 | 
			
		||||
							
								
								
									
										29
									
								
								prototorch/models/architectures/competition.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										29
									
								
								prototorch/models/architectures/competition.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,29 @@
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
 | 
			
		||||
from prototorch.core.competitions import WTAC
 | 
			
		||||
from prototorch.models.architectures.base import BaseYArchitecture
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class WTACompetitionMixin(BaseYArchitecture):
 | 
			
		||||
    """
 | 
			
		||||
    Winner Take All Competition
 | 
			
		||||
 | 
			
		||||
    A competition layer that uses the winner-take-all strategy.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(BaseYArchitecture.HyperParameters):
 | 
			
		||||
        """
 | 
			
		||||
        No hyperparameters.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
    # Steps
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    def init_inference(self, hparams: HyperParameters):
 | 
			
		||||
        self.competition_layer = WTAC()
 | 
			
		||||
 | 
			
		||||
    def inference(self, comparison_measures, components):
 | 
			
		||||
        comp_labels = components[1]
 | 
			
		||||
        return self.competition_layer(comparison_measures, comp_labels)
 | 
			
		||||
							
								
								
									
										64
									
								
								prototorch/models/architectures/components.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										64
									
								
								prototorch/models/architectures/components.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,64 @@
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
 | 
			
		||||
from prototorch.core.components import LabeledComponents
 | 
			
		||||
from prototorch.core.initializers import (
 | 
			
		||||
    AbstractComponentsInitializer,
 | 
			
		||||
    LabelsInitializer,
 | 
			
		||||
    ZerosCompInitializer,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.models import BaseYArchitecture
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SupervisedArchitecture(BaseYArchitecture):
 | 
			
		||||
    """
 | 
			
		||||
    Supervised Architecture
 | 
			
		||||
 | 
			
		||||
    An architecture that uses labeled Components as component Layer.
 | 
			
		||||
    """
 | 
			
		||||
    components_layer: LabeledComponents
 | 
			
		||||
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters:
 | 
			
		||||
        """
 | 
			
		||||
        distribution: A valid prototype distribution. No default possible.
 | 
			
		||||
        components_initializer: An implementation of AbstractComponentsInitializer. No default possible.
 | 
			
		||||
        """
 | 
			
		||||
        distribution: "dict[str, int]"
 | 
			
		||||
        component_initializer: AbstractComponentsInitializer
 | 
			
		||||
 | 
			
		||||
    # Steps
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    def init_components(self, hparams: HyperParameters):
 | 
			
		||||
        if hparams.component_initializer is not None:
 | 
			
		||||
            self.components_layer = LabeledComponents(
 | 
			
		||||
                distribution=hparams.distribution,
 | 
			
		||||
                components_initializer=hparams.component_initializer,
 | 
			
		||||
                labels_initializer=LabelsInitializer(),
 | 
			
		||||
            )
 | 
			
		||||
            proto_shape = self.components_layer.components.shape[1:]
 | 
			
		||||
            self.hparams["initialized_proto_shape"] = proto_shape
 | 
			
		||||
        else:
 | 
			
		||||
            # when restoring a checkpointed model
 | 
			
		||||
            self.components_layer = LabeledComponents(
 | 
			
		||||
                distribution=hparams.distribution,
 | 
			
		||||
                components_initializer=ZerosCompInitializer(
 | 
			
		||||
                    self.hparams["initialized_proto_shape"]),
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    # Properties
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    @property
 | 
			
		||||
    def prototypes(self):
 | 
			
		||||
        """
 | 
			
		||||
        Returns the position of the prototypes.
 | 
			
		||||
        """
 | 
			
		||||
        return self.components_layer.components.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def prototype_labels(self):
 | 
			
		||||
        """
 | 
			
		||||
        Returns the labels of the prototypes.
 | 
			
		||||
        """
 | 
			
		||||
        return self.components_layer.labels.detach().cpu()
 | 
			
		||||
							
								
								
									
										42
									
								
								prototorch/models/architectures/loss.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										42
									
								
								prototorch/models/architectures/loss.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,42 @@
 | 
			
		||||
from dataclasses import dataclass, field
 | 
			
		||||
 | 
			
		||||
from prototorch.core.losses import GLVQLoss
 | 
			
		||||
from prototorch.models.architectures.base import BaseYArchitecture
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GLVQLossMixin(BaseYArchitecture):
 | 
			
		||||
    """
 | 
			
		||||
    GLVQ Loss
 | 
			
		||||
 | 
			
		||||
    A loss layer that uses the Generalized Learning Vector Quantization (GLVQ) loss.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(BaseYArchitecture.HyperParameters):
 | 
			
		||||
        """
 | 
			
		||||
        margin: The margin of the GLVQ loss. Default: 0.0.
 | 
			
		||||
        transfer_fn: Transfer function to use. Default: sigmoid_beta.
 | 
			
		||||
        transfer_args: Keyword arguments for the transfer function. Default: {beta: 10.0}.
 | 
			
		||||
        """
 | 
			
		||||
        margin: float = 0.0
 | 
			
		||||
 | 
			
		||||
        transfer_fn: str = "sigmoid_beta"
 | 
			
		||||
        transfer_args: dict = field(default_factory=lambda: dict(beta=10.0))
 | 
			
		||||
 | 
			
		||||
    # Steps
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    def init_loss(self, hparams: HyperParameters):
 | 
			
		||||
        self.loss_layer = GLVQLoss(
 | 
			
		||||
            margin=hparams.margin,
 | 
			
		||||
            transfer_fn=hparams.transfer_fn,
 | 
			
		||||
            **hparams.transfer_args,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def loss(self, comparison_measures, batch, components):
 | 
			
		||||
        target = batch[1]
 | 
			
		||||
        comp_labels = components[1]
 | 
			
		||||
        loss = self.loss_layer(comparison_measures, target, comp_labels)
 | 
			
		||||
        self.log('loss', loss)
 | 
			
		||||
        return loss
 | 
			
		||||
							
								
								
									
										73
									
								
								prototorch/models/architectures/optimization.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										73
									
								
								prototorch/models/architectures/optimization.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,73 @@
 | 
			
		||||
from dataclasses import dataclass, field
 | 
			
		||||
from typing import Type
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models import BaseYArchitecture
 | 
			
		||||
from torch.nn.parameter import Parameter
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SingleLearningRateMixin(BaseYArchitecture):
 | 
			
		||||
    """
 | 
			
		||||
    Single Learning Rate
 | 
			
		||||
 | 
			
		||||
    All parameters are updated with a single learning rate.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(BaseYArchitecture.HyperParameters):
 | 
			
		||||
        """
 | 
			
		||||
        lr: The learning rate. Default: 0.1.
 | 
			
		||||
        optimizer: The optimizer to use. Default: torch.optim.Adam.
 | 
			
		||||
        """
 | 
			
		||||
        lr: float = 0.1
 | 
			
		||||
        optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
 | 
			
		||||
 | 
			
		||||
    # Hooks
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        return self.hparams.optimizer(self.parameters(),
 | 
			
		||||
                                      lr=self.hparams.lr)  # type: ignore
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MultipleLearningRateMixin(BaseYArchitecture):
 | 
			
		||||
    """
 | 
			
		||||
    Multiple Learning Rates
 | 
			
		||||
 | 
			
		||||
    Define Different Learning Rates for different parameters.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(BaseYArchitecture.HyperParameters):
 | 
			
		||||
        """
 | 
			
		||||
        lr: The learning rate. Default: 0.1.
 | 
			
		||||
        optimizer: The optimizer to use. Default: torch.optim.Adam.
 | 
			
		||||
        """
 | 
			
		||||
        lr: dict = field(default_factory=dict)
 | 
			
		||||
        optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
 | 
			
		||||
 | 
			
		||||
    # Hooks
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        optimizers = []
 | 
			
		||||
        for name, lr in self.hparams.lr.items():
 | 
			
		||||
            if not hasattr(self, name):
 | 
			
		||||
                raise ValueError(f"{name} is not a parameter of {self}")
 | 
			
		||||
            else:
 | 
			
		||||
                model_part = getattr(self, name)
 | 
			
		||||
                if isinstance(model_part, Parameter):
 | 
			
		||||
                    optimizers.append(
 | 
			
		||||
                        self.hparams.optimizer(
 | 
			
		||||
                            [model_part],
 | 
			
		||||
                            lr=lr,  # type: ignore
 | 
			
		||||
                        ))
 | 
			
		||||
                elif hasattr(model_part, "parameters"):
 | 
			
		||||
                    optimizers.append(
 | 
			
		||||
                        self.hparams.optimizer(
 | 
			
		||||
                            model_part.parameters(),
 | 
			
		||||
                            lr=lr,  # type: ignore
 | 
			
		||||
                        ))
 | 
			
		||||
        return optimizers
 | 
			
		||||
@@ -1,152 +1,307 @@
 | 
			
		||||
"""Lightning Callbacks."""
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
from typing import TYPE_CHECKING
 | 
			
		||||
import warnings
 | 
			
		||||
from enum import Enum
 | 
			
		||||
from typing import Optional, Type
 | 
			
		||||
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import numpy as np
 | 
			
		||||
import pytorch_lightning as pl
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.initializers import LiteralCompInitializer
 | 
			
		||||
import torchmetrics
 | 
			
		||||
from prototorch.models.architectures.base import BaseYArchitecture, Steps
 | 
			
		||||
from prototorch.models.architectures.comparison import OmegaComparisonMixin
 | 
			
		||||
from prototorch.models.library.gmlvq import GMLVQ
 | 
			
		||||
from prototorch.models.vis import Vis2DAbstract
 | 
			
		||||
from prototorch.utils.utils import mesh2d
 | 
			
		||||
from pytorch_lightning.loggers import TensorBoardLogger
 | 
			
		||||
 | 
			
		||||
from .extras import ConnectionTopology
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from prototorch.models import GLVQ, GrowingNeuralGas
 | 
			
		||||
DIVERGING_COLOR_MAPS = [
 | 
			
		||||
    'PiYG',
 | 
			
		||||
    'PRGn',
 | 
			
		||||
    'BrBG',
 | 
			
		||||
    'PuOr',
 | 
			
		||||
    'RdGy',
 | 
			
		||||
    'RdBu',
 | 
			
		||||
    'RdYlBu',
 | 
			
		||||
    'RdYlGn',
 | 
			
		||||
    'Spectral',
 | 
			
		||||
    'coolwarm',
 | 
			
		||||
    'bwr',
 | 
			
		||||
    'seismic',
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PruneLoserPrototypes(pl.Callback):
 | 
			
		||||
class LogTorchmetricCallback(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        threshold=0.01,
 | 
			
		||||
        idle_epochs=10,
 | 
			
		||||
        prune_quota_per_epoch=-1,
 | 
			
		||||
        frequency=1,
 | 
			
		||||
        replace=False,
 | 
			
		||||
        prototypes_initializer=None,
 | 
			
		||||
        verbose=False,
 | 
			
		||||
    ):
 | 
			
		||||
        self.threshold = threshold  # minimum win ratio
 | 
			
		||||
        self.idle_epochs = idle_epochs  # epochs to wait before pruning
 | 
			
		||||
        self.prune_quota_per_epoch = prune_quota_per_epoch
 | 
			
		||||
        self.frequency = frequency
 | 
			
		||||
        self.replace = replace
 | 
			
		||||
        self.verbose = verbose
 | 
			
		||||
        self.prototypes_initializer = prototypes_initializer
 | 
			
		||||
        name,
 | 
			
		||||
        metric: Type[torchmetrics.Metric],
 | 
			
		||||
        step: str = Steps.TRAINING,
 | 
			
		||||
        on_epoch=True,
 | 
			
		||||
        **metric_kwargs,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        self.name = name
 | 
			
		||||
        self.metric = metric
 | 
			
		||||
        self.metric_kwargs = metric_kwargs
 | 
			
		||||
        self.step = step
 | 
			
		||||
        self.on_epoch = on_epoch
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
 | 
			
		||||
        if (trainer.current_epoch + 1) < self.idle_epochs:
 | 
			
		||||
            return None
 | 
			
		||||
        if (trainer.current_epoch + 1) % self.frequency:
 | 
			
		||||
            return None
 | 
			
		||||
 | 
			
		||||
        ratios = pl_module.prototype_win_ratios.mean(dim=0)
 | 
			
		||||
        to_prune = torch.arange(len(ratios))[ratios < self.threshold]
 | 
			
		||||
        to_prune = to_prune.tolist()
 | 
			
		||||
        prune_labels = pl_module.prototype_labels[to_prune]
 | 
			
		||||
        if self.prune_quota_per_epoch > 0:
 | 
			
		||||
            to_prune = to_prune[:self.prune_quota_per_epoch]
 | 
			
		||||
            prune_labels = prune_labels[:self.prune_quota_per_epoch]
 | 
			
		||||
 | 
			
		||||
        if len(to_prune) > 0:
 | 
			
		||||
            logging.debug(f"\nPrototype win ratios: {ratios}")
 | 
			
		||||
            logging.debug(f"Pruning prototypes at: {to_prune}")
 | 
			
		||||
            logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
 | 
			
		||||
 | 
			
		||||
            cur_num_protos = pl_module.num_prototypes
 | 
			
		||||
            pl_module.remove_prototypes(indices=to_prune)
 | 
			
		||||
 | 
			
		||||
            if self.replace:
 | 
			
		||||
                labels, counts = torch.unique(prune_labels,
 | 
			
		||||
                                              sorted=True,
 | 
			
		||||
                                              return_counts=True)
 | 
			
		||||
                distribution = dict(zip(labels.tolist(), counts.tolist()))
 | 
			
		||||
 | 
			
		||||
                logging.info(f"Re-adding pruned prototypes...")
 | 
			
		||||
                logging.debug(f"distribution={distribution}")
 | 
			
		||||
 | 
			
		||||
                pl_module.add_prototypes(
 | 
			
		||||
                    distribution=distribution,
 | 
			
		||||
                    components_initializer=self.prototypes_initializer)
 | 
			
		||||
            new_num_protos = pl_module.num_prototypes
 | 
			
		||||
 | 
			
		||||
            logging.info(f"`num_prototypes` changed from {cur_num_protos} "
 | 
			
		||||
                         f"to {new_num_protos}.")
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PrototypeConvergence(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
 | 
			
		||||
        self.min_delta = min_delta
 | 
			
		||||
        self.idle_epochs = idle_epochs  # epochs to wait
 | 
			
		||||
        self.verbose = verbose
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module):
 | 
			
		||||
        if (trainer.current_epoch + 1) < self.idle_epochs:
 | 
			
		||||
            return None
 | 
			
		||||
 | 
			
		||||
        logging.info("Stopping...")
 | 
			
		||||
        # TODO
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GNGCallback(pl.Callback):
 | 
			
		||||
    """GNG Callback.
 | 
			
		||||
 | 
			
		||||
    Applies growing algorithm based on accumulated error and topology.
 | 
			
		||||
 | 
			
		||||
    Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, reduction=0.1, freq=10):
 | 
			
		||||
        self.reduction = reduction
 | 
			
		||||
        self.freq = freq
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_end(
 | 
			
		||||
    def setup(
 | 
			
		||||
        self,
 | 
			
		||||
        trainer: pl.Trainer,
 | 
			
		||||
        pl_module: "GrowingNeuralGas",
 | 
			
		||||
        pl_module: BaseYArchitecture,
 | 
			
		||||
        stage: Optional[str] = None,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        pl_module.register_torchmetric(
 | 
			
		||||
            self,
 | 
			
		||||
            self.metric,
 | 
			
		||||
            step=self.step,
 | 
			
		||||
            **self.metric_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def __call__(self, value, pl_module: BaseYArchitecture):
 | 
			
		||||
        pl_module.log(
 | 
			
		||||
            self.name,
 | 
			
		||||
            value,
 | 
			
		||||
            on_epoch=self.on_epoch,
 | 
			
		||||
            on_step=(not self.on_epoch),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LogConfusionMatrix(LogTorchmetricCallback):
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        num_classes,
 | 
			
		||||
        name="confusion",
 | 
			
		||||
        on='prediction',
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ):
 | 
			
		||||
        if (trainer.current_epoch + 1) % self.freq == 0:
 | 
			
		||||
            # Get information
 | 
			
		||||
            errors = pl_module.errors
 | 
			
		||||
            topology: ConnectionTopology = pl_module.topology_layer
 | 
			
		||||
            components = pl_module.proto_layer.components
 | 
			
		||||
        super().__init__(
 | 
			
		||||
            name,
 | 
			
		||||
            torchmetrics.ConfusionMatrix,
 | 
			
		||||
            on=on,
 | 
			
		||||
            num_classes=num_classes,
 | 
			
		||||
            **kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
            # Insertion point
 | 
			
		||||
            worst = torch.argmax(errors)
 | 
			
		||||
    def __call__(self, value, pl_module: BaseYArchitecture):
 | 
			
		||||
        fig, ax = plt.subplots()
 | 
			
		||||
        ax.imshow(value.detach().cpu().numpy())
 | 
			
		||||
 | 
			
		||||
            neighbors = topology.get_neighbors(worst)[0]
 | 
			
		||||
        # Show all ticks and label them with the respective list entries
 | 
			
		||||
        # ax.set_xticks(np.arange(len(farmers)), labels=farmers)
 | 
			
		||||
        # ax.set_yticks(np.arange(len(vegetables)), labels=vegetables)
 | 
			
		||||
 | 
			
		||||
            if len(neighbors) == 0:
 | 
			
		||||
                logging.log(level=20, msg="No neighbor-pairs found!")
 | 
			
		||||
                return
 | 
			
		||||
        # Rotate the tick labels and set their alignment.
 | 
			
		||||
        plt.setp(
 | 
			
		||||
            ax.get_xticklabels(),
 | 
			
		||||
            rotation=45,
 | 
			
		||||
            ha="right",
 | 
			
		||||
            rotation_mode="anchor",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
            neighbors_errors = errors[neighbors]
 | 
			
		||||
            worst_neighbor = neighbors[torch.argmax(neighbors_errors)]
 | 
			
		||||
        # Loop over data dimensions and create text annotations.
 | 
			
		||||
        for i in range(len(value)):
 | 
			
		||||
            for j in range(len(value)):
 | 
			
		||||
                text = ax.text(
 | 
			
		||||
                    j,
 | 
			
		||||
                    i,
 | 
			
		||||
                    value[i, j].item(),
 | 
			
		||||
                    ha="center",
 | 
			
		||||
                    va="center",
 | 
			
		||||
                    color="w",
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
            # New Prototype
 | 
			
		||||
            new_component = 0.5 * (components[worst] +
 | 
			
		||||
                                   components[worst_neighbor])
 | 
			
		||||
        ax.set_title(self.name)
 | 
			
		||||
        fig.tight_layout()
 | 
			
		||||
 | 
			
		||||
            # Add component
 | 
			
		||||
            pl_module.proto_layer.add_components(
 | 
			
		||||
                1,
 | 
			
		||||
                initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
 | 
			
		||||
        pl_module.logger.experiment.add_figure(
 | 
			
		||||
            tag=self.name,
 | 
			
		||||
            figure=fig,
 | 
			
		||||
            close=True,
 | 
			
		||||
            global_step=pl_module.global_step,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisGLVQ2D(Vis2DAbstract):
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        protos = pl_module.prototypes
 | 
			
		||||
        plabels = pl_module.prototype_labels
 | 
			
		||||
        x_train, y_train = self.x_train, self.y_train
 | 
			
		||||
        ax = self.setup_ax()
 | 
			
		||||
        self.plot_protos(ax, protos, plabels)
 | 
			
		||||
        if x_train is not None:
 | 
			
		||||
            self.plot_data(ax, x_train, y_train)
 | 
			
		||||
            mesh_input, xx, yy = mesh2d(
 | 
			
		||||
                np.vstack([x_train, protos]),
 | 
			
		||||
                self.border,
 | 
			
		||||
                self.resolution,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
 | 
			
		||||
        _components = pl_module.components_layer.components
 | 
			
		||||
        mesh_input = torch.from_numpy(mesh_input).type_as(_components)
 | 
			
		||||
        y_pred = pl_module.predict(mesh_input)
 | 
			
		||||
        y_pred = y_pred.cpu().reshape(xx.shape)
 | 
			
		||||
        ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VisGMLVQ2D(Vis2DAbstract):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, ev_proj=True, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
        self.ev_proj = ev_proj
 | 
			
		||||
 | 
			
		||||
    def visualize(self, pl_module):
 | 
			
		||||
        protos = pl_module.prototypes
 | 
			
		||||
        plabels = pl_module.prototype_labels
 | 
			
		||||
        x_train, y_train = self.x_train, self.y_train
 | 
			
		||||
        device = pl_module.device
 | 
			
		||||
        omega = pl_module._omega.detach()
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        u, _, _ = torch.pca_lowrank(lam, q=2)
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            x_train = torch.Tensor(x_train).to(device)
 | 
			
		||||
            x_train = x_train @ u
 | 
			
		||||
            x_train = x_train.cpu().detach()
 | 
			
		||||
        if self.show_protos:
 | 
			
		||||
            with torch.no_grad():
 | 
			
		||||
                protos = torch.Tensor(protos).to(device)
 | 
			
		||||
                protos = protos @ u
 | 
			
		||||
                protos = protos.cpu().detach()
 | 
			
		||||
        ax = self.setup_ax()
 | 
			
		||||
        self.plot_data(ax, x_train, y_train)
 | 
			
		||||
        if self.show_protos:
 | 
			
		||||
            self.plot_protos(ax, protos, plabels)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PlotLambdaMatrixToTensorboard(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, cmap='seismic') -> None:
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.cmap = cmap
 | 
			
		||||
 | 
			
		||||
        if self.cmap not in DIVERGING_COLOR_MAPS and type(self.cmap) is str:
 | 
			
		||||
            warnings.warn(
 | 
			
		||||
                f"{self.cmap} is not a diverging color map. We recommend to use one of the following: {DIVERGING_COLOR_MAPS}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            # Adjust Topology
 | 
			
		||||
            topology.add_prototype()
 | 
			
		||||
            topology.add_connection(worst, -1)
 | 
			
		||||
            topology.add_connection(worst_neighbor, -1)
 | 
			
		||||
            topology.remove_connection(worst, worst_neighbor)
 | 
			
		||||
    def on_train_start(self, trainer, pl_module: GMLVQ):
 | 
			
		||||
        self.plot_lambda(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
            # New errors
 | 
			
		||||
            worst_error = errors[worst].unsqueeze(0)
 | 
			
		||||
            pl_module.errors = torch.cat([pl_module.errors, worst_error])
 | 
			
		||||
            pl_module.errors[worst] = errors[worst] * self.reduction
 | 
			
		||||
            pl_module.errors[
 | 
			
		||||
                worst_neighbor] = errors[worst_neighbor] * self.reduction
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module: GMLVQ):
 | 
			
		||||
        self.plot_lambda(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
            trainer.strategy.setup_optimizers(trainer)
 | 
			
		||||
    def plot_lambda(self, trainer, pl_module: GMLVQ):
 | 
			
		||||
 | 
			
		||||
        self.fig, self.ax = plt.subplots(1, 1)
 | 
			
		||||
 | 
			
		||||
        # plot lambda matrix
 | 
			
		||||
        l_matrix = pl_module.lambda_matrix
 | 
			
		||||
 | 
			
		||||
        # normalize lambda matrix
 | 
			
		||||
        l_matrix = l_matrix / torch.max(torch.abs(l_matrix))
 | 
			
		||||
 | 
			
		||||
        # plot lambda matrix
 | 
			
		||||
        self.ax.imshow(l_matrix.detach().numpy(), self.cmap, vmin=-1, vmax=1)
 | 
			
		||||
 | 
			
		||||
        self.fig.colorbar(self.ax.images[-1])
 | 
			
		||||
 | 
			
		||||
        # add title
 | 
			
		||||
        self.ax.set_title('Lambda Matrix')
 | 
			
		||||
 | 
			
		||||
        # add to tensorboard
 | 
			
		||||
        if isinstance(trainer.logger, TensorBoardLogger):
 | 
			
		||||
            trainer.logger.experiment.add_figure(
 | 
			
		||||
                "lambda_matrix",
 | 
			
		||||
                self.fig,
 | 
			
		||||
                trainer.global_step,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            warnings.warn(
 | 
			
		||||
                f"{self.__class__.__name__} is not compatible with {trainer.logger.__class__.__name__} as logger. Use TensorBoardLogger instead."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Profiles(Enum):
 | 
			
		||||
    '''
 | 
			
		||||
    Available Profiles
 | 
			
		||||
    '''
 | 
			
		||||
    RELEVANCE = 'relevance'
 | 
			
		||||
    INFLUENCE = 'influence'
 | 
			
		||||
 | 
			
		||||
    def __str__(self):
 | 
			
		||||
        return str(self.value)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PlotMatrixProfiles(pl.Callback):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, profile=Profiles.INFLUENCE, cmap='seismic') -> None:
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.cmap = cmap
 | 
			
		||||
        self.profile = profile
 | 
			
		||||
 | 
			
		||||
    def on_train_start(self, trainer, pl_module: GMLVQ):
 | 
			
		||||
        '''
 | 
			
		||||
        Plot initial profile.
 | 
			
		||||
        '''
 | 
			
		||||
        self._plot_profile(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_end(self, trainer, pl_module: GMLVQ):
 | 
			
		||||
        '''
 | 
			
		||||
        Plot after every epoch.
 | 
			
		||||
        '''
 | 
			
		||||
        self._plot_profile(trainer, pl_module)
 | 
			
		||||
 | 
			
		||||
    def _plot_profile(self, trainer, pl_module: GMLVQ):
 | 
			
		||||
 | 
			
		||||
        fig, ax = plt.subplots(1, 1)
 | 
			
		||||
 | 
			
		||||
        # plot lambda matrix
 | 
			
		||||
        l_matrix = torch.abs(pl_module.lambda_matrix)
 | 
			
		||||
 | 
			
		||||
        if self.profile == Profiles.RELEVANCE:
 | 
			
		||||
            profile_value = l_matrix.diag()
 | 
			
		||||
        elif self.profile == Profiles.INFLUENCE:
 | 
			
		||||
            profile_value = l_matrix.sum(0)
 | 
			
		||||
 | 
			
		||||
        # plot lambda matrix
 | 
			
		||||
        ax.plot(profile_value.detach().numpy())
 | 
			
		||||
 | 
			
		||||
        # add title
 | 
			
		||||
        ax.set_title(f'{self.profile} profile')
 | 
			
		||||
 | 
			
		||||
        # add to tensorboard
 | 
			
		||||
        if isinstance(trainer.logger, TensorBoardLogger):
 | 
			
		||||
            trainer.logger.experiment.add_figure(
 | 
			
		||||
                f"{self.profile}_matrix",
 | 
			
		||||
                fig,
 | 
			
		||||
                trainer.global_step,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            class_name = self.__class__.__name__
 | 
			
		||||
            logger_name = trainer.logger.__class__.__name__
 | 
			
		||||
            warnings.warn(
 | 
			
		||||
                f"{class_name} is not compatible with {logger_name} as logger. Use TensorBoardLogger instead."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class OmegaTraceNormalization(pl.Callback):
 | 
			
		||||
    '''
 | 
			
		||||
    Trace normalization of the Omega Matrix.
 | 
			
		||||
    '''
 | 
			
		||||
    __epsilon = torch.finfo(torch.float32).eps
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_end(self, trainer: "pl.Trainer",
 | 
			
		||||
                           pl_module: OmegaComparisonMixin) -> None:
 | 
			
		||||
 | 
			
		||||
        omega = pl_module.parameter_omega
 | 
			
		||||
        denominator = torch.sqrt(torch.trace(omega.T @ omega))
 | 
			
		||||
        logging.debug(
 | 
			
		||||
            "Apply Omega Trace Normalization: demoninator=%f",
 | 
			
		||||
            denominator.item(),
 | 
			
		||||
        )
 | 
			
		||||
        pl_module.parameter_omega = omega / (denominator + self.__epsilon)
 | 
			
		||||
 
 | 
			
		||||
@@ -1,78 +0,0 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torchmetrics
 | 
			
		||||
from prototorch.core.competitions import CBCC
 | 
			
		||||
from prototorch.core.components import ReasoningComponents
 | 
			
		||||
from prototorch.core.initializers import RandomReasoningsInitializer
 | 
			
		||||
from prototorch.core.losses import MarginLoss
 | 
			
		||||
from prototorch.core.similarities import euclidean_similarity
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer
 | 
			
		||||
 | 
			
		||||
from .abstract import ImagePrototypesMixin
 | 
			
		||||
from .glvq import SiameseGLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CBC(SiameseGLVQ):
 | 
			
		||||
    """Classification-By-Components."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, skip_proto_layer=True, **kwargs)
 | 
			
		||||
 | 
			
		||||
        similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
 | 
			
		||||
        components_initializer = kwargs.get("components_initializer", None)
 | 
			
		||||
        reasonings_initializer = kwargs.get("reasonings_initializer",
 | 
			
		||||
                                            RandomReasoningsInitializer())
 | 
			
		||||
        self.components_layer = ReasoningComponents(
 | 
			
		||||
            self.hparams.distribution,
 | 
			
		||||
            components_initializer=components_initializer,
 | 
			
		||||
            reasonings_initializer=reasonings_initializer,
 | 
			
		||||
        )
 | 
			
		||||
        self.similarity_layer = LambdaLayer(similarity_fn)
 | 
			
		||||
        self.competition_layer = CBCC()
 | 
			
		||||
 | 
			
		||||
        # Namespace hook
 | 
			
		||||
        self.proto_layer = self.components_layer
 | 
			
		||||
 | 
			
		||||
        self.loss = MarginLoss(self.hparams.margin)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        components, reasonings = self.components_layer()
 | 
			
		||||
        latent_x = self.backbone(x)
 | 
			
		||||
        self.backbone.requires_grad_(self.both_path_gradients)
 | 
			
		||||
        latent_components = self.backbone(components)
 | 
			
		||||
        self.backbone.requires_grad_(True)
 | 
			
		||||
        detections = self.similarity_layer(latent_x, latent_components)
 | 
			
		||||
        probs = self.competition_layer(detections, reasonings)
 | 
			
		||||
        return probs
 | 
			
		||||
 | 
			
		||||
    def shared_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        y_pred = self(x)
 | 
			
		||||
        num_classes = self.num_classes
 | 
			
		||||
        y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
 | 
			
		||||
        loss = self.loss(y_pred, y_true).mean()
 | 
			
		||||
        return y_pred, loss
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
 | 
			
		||||
        preds = torch.argmax(y_pred, dim=1)
 | 
			
		||||
        accuracy = torchmetrics.functional.accuracy(preds.int(),
 | 
			
		||||
                                                    batch[1].int())
 | 
			
		||||
        self.log("train_acc",
 | 
			
		||||
                 accuracy,
 | 
			
		||||
                 on_step=False,
 | 
			
		||||
                 on_epoch=True,
 | 
			
		||||
                 prog_bar=True,
 | 
			
		||||
                 logger=True)
 | 
			
		||||
        return train_loss
 | 
			
		||||
 | 
			
		||||
    def predict(self, x):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            y_pred = self(x)
 | 
			
		||||
            y_pred = torch.argmax(y_pred, dim=1)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageCBC(ImagePrototypesMixin, CBC):
 | 
			
		||||
    """CBC model that constrains the components to the range [0, 1] by
 | 
			
		||||
    clamping after updates.
 | 
			
		||||
    """
 | 
			
		||||
@@ -1,130 +0,0 @@
 | 
			
		||||
"""prototorch.models.extras
 | 
			
		||||
 | 
			
		||||
Modules not yet available in prototorch go here temporarily.
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.similarities import gaussian
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rank_scaled_gaussian(distances, lambd):
 | 
			
		||||
    order = torch.argsort(distances, dim=1)
 | 
			
		||||
    ranks = torch.argsort(order, dim=1)
 | 
			
		||||
    return torch.exp(-torch.exp(-ranks / lambd) * distances)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def orthogonalization(tensors):
 | 
			
		||||
    """Orthogonalization via polar decomposition """
 | 
			
		||||
    u, _, v = torch.svd(tensors, compute_uv=True)
 | 
			
		||||
    u_shape = tuple(list(u.shape))
 | 
			
		||||
    v_shape = tuple(list(v.shape))
 | 
			
		||||
 | 
			
		||||
    # reshape to (num x N x M)
 | 
			
		||||
    u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
 | 
			
		||||
    v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
 | 
			
		||||
 | 
			
		||||
    out = u @ v.permute([0, 2, 1])
 | 
			
		||||
 | 
			
		||||
    out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
 | 
			
		||||
 | 
			
		||||
    return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def ltangent_distance(x, y, omegas):
 | 
			
		||||
    r"""Localized Tangent distance.
 | 
			
		||||
    Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
 | 
			
		||||
    Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
 | 
			
		||||
 | 
			
		||||
    :param `torch.tensor` omegas: Three dimensional matrix
 | 
			
		||||
    :rtype: `torch.tensor`
 | 
			
		||||
    """
 | 
			
		||||
    x, y = [arr.view(arr.size(0), -1) for arr in (x, y)]
 | 
			
		||||
    p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
 | 
			
		||||
        omegas, omegas.permute([0, 2, 1]))
 | 
			
		||||
    projected_x = x @ p
 | 
			
		||||
    projected_y = torch.diagonal(y @ p).T
 | 
			
		||||
    expanded_y = torch.unsqueeze(projected_y, dim=1)
 | 
			
		||||
    batchwise_difference = expanded_y - projected_x
 | 
			
		||||
    differences_squared = batchwise_difference**2
 | 
			
		||||
    distances = torch.sqrt(torch.sum(differences_squared, dim=2))
 | 
			
		||||
    distances = distances.permute(1, 0)
 | 
			
		||||
    return distances
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GaussianPrior(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, variance):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.variance = variance
 | 
			
		||||
 | 
			
		||||
    def forward(self, distances):
 | 
			
		||||
        return gaussian(distances, self.variance)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RankScaledGaussianPrior(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, lambd):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.lambd = lambd
 | 
			
		||||
 | 
			
		||||
    def forward(self, distances):
 | 
			
		||||
        return rank_scaled_gaussian(distances, self.lambd)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ConnectionTopology(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, agelimit, num_prototypes):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.agelimit = agelimit
 | 
			
		||||
        self.num_prototypes = num_prototypes
 | 
			
		||||
 | 
			
		||||
        self.cmat = torch.zeros((self.num_prototypes, self.num_prototypes))
 | 
			
		||||
        self.age = torch.zeros_like(self.cmat)
 | 
			
		||||
 | 
			
		||||
    def forward(self, d):
 | 
			
		||||
        order = torch.argsort(d, dim=1)
 | 
			
		||||
 | 
			
		||||
        for element in order:
 | 
			
		||||
            i0, i1 = element[0], element[1]
 | 
			
		||||
 | 
			
		||||
            self.cmat[i0][i1] = 1
 | 
			
		||||
            self.cmat[i1][i0] = 1
 | 
			
		||||
 | 
			
		||||
            self.age[i0][i1] = 0
 | 
			
		||||
            self.age[i1][i0] = 0
 | 
			
		||||
 | 
			
		||||
            self.age[i0][self.cmat[i0] == 1] += 1
 | 
			
		||||
            self.age[i1][self.cmat[i1] == 1] += 1
 | 
			
		||||
 | 
			
		||||
            self.cmat[i0][self.age[i0] > self.agelimit] = 0
 | 
			
		||||
            self.cmat[i1][self.age[i1] > self.agelimit] = 0
 | 
			
		||||
 | 
			
		||||
    def get_neighbors(self, position):
 | 
			
		||||
        return torch.where(self.cmat[position])
 | 
			
		||||
 | 
			
		||||
    def add_prototype(self):
 | 
			
		||||
        new_cmat = torch.zeros([dim + 1 for dim in self.cmat.shape])
 | 
			
		||||
        new_cmat[:-1, :-1] = self.cmat
 | 
			
		||||
        self.cmat = new_cmat
 | 
			
		||||
 | 
			
		||||
        new_age = torch.zeros([dim + 1 for dim in self.age.shape])
 | 
			
		||||
        new_age[:-1, :-1] = self.age
 | 
			
		||||
        self.age = new_age
 | 
			
		||||
 | 
			
		||||
    def add_connection(self, a, b):
 | 
			
		||||
        self.cmat[a][b] = 1
 | 
			
		||||
        self.cmat[b][a] = 1
 | 
			
		||||
 | 
			
		||||
        self.age[a][b] = 0
 | 
			
		||||
        self.age[b][a] = 0
 | 
			
		||||
 | 
			
		||||
    def remove_connection(self, a, b):
 | 
			
		||||
        self.cmat[a][b] = 0
 | 
			
		||||
        self.cmat[b][a] = 0
 | 
			
		||||
 | 
			
		||||
        self.age[a][b] = 0
 | 
			
		||||
        self.age[b][a] = 0
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(agelimit): ({self.agelimit})"
 | 
			
		||||
@@ -1,404 +0,0 @@
 | 
			
		||||
"""Models based on the GLVQ framework."""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.competitions import wtac
 | 
			
		||||
from prototorch.core.distances import (
 | 
			
		||||
    lomega_distance,
 | 
			
		||||
    omega_distance,
 | 
			
		||||
    squared_euclidean_distance,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.initializers import EyeLinearTransformInitializer
 | 
			
		||||
from prototorch.core.losses import (
 | 
			
		||||
    GLVQLoss,
 | 
			
		||||
    lvq1_loss,
 | 
			
		||||
    lvq21_loss,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.core.transforms import LinearTransform
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer, LossLayer
 | 
			
		||||
from torch.nn.parameter import Parameter
 | 
			
		||||
 | 
			
		||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
 | 
			
		||||
from .extras import ltangent_distance, orthogonalization
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GLVQ(SupervisedPrototypeModel):
 | 
			
		||||
    """Generalized Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("margin", 0.0)
 | 
			
		||||
        self.hparams.setdefault("transfer_fn", "identity")
 | 
			
		||||
        self.hparams.setdefault("transfer_beta", 10.0)
 | 
			
		||||
 | 
			
		||||
        # Loss
 | 
			
		||||
        self.loss = GLVQLoss(
 | 
			
		||||
            margin=self.hparams["margin"],
 | 
			
		||||
            transfer_fn=self.hparams["transfer_fn"],
 | 
			
		||||
            beta=self.hparams["transfer_beta"],
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # def on_save_checkpoint(self, checkpoint):
 | 
			
		||||
    #     if "prototype_win_ratios" in checkpoint["state_dict"]:
 | 
			
		||||
    #         del checkpoint["state_dict"]["prototype_win_ratios"]
 | 
			
		||||
 | 
			
		||||
    def initialize_prototype_win_ratios(self):
 | 
			
		||||
        self.register_buffer(
 | 
			
		||||
            "prototype_win_ratios",
 | 
			
		||||
            torch.zeros(self.num_prototypes, device=self.device))
 | 
			
		||||
 | 
			
		||||
    def on_train_epoch_start(self):
 | 
			
		||||
        self.initialize_prototype_win_ratios()
 | 
			
		||||
 | 
			
		||||
    def log_prototype_win_ratios(self, distances):
 | 
			
		||||
        batch_size = len(distances)
 | 
			
		||||
        prototype_wc = torch.zeros(self.num_prototypes,
 | 
			
		||||
                                   dtype=torch.long,
 | 
			
		||||
                                   device=self.device)
 | 
			
		||||
        wi, wc = torch.unique(distances.min(dim=-1).indices,
 | 
			
		||||
                              sorted=True,
 | 
			
		||||
                              return_counts=True)
 | 
			
		||||
        prototype_wc[wi] = wc
 | 
			
		||||
        prototype_wr = prototype_wc / batch_size
 | 
			
		||||
        self.prototype_win_ratios = torch.vstack([
 | 
			
		||||
            self.prototype_win_ratios,
 | 
			
		||||
            prototype_wr,
 | 
			
		||||
        ])
 | 
			
		||||
 | 
			
		||||
    def shared_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        out = self.compute_distances(x)
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        loss = self.loss(out, y, plabels)
 | 
			
		||||
        return out, loss
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
 | 
			
		||||
        self.log_prototype_win_ratios(out)
 | 
			
		||||
        self.log("train_loss", train_loss)
 | 
			
		||||
        self.log_acc(out, batch[-1], tag="train_acc")
 | 
			
		||||
        return train_loss
 | 
			
		||||
 | 
			
		||||
    def validation_step(self, batch, batch_idx):
 | 
			
		||||
        # `model.eval()` and `torch.no_grad()` handled by pl
 | 
			
		||||
        out, val_loss = self.shared_step(batch, batch_idx)
 | 
			
		||||
        self.log("val_loss", val_loss)
 | 
			
		||||
        self.log_acc(out, batch[-1], tag="val_acc")
 | 
			
		||||
        return val_loss
 | 
			
		||||
 | 
			
		||||
    def test_step(self, batch, batch_idx):
 | 
			
		||||
        # `model.eval()` and `torch.no_grad()` handled by pl
 | 
			
		||||
        out, test_loss = self.shared_step(batch, batch_idx)
 | 
			
		||||
        self.log_acc(out, batch[-1], tag="test_acc")
 | 
			
		||||
        return test_loss
 | 
			
		||||
 | 
			
		||||
    def test_epoch_end(self, outputs):
 | 
			
		||||
        test_loss = 0.0
 | 
			
		||||
        for batch_loss in outputs:
 | 
			
		||||
            test_loss += batch_loss.item()
 | 
			
		||||
        self.log("test_loss", test_loss)
 | 
			
		||||
 | 
			
		||||
    # TODO
 | 
			
		||||
    # def predict_step(self, batch, batch_idx, dataloader_idx=None):
 | 
			
		||||
    #     pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SiameseGLVQ(GLVQ):
 | 
			
		||||
    """GLVQ in a Siamese setting.
 | 
			
		||||
 | 
			
		||||
    GLVQ model that applies an arbitrary transformation on the inputs and the
 | 
			
		||||
    prototypes before computing the distances between them. The weights in the
 | 
			
		||||
    transformation pipeline are only learned from the inputs.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self,
 | 
			
		||||
                 hparams,
 | 
			
		||||
                 backbone=torch.nn.Identity(),
 | 
			
		||||
                 both_path_gradients=False,
 | 
			
		||||
                 **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
        self.backbone = backbone
 | 
			
		||||
        self.both_path_gradients = both_path_gradients
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        proto_opt = self.optimizer(self.proto_layer.parameters(),
 | 
			
		||||
                                   lr=self.hparams["proto_lr"])
 | 
			
		||||
        # Only add a backbone optimizer if backbone has trainable parameters
 | 
			
		||||
        bb_params = list(self.backbone.parameters())
 | 
			
		||||
        if (bb_params):
 | 
			
		||||
            bb_opt = self.optimizer(bb_params, lr=self.hparams["bb_lr"])
 | 
			
		||||
            optimizers = [proto_opt, bb_opt]
 | 
			
		||||
        else:
 | 
			
		||||
            optimizers = [proto_opt]
 | 
			
		||||
        if self.lr_scheduler is not None:
 | 
			
		||||
            schedulers = []
 | 
			
		||||
            for optimizer in optimizers:
 | 
			
		||||
                scheduler = self.lr_scheduler(optimizer,
 | 
			
		||||
                                              **self.lr_scheduler_kwargs)
 | 
			
		||||
                schedulers.append(scheduler)
 | 
			
		||||
            return optimizers, schedulers
 | 
			
		||||
        else:
 | 
			
		||||
            return optimizers
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos, _ = self.proto_layer()
 | 
			
		||||
        x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
 | 
			
		||||
        latent_x = self.backbone(x)
 | 
			
		||||
 | 
			
		||||
        bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
 | 
			
		||||
 | 
			
		||||
        self.backbone.requires_grad_(bb_grad and self.both_path_gradients)
 | 
			
		||||
        latent_protos = self.backbone(protos)
 | 
			
		||||
        self.backbone.requires_grad_(bb_grad)
 | 
			
		||||
 | 
			
		||||
        distances = self.distance_layer(latent_x, latent_protos)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
    def predict_latent(self, x, map_protos=True):
 | 
			
		||||
        """Predict `x` assuming it is already embedded in the latent space.
 | 
			
		||||
 | 
			
		||||
        Only the prototypes are embedded in the latent space using the
 | 
			
		||||
        backbone.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        self.eval()
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            protos, plabels = self.proto_layer()
 | 
			
		||||
            if map_protos:
 | 
			
		||||
                protos = self.backbone(protos)
 | 
			
		||||
            d = self.distance_layer(x, protos)
 | 
			
		||||
            y_pred = wtac(d, plabels)
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LVQMLN(SiameseGLVQ):
 | 
			
		||||
    """Learning Vector Quantization Multi-Layer Network.
 | 
			
		||||
 | 
			
		||||
    GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT
 | 
			
		||||
    on the prototypes before computing the distances between them. This of
 | 
			
		||||
    course, means that the prototypes no longer live the input space, but
 | 
			
		||||
    rather in the embedding space.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        latent_protos, _ = self.proto_layer()
 | 
			
		||||
        latent_x = self.backbone(x)
 | 
			
		||||
        distances = self.distance_layer(latent_x, latent_protos)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GRLVQ(SiameseGLVQ):
 | 
			
		||||
    """Generalized Relevance Learning Vector Quantization.
 | 
			
		||||
 | 
			
		||||
    Implemented as a Siamese network with a linear transformation backbone.
 | 
			
		||||
 | 
			
		||||
    TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    _relevances: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Additional parameters
 | 
			
		||||
        relevances = torch.ones(self.hparams["input_dim"], device=self.device)
 | 
			
		||||
        self.register_parameter("_relevances", Parameter(relevances))
 | 
			
		||||
 | 
			
		||||
        # Override the backbone
 | 
			
		||||
        self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances),
 | 
			
		||||
                                    name="relevance scaling")
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def relevance_profile(self):
 | 
			
		||||
        return self._relevances.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(relevances): (shape: {tuple(self._relevances.shape)})"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SiameseGMLVQ(SiameseGLVQ):
 | 
			
		||||
    """Generalized Matrix Learning Vector Quantization.
 | 
			
		||||
 | 
			
		||||
    Implemented as a Siamese network with a linear transformation backbone.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Override the backbone
 | 
			
		||||
        omega_initializer = kwargs.get("omega_initializer",
 | 
			
		||||
                                       EyeLinearTransformInitializer())
 | 
			
		||||
        self.backbone = LinearTransform(
 | 
			
		||||
            self.hparams["input_dim"],
 | 
			
		||||
            self.hparams["latent_dim"],
 | 
			
		||||
            initializer=omega_initializer,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def omega_matrix(self):
 | 
			
		||||
        return self.backbone.weights
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def lambda_matrix(self):
 | 
			
		||||
        omega = self.backbone.weights  # (input_dim, latent_dim)
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        return lam.detach().cpu()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GMLVQ(GLVQ):
 | 
			
		||||
    """Generalized Matrix Learning Vector Quantization.
 | 
			
		||||
 | 
			
		||||
    Implemented as a regular GLVQ network that simply uses a different distance
 | 
			
		||||
    function. This makes it easier to implement a localized variant.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # Parameters
 | 
			
		||||
    _omega: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", omega_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Additional parameters
 | 
			
		||||
        omega_initializer = kwargs.get("omega_initializer",
 | 
			
		||||
                                       EyeLinearTransformInitializer())
 | 
			
		||||
        omega = omega_initializer.generate(self.hparams["input_dim"],
 | 
			
		||||
                                           self.hparams["latent_dim"])
 | 
			
		||||
        self.register_parameter("_omega", Parameter(omega))
 | 
			
		||||
        self.backbone = LambdaLayer(lambda x: x @ self._omega,
 | 
			
		||||
                                    name="omega matrix")
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def omega_matrix(self):
 | 
			
		||||
        return self._omega.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def lambda_matrix(self):
 | 
			
		||||
        omega = self._omega.detach()  # (input_dim, latent_dim)
 | 
			
		||||
        lam = omega @ omega.T
 | 
			
		||||
        return lam.detach().cpu()
 | 
			
		||||
 | 
			
		||||
    def compute_distances(self, x):
 | 
			
		||||
        protos, _ = self.proto_layer()
 | 
			
		||||
        distances = self.distance_layer(x, protos, self._omega)
 | 
			
		||||
        return distances
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(omega): (shape: {tuple(self._omega.shape)})"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LGMLVQ(GMLVQ):
 | 
			
		||||
    """Localized and Generalized Matrix Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", lomega_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Re-register `_omega` to override the one from the super class.
 | 
			
		||||
        omega = torch.randn(
 | 
			
		||||
            self.num_prototypes,
 | 
			
		||||
            self.hparams["input_dim"],
 | 
			
		||||
            self.hparams["latent_dim"],
 | 
			
		||||
            device=self.device,
 | 
			
		||||
        )
 | 
			
		||||
        self.register_parameter("_omega", Parameter(omega))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GTLVQ(LGMLVQ):
 | 
			
		||||
    """Localized and Generalized Tangent Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", ltangent_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
 | 
			
		||||
        omega_initializer = kwargs.get("omega_initializer")
 | 
			
		||||
 | 
			
		||||
        if omega_initializer is not None:
 | 
			
		||||
            subspace = omega_initializer.generate(
 | 
			
		||||
                self.hparams["input_dim"],
 | 
			
		||||
                self.hparams["latent_dim"],
 | 
			
		||||
            )
 | 
			
		||||
            omega = torch.repeat_interleave(
 | 
			
		||||
                subspace.unsqueeze(0),
 | 
			
		||||
                self.num_prototypes,
 | 
			
		||||
                dim=0,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            omega = torch.rand(
 | 
			
		||||
                self.num_prototypes,
 | 
			
		||||
                self.hparams["input_dim"],
 | 
			
		||||
                self.hparams["latent_dim"],
 | 
			
		||||
                device=self.device,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        # Re-register `_omega` to override the one from the super class.
 | 
			
		||||
        self.register_parameter("_omega", Parameter(omega))
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_end(self, outputs, batch, batch_idx):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            self._omega.copy_(orthogonalization(self._omega))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
 | 
			
		||||
    """Generalized Tangent Learning Vector Quantization.
 | 
			
		||||
 | 
			
		||||
    Implemented as a Siamese network with a linear transformation backbone.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GLVQ1(GLVQ):
 | 
			
		||||
    """Generalized Learning Vector Quantization 1."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
        self.loss = LossLayer(lvq1_loss)
 | 
			
		||||
        self.optimizer = torch.optim.SGD
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GLVQ21(GLVQ):
 | 
			
		||||
    """Generalized Learning Vector Quantization 2.1."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
        self.loss = LossLayer(lvq21_loss)
 | 
			
		||||
        self.optimizer = torch.optim.SGD
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageGLVQ(ImagePrototypesMixin, GLVQ):
 | 
			
		||||
    """GLVQ for training on image data.
 | 
			
		||||
 | 
			
		||||
    GLVQ model that constrains the prototypes to the range [0, 1] by clamping
 | 
			
		||||
    after updates.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
 | 
			
		||||
    """GMLVQ for training on image data.
 | 
			
		||||
 | 
			
		||||
    GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
 | 
			
		||||
    after updates.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
 | 
			
		||||
    """GTLVQ for training on image data.
 | 
			
		||||
 | 
			
		||||
    GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
 | 
			
		||||
    after updates.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_end(self, outputs, batch, batch_idx):
 | 
			
		||||
        """Constrain the components to the range [0, 1] by clamping after updates."""
 | 
			
		||||
        self.proto_layer.components.data.clamp_(0.0, 1.0)
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            self._omega.copy_(orthogonalization(self._omega))
 | 
			
		||||
@@ -1,45 +0,0 @@
 | 
			
		||||
"""ProtoTorch KNN model."""
 | 
			
		||||
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
from prototorch.core.competitions import KNNC
 | 
			
		||||
from prototorch.core.components import LabeledComponents
 | 
			
		||||
from prototorch.core.initializers import (
 | 
			
		||||
    LiteralCompInitializer,
 | 
			
		||||
    LiteralLabelsInitializer,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.utils.utils import parse_data_arg
 | 
			
		||||
 | 
			
		||||
from .abstract import SupervisedPrototypeModel
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class KNN(SupervisedPrototypeModel):
 | 
			
		||||
    """K-Nearest-Neighbors classification algorithm."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, skip_proto_layer=True, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("k", 1)
 | 
			
		||||
 | 
			
		||||
        data = kwargs.get("data", None)
 | 
			
		||||
        if data is None:
 | 
			
		||||
            raise ValueError("KNN requires data, but was not provided!")
 | 
			
		||||
        data, targets = parse_data_arg(data)
 | 
			
		||||
 | 
			
		||||
        # Layers
 | 
			
		||||
        self.proto_layer = LabeledComponents(
 | 
			
		||||
            distribution=len(data) * [1],
 | 
			
		||||
            components_initializer=LiteralCompInitializer(data),
 | 
			
		||||
            labels_initializer=LiteralLabelsInitializer(targets))
 | 
			
		||||
        self.competition_layer = KNNC(k=self.hparams.k)
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        return 1  # skip training step
 | 
			
		||||
 | 
			
		||||
    def on_train_batch_start(self, train_batch, batch_idx):
 | 
			
		||||
        warnings.warn("k-NN has no training, skipping!")
 | 
			
		||||
        return -1
 | 
			
		||||
 | 
			
		||||
    def configure_optimizers(self):
 | 
			
		||||
        return None
 | 
			
		||||
							
								
								
									
										7
									
								
								prototorch/models/library/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								prototorch/models/library/__init__.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,7 @@
 | 
			
		||||
from .glvq import GLVQ
 | 
			
		||||
from .gmlvq import GMLVQ
 | 
			
		||||
 | 
			
		||||
__all__ = [
 | 
			
		||||
    "GLVQ",
 | 
			
		||||
    "GMLVQ",
 | 
			
		||||
]
 | 
			
		||||
							
								
								
									
										35
									
								
								prototorch/models/library/glvq.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35
									
								
								prototorch/models/library/glvq.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,35 @@
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    SimpleComparisonMixin,
 | 
			
		||||
    SingleLearningRateMixin,
 | 
			
		||||
    SupervisedArchitecture,
 | 
			
		||||
    WTACompetitionMixin,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.models.architectures.loss import GLVQLossMixin
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GLVQ(
 | 
			
		||||
        SupervisedArchitecture,
 | 
			
		||||
        SimpleComparisonMixin,
 | 
			
		||||
        GLVQLossMixin,
 | 
			
		||||
        WTACompetitionMixin,
 | 
			
		||||
        SingleLearningRateMixin,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    Generalized Learning Vector Quantization (GLVQ)
 | 
			
		||||
 | 
			
		||||
    A GLVQ architecture that uses the winner-take-all strategy and the GLVQ loss.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(
 | 
			
		||||
            SimpleComparisonMixin.HyperParameters,
 | 
			
		||||
            SingleLearningRateMixin.HyperParameters,
 | 
			
		||||
            GLVQLossMixin.HyperParameters,
 | 
			
		||||
            WTACompetitionMixin.HyperParameters,
 | 
			
		||||
            SupervisedArchitecture.HyperParameters,
 | 
			
		||||
    ):
 | 
			
		||||
        """
 | 
			
		||||
        No hyperparameters.
 | 
			
		||||
        """
 | 
			
		||||
							
								
								
									
										50
									
								
								prototorch/models/library/gmlvq.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										50
									
								
								prototorch/models/library/gmlvq.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,50 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
from dataclasses import dataclass, field
 | 
			
		||||
from typing import Callable
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.distances import omega_distance
 | 
			
		||||
from prototorch.models import (
 | 
			
		||||
    GLVQLossMixin,
 | 
			
		||||
    MultipleLearningRateMixin,
 | 
			
		||||
    OmegaComparisonMixin,
 | 
			
		||||
    SupervisedArchitecture,
 | 
			
		||||
    WTACompetitionMixin,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GMLVQ(
 | 
			
		||||
        SupervisedArchitecture,
 | 
			
		||||
        OmegaComparisonMixin,
 | 
			
		||||
        GLVQLossMixin,
 | 
			
		||||
        WTACompetitionMixin,
 | 
			
		||||
        MultipleLearningRateMixin,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    Generalized Matrix Learning Vector Quantization (GMLVQ)
 | 
			
		||||
 | 
			
		||||
    A GMLVQ architecture that uses the winner-take-all strategy and the GLVQ loss.
 | 
			
		||||
    """
 | 
			
		||||
    # HyperParameters
 | 
			
		||||
    # ----------------------------------------------------------------------------------------------------
 | 
			
		||||
    @dataclass
 | 
			
		||||
    class HyperParameters(
 | 
			
		||||
            MultipleLearningRateMixin.HyperParameters,
 | 
			
		||||
            OmegaComparisonMixin.HyperParameters,
 | 
			
		||||
            GLVQLossMixin.HyperParameters,
 | 
			
		||||
            WTACompetitionMixin.HyperParameters,
 | 
			
		||||
            SupervisedArchitecture.HyperParameters,
 | 
			
		||||
    ):
 | 
			
		||||
        """
 | 
			
		||||
        comparison_fn: The comparison / dissimilarity function to use. Override Default: omega_distance.
 | 
			
		||||
        comparison_args: Keyword arguments for the comparison function. Override Default: {}.
 | 
			
		||||
        """
 | 
			
		||||
        comparison_fn: Callable = omega_distance
 | 
			
		||||
        comparison_args: dict = field(default_factory=dict)
 | 
			
		||||
        optimizer: type[torch.optim.Optimizer] = torch.optim.Adam
 | 
			
		||||
 | 
			
		||||
        lr: dict = field(default_factory=lambda: dict(
 | 
			
		||||
            components_layer=0.1,
 | 
			
		||||
            _omega=0.5,
 | 
			
		||||
        ))
 | 
			
		||||
@@ -1,128 +0,0 @@
 | 
			
		||||
"""LVQ models that are optimized using non-gradient methods."""
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
from prototorch.core.losses import _get_dp_dm
 | 
			
		||||
from prototorch.nn.activations import get_activation
 | 
			
		||||
from prototorch.nn.wrappers import LambdaLayer
 | 
			
		||||
 | 
			
		||||
from .abstract import NonGradientMixin
 | 
			
		||||
from .glvq import GLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LVQ1(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Learning Vector Quantization 1."""
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        protos, plables = self.proto_layer()
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
        # TODO Vectorized implementation
 | 
			
		||||
 | 
			
		||||
        for xi, yi in zip(x, y):
 | 
			
		||||
            d = self.compute_distances(xi.view(1, -1))
 | 
			
		||||
            preds = self.competition_layer(d, plabels)
 | 
			
		||||
            w = d.argmin(1)
 | 
			
		||||
            if yi == preds:
 | 
			
		||||
                shift = xi - protos[w]
 | 
			
		||||
            else:
 | 
			
		||||
                shift = protos[w] - xi
 | 
			
		||||
            updated_protos = protos + 0.0
 | 
			
		||||
            updated_protos[w] = protos[w] + (self.hparams.lr * shift)
 | 
			
		||||
            self.proto_layer.load_state_dict({"_components": updated_protos},
 | 
			
		||||
                                             strict=False)
 | 
			
		||||
 | 
			
		||||
        logging.debug(f"dis={dis}")
 | 
			
		||||
        logging.debug(f"y={y}")
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LVQ21(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Learning Vector Quantization 2.1."""
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        protos, plabels = self.proto_layer()
 | 
			
		||||
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
        # TODO Vectorized implementation
 | 
			
		||||
 | 
			
		||||
        for xi, yi in zip(x, y):
 | 
			
		||||
            xi = xi.view(1, -1)
 | 
			
		||||
            yi = yi.view(1, )
 | 
			
		||||
            d = self.compute_distances(xi)
 | 
			
		||||
            (_, wp), (_, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
 | 
			
		||||
            shiftp = xi - protos[wp]
 | 
			
		||||
            shiftn = protos[wn] - xi
 | 
			
		||||
            updated_protos = protos + 0.0
 | 
			
		||||
            updated_protos[wp] = protos[wp] + (self.hparams.lr * shiftp)
 | 
			
		||||
            updated_protos[wn] = protos[wn] + (self.hparams.lr * shiftn)
 | 
			
		||||
            self.proto_layer.load_state_dict({"_components": updated_protos},
 | 
			
		||||
                                             strict=False)
 | 
			
		||||
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MedianLVQ(NonGradientMixin, GLVQ):
 | 
			
		||||
    """Median LVQ
 | 
			
		||||
 | 
			
		||||
    # TODO Avoid computing distances over and over
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        self.transfer_layer = LambdaLayer(
 | 
			
		||||
            get_activation(self.hparams.transfer_fn))
 | 
			
		||||
 | 
			
		||||
    def _f(self, x, y, protos, plabels):
 | 
			
		||||
        d = self.distance_layer(x, protos)
 | 
			
		||||
        dp, dm = _get_dp_dm(d, y, plabels)
 | 
			
		||||
        mu = (dp - dm) / (dp + dm)
 | 
			
		||||
        invmu = -1.0 * mu
 | 
			
		||||
        f = self.transfer_layer(invmu, beta=self.hparams.transfer_beta) + 1.0
 | 
			
		||||
        return f
 | 
			
		||||
 | 
			
		||||
    def expectation(self, x, y, protos, plabels):
 | 
			
		||||
        f = self._f(x, y, protos, plabels)
 | 
			
		||||
        gamma = f / f.sum()
 | 
			
		||||
        return gamma
 | 
			
		||||
 | 
			
		||||
    def lower_bound(self, x, y, protos, plabels, gamma):
 | 
			
		||||
        f = self._f(x, y, protos, plabels)
 | 
			
		||||
        lower_bound = (gamma * f.log()).sum()
 | 
			
		||||
        return lower_bound
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        protos, plabels = self.proto_layer()
 | 
			
		||||
 | 
			
		||||
        x, y = train_batch
 | 
			
		||||
        dis = self.compute_distances(x)
 | 
			
		||||
 | 
			
		||||
        for i, _ in enumerate(protos):
 | 
			
		||||
            # Expectation step
 | 
			
		||||
            gamma = self.expectation(x, y, protos, plabels)
 | 
			
		||||
            lower_bound = self.lower_bound(x, y, protos, plabels, gamma)
 | 
			
		||||
 | 
			
		||||
            # Maximization step
 | 
			
		||||
            _protos = protos + 0
 | 
			
		||||
            for k, xk in enumerate(x):
 | 
			
		||||
                _protos[i] = xk
 | 
			
		||||
                _lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
 | 
			
		||||
                if _lower_bound > lower_bound:
 | 
			
		||||
                    logging.debug(f"Updating prototype {i} to data {k}...")
 | 
			
		||||
                    self.proto_layer.load_state_dict({"_components": _protos},
 | 
			
		||||
                                                     strict=False)
 | 
			
		||||
                    break
 | 
			
		||||
 | 
			
		||||
        # Logging
 | 
			
		||||
        self.log_acc(dis, y, tag="train_acc")
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
@@ -1,131 +0,0 @@
 | 
			
		||||
"""Probabilistic GLVQ methods"""
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.losses import nllr_loss, rslvq_loss
 | 
			
		||||
from prototorch.core.pooling import (
 | 
			
		||||
    stratified_min_pooling,
 | 
			
		||||
    stratified_sum_pooling,
 | 
			
		||||
)
 | 
			
		||||
from prototorch.nn.wrappers import LossLayer
 | 
			
		||||
 | 
			
		||||
from .extras import GaussianPrior, RankScaledGaussianPrior
 | 
			
		||||
from .glvq import GLVQ, SiameseGMLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CELVQ(GLVQ):
 | 
			
		||||
    """Cross-Entropy Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Loss
 | 
			
		||||
        self.loss = torch.nn.CrossEntropyLoss()
 | 
			
		||||
 | 
			
		||||
    def shared_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        out = self.compute_distances(x)  # [None, num_protos]
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        winning = stratified_min_pooling(out, plabels)  # [None, num_classes]
 | 
			
		||||
        probs = -1.0 * winning
 | 
			
		||||
        batch_loss = self.loss(probs, y.long())
 | 
			
		||||
        loss = batch_loss.sum()
 | 
			
		||||
        return out, loss
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProbabilisticLVQ(GLVQ):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        self.rejection_confidence = rejection_confidence
 | 
			
		||||
        self._conditional_distribution = None
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        distances = self.compute_distances(x)
 | 
			
		||||
 | 
			
		||||
        conditional = self.conditional_distribution(distances)
 | 
			
		||||
        prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
 | 
			
		||||
                                                        device=self.device)
 | 
			
		||||
        posterior = conditional * prior
 | 
			
		||||
 | 
			
		||||
        plabels = self.proto_layer._labels
 | 
			
		||||
        if isinstance(plabels, torch.LongTensor) or isinstance(
 | 
			
		||||
                plabels, torch.cuda.LongTensor):  # type: ignore
 | 
			
		||||
            y_pred = stratified_sum_pooling(posterior, plabels)  # type: ignore
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError("Labels must be LongTensor.")
 | 
			
		||||
 | 
			
		||||
        return y_pred
 | 
			
		||||
 | 
			
		||||
    def predict(self, x):
 | 
			
		||||
        y_pred = self.forward(x)
 | 
			
		||||
        confidence, prediction = torch.max(y_pred, dim=1)
 | 
			
		||||
        prediction[confidence < self.rejection_confidence] = -1
 | 
			
		||||
        return prediction
 | 
			
		||||
 | 
			
		||||
    def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
        x, y = batch
 | 
			
		||||
        out = self.forward(x)
 | 
			
		||||
        _, plabels = self.proto_layer()
 | 
			
		||||
        batch_loss = self.loss(out, y, plabels)
 | 
			
		||||
        loss = batch_loss.sum()
 | 
			
		||||
        return loss
 | 
			
		||||
 | 
			
		||||
    def conditional_distribution(self, distances):
 | 
			
		||||
        """Conditional distribution of distances."""
 | 
			
		||||
        if self._conditional_distribution is None:
 | 
			
		||||
            raise ValueError("Conditional distribution is not set.")
 | 
			
		||||
        return self._conditional_distribution(distances)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SLVQ(ProbabilisticLVQ):
 | 
			
		||||
    """Soft Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("variance", 1.0)
 | 
			
		||||
        variance = self.hparams.get("variance")
 | 
			
		||||
 | 
			
		||||
        self._conditional_distribution = GaussianPrior(variance)
 | 
			
		||||
        self.loss = LossLayer(nllr_loss)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RSLVQ(ProbabilisticLVQ):
 | 
			
		||||
    """Robust Soft Learning Vector Quantization."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("variance", 1.0)
 | 
			
		||||
        variance = self.hparams.get("variance")
 | 
			
		||||
 | 
			
		||||
        self._conditional_distribution = GaussianPrior(variance)
 | 
			
		||||
        self.loss = LossLayer(rslvq_loss)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
 | 
			
		||||
    """Probabilistic Learning Vector Quantization.
 | 
			
		||||
 | 
			
		||||
    TODO: Use Backbone LVQ instead
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *args, **kwargs):
 | 
			
		||||
        super().__init__(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("lambda", 1.0)
 | 
			
		||||
        lam = self.hparams.get("lambda", 1.0)
 | 
			
		||||
 | 
			
		||||
        self.conditional_distribution = RankScaledGaussianPrior(lam)
 | 
			
		||||
        self.loss = torch.nn.KLDivLoss()
 | 
			
		||||
 | 
			
		||||
    # FIXME
 | 
			
		||||
    # def training_step(self, batch, batch_idx, optimizer_idx=None):
 | 
			
		||||
    #     x, y = batch
 | 
			
		||||
    #     y_pred = self(x)
 | 
			
		||||
    #     batch_loss = self.loss(y_pred, y)
 | 
			
		||||
    #     loss = batch_loss.sum()
 | 
			
		||||
    #     return loss
 | 
			
		||||
@@ -1,154 +0,0 @@
 | 
			
		||||
"""Unsupervised prototype learning algorithms."""
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.core.competitions import wtac
 | 
			
		||||
from prototorch.core.distances import squared_euclidean_distance
 | 
			
		||||
from prototorch.core.losses import NeuralGasEnergy
 | 
			
		||||
 | 
			
		||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
 | 
			
		||||
from .callbacks import GNGCallback
 | 
			
		||||
from .extras import ConnectionTopology
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
 | 
			
		||||
    """Kohonen Self-Organizing-Map.
 | 
			
		||||
 | 
			
		||||
    TODO Allow non-2D grids
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    _grid: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        h, w = hparams.get("shape")
 | 
			
		||||
        # Ignore `num_prototypes`
 | 
			
		||||
        hparams["num_prototypes"] = h * w
 | 
			
		||||
        distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
 | 
			
		||||
        super().__init__(hparams, distance_fn=distance_fn, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Hyperparameters
 | 
			
		||||
        self.save_hyperparameters(hparams)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("alpha", 0.3)
 | 
			
		||||
        self.hparams.setdefault("sigma", max(h, w) / 2.0)
 | 
			
		||||
 | 
			
		||||
        # Additional parameters
 | 
			
		||||
        x, y = torch.arange(h), torch.arange(w)
 | 
			
		||||
        grid = torch.stack(torch.meshgrid(x, y, indexing="ij"), dim=-1)
 | 
			
		||||
        self.register_buffer("_grid", grid)
 | 
			
		||||
        self._sigma = self.hparams.sigma
 | 
			
		||||
        self._lr = self.hparams.lr
 | 
			
		||||
 | 
			
		||||
    def predict_from_distances(self, distances):
 | 
			
		||||
        grid = self._grid.view(-1, 2)
 | 
			
		||||
        wp = wtac(distances, grid)
 | 
			
		||||
        return wp
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        # x = train_batch
 | 
			
		||||
        # TODO Check if the batch has labels
 | 
			
		||||
        x = train_batch[0]
 | 
			
		||||
        d = self.compute_distances(x)
 | 
			
		||||
        wp = self.predict_from_distances(d)
 | 
			
		||||
        grid = self._grid.view(-1, 2)
 | 
			
		||||
        gd = squared_euclidean_distance(wp, grid)
 | 
			
		||||
        nh = torch.exp(-gd / self._sigma**2)
 | 
			
		||||
        protos = self.proto_layer()
 | 
			
		||||
        diff = x.unsqueeze(dim=1) - protos
 | 
			
		||||
        delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
 | 
			
		||||
        updated_protos = protos + delta.sum(dim=0)
 | 
			
		||||
        self.proto_layer.load_state_dict(
 | 
			
		||||
            {"_components": updated_protos},
 | 
			
		||||
            strict=False,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def training_epoch_end(self, training_step_outputs):
 | 
			
		||||
        self._sigma = self.hparams.sigma * np.exp(
 | 
			
		||||
            -self.current_epoch / self.trainer.max_epochs)
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return f"(grid): (shape: {tuple(self._grid.shape)})"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class HeskesSOM(UnsupervisedPrototypeModel):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        # TODO Implement me!
 | 
			
		||||
        raise NotImplementedError()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class NeuralGas(UnsupervisedPrototypeModel):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Hyperparameters
 | 
			
		||||
        self.save_hyperparameters(hparams)
 | 
			
		||||
 | 
			
		||||
        # Default hparams
 | 
			
		||||
        self.hparams.setdefault("age_limit", 10)
 | 
			
		||||
        self.hparams.setdefault("lm", 1)
 | 
			
		||||
 | 
			
		||||
        self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
 | 
			
		||||
        self.topology_layer = ConnectionTopology(
 | 
			
		||||
            agelimit=self.hparams["age_limit"],
 | 
			
		||||
            num_prototypes=self.hparams["num_prototypes"],
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, batch_idx):
 | 
			
		||||
        # x = train_batch
 | 
			
		||||
        # TODO Check if the batch has labels
 | 
			
		||||
        x = train_batch[0]
 | 
			
		||||
        d = self.compute_distances(x)
 | 
			
		||||
        loss, _ = self.energy_layer(d)
 | 
			
		||||
        self.topology_layer(d)
 | 
			
		||||
        self.log("loss", loss)
 | 
			
		||||
        return loss
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GrowingNeuralGas(NeuralGas):
 | 
			
		||||
    errors: torch.Tensor
 | 
			
		||||
 | 
			
		||||
    def __init__(self, hparams, **kwargs):
 | 
			
		||||
        super().__init__(hparams, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Defaults
 | 
			
		||||
        self.hparams.setdefault("step_reduction", 0.5)
 | 
			
		||||
        self.hparams.setdefault("insert_reduction", 0.1)
 | 
			
		||||
        self.hparams.setdefault("insert_freq", 10)
 | 
			
		||||
 | 
			
		||||
        errors = torch.zeros(
 | 
			
		||||
            self.hparams["num_prototypes"],
 | 
			
		||||
            device=self.device,
 | 
			
		||||
        )
 | 
			
		||||
        self.register_buffer("errors", errors)
 | 
			
		||||
 | 
			
		||||
    def training_step(self, train_batch, _batch_idx):
 | 
			
		||||
        # x = train_batch
 | 
			
		||||
        # TODO Check if the batch has labels
 | 
			
		||||
        x = train_batch[0]
 | 
			
		||||
        d = self.compute_distances(x)
 | 
			
		||||
        loss, order = self.energy_layer(d)
 | 
			
		||||
        winner = order[:, 0]
 | 
			
		||||
        mask = torch.zeros_like(d)
 | 
			
		||||
        mask[torch.arange(len(mask)), winner] = 1.0
 | 
			
		||||
        dp = d * mask
 | 
			
		||||
 | 
			
		||||
        self.errors += torch.sum(dp * dp)
 | 
			
		||||
        self.errors *= self.hparams["step_reduction"]
 | 
			
		||||
 | 
			
		||||
        self.topology_layer(d)
 | 
			
		||||
        self.log("loss", loss)
 | 
			
		||||
        return loss
 | 
			
		||||
 | 
			
		||||
    def configure_callbacks(self):
 | 
			
		||||
        return [
 | 
			
		||||
            GNGCallback(
 | 
			
		||||
                reduction=self.hparams["insert_reduction"],
 | 
			
		||||
                freq=self.hparams["insert_freq"],
 | 
			
		||||
            )
 | 
			
		||||
        ]
 | 
			
		||||
							
								
								
									
										7
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										7
									
								
								setup.py
									
									
									
									
									
								
							@@ -10,6 +10,8 @@
 | 
			
		||||
 | 
			
		||||
ProtoTorch models Plugin Package
 | 
			
		||||
"""
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
 | 
			
		||||
from pkg_resources import safe_name
 | 
			
		||||
from setuptools import find_namespace_packages, setup
 | 
			
		||||
 | 
			
		||||
@@ -18,8 +20,7 @@ PLUGIN_NAME = "models"
 | 
			
		||||
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
 | 
			
		||||
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
 | 
			
		||||
 | 
			
		||||
with open("README.md", "r") as fh:
 | 
			
		||||
    long_description = fh.read()
 | 
			
		||||
long_description = Path("README.md").read_text(encoding='utf8')
 | 
			
		||||
 | 
			
		||||
INSTALL_REQUIRES = [
 | 
			
		||||
    "prototorch>=0.7.3",
 | 
			
		||||
@@ -55,7 +56,7 @@ ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
 | 
			
		||||
 | 
			
		||||
setup(
 | 
			
		||||
    name=safe_name("prototorch_" + PLUGIN_NAME),
 | 
			
		||||
    version="0.5.2",
 | 
			
		||||
    version="1.0.0-a8",
 | 
			
		||||
    description="Pre-packaged prototype-based "
 | 
			
		||||
    "machine learning models using ProtoTorch and PyTorch-Lightning.",
 | 
			
		||||
    long_description=long_description,
 | 
			
		||||
 
 | 
			
		||||
@@ -1,195 +1,13 @@
 | 
			
		||||
"""prototorch.models test suite."""
 | 
			
		||||
 | 
			
		||||
import prototorch as pt
 | 
			
		||||
import pytest
 | 
			
		||||
import torch
 | 
			
		||||
from prototorch.models.library import GLVQ
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_glvq_model_build():
 | 
			
		||||
    model = pt.models.GLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    hparams = GLVQ.HyperParameters(
 | 
			
		||||
        distribution=dict(num_classes=2, per_class=1),
 | 
			
		||||
        component_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_glvq1_model_build():
 | 
			
		||||
    model = pt.models.GLVQ1(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_glvq21_model_build():
 | 
			
		||||
    model = pt.models.GLVQ1(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_gmlvq_model_build():
 | 
			
		||||
    model = pt.models.GMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 2,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_grlvq_model_build():
 | 
			
		||||
    model = pt.models.GRLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_gtlvq_model_build():
 | 
			
		||||
    model = pt.models.GTLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_lgmlvq_model_build():
 | 
			
		||||
    model = pt.models.LGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_image_glvq_model_build():
 | 
			
		||||
    model = pt.models.ImageGLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(16),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_image_gmlvq_model_build():
 | 
			
		||||
    model = pt.models.ImageGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 16,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(16),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_image_gtlvq_model_build():
 | 
			
		||||
    model = pt.models.ImageGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 16,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(16),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_siamese_glvq_model_build():
 | 
			
		||||
    model = pt.models.SiameseGLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(4),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_siamese_gmlvq_model_build():
 | 
			
		||||
    model = pt.models.SiameseGMLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(4),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_siamese_gtlvq_model_build():
 | 
			
		||||
    model = pt.models.SiameseGTLVQ(
 | 
			
		||||
        {
 | 
			
		||||
            "distribution": (3, 2),
 | 
			
		||||
            "input_dim": 4,
 | 
			
		||||
            "latent_dim": 2,
 | 
			
		||||
        },
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(4),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_knn_model_build():
 | 
			
		||||
    train_ds = pt.datasets.Iris(dims=[0, 2])
 | 
			
		||||
    model = pt.models.KNN(dict(k=3), data=train_ds)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_lvq1_model_build():
 | 
			
		||||
    model = pt.models.LVQ1(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_lvq21_model_build():
 | 
			
		||||
    model = pt.models.LVQ21(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_median_lvq_model_build():
 | 
			
		||||
    model = pt.models.MedianLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_celvq_model_build():
 | 
			
		||||
    model = pt.models.CELVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_rslvq_model_build():
 | 
			
		||||
    model = pt.models.RSLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_slvq_model_build():
 | 
			
		||||
    model = pt.models.SLVQ(
 | 
			
		||||
        {"distribution": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_growing_neural_gas_model_build():
 | 
			
		||||
    model = pt.models.GrowingNeuralGas(
 | 
			
		||||
        {"num_prototypes": 5},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_kohonen_som_model_build():
 | 
			
		||||
    model = pt.models.KohonenSOM(
 | 
			
		||||
        {"shape": (3, 2)},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_neural_gas_model_build():
 | 
			
		||||
    model = pt.models.NeuralGas(
 | 
			
		||||
        {"num_prototypes": 5},
 | 
			
		||||
        prototypes_initializer=pt.initializers.RNCI(2),
 | 
			
		||||
    )
 | 
			
		||||
    model = GLVQ(hparams=hparams)
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user