32 Commits

Author SHA1 Message Date
Alexander Engelsberger
28ac5f5ed9 build: bump version 0.6.0 → 0.7.0 2023-10-25 15:19:04 +02:00
Alexander Engelsberger
b7f510a9fe chore: update bumpversion config 2023-10-25 15:18:45 +02:00
Alexander Engelsberger
781ef93b06 ci: remove Python 3.12 2023-10-25 15:09:14 +02:00
Alexander Engelsberger
072e61b3cd ci: Add Python 3.12 2023-10-25 15:04:05 +02:00
Alexander Engelsberger
71167a8f77 chore: remove optimizer_idx from all steps 2023-10-25 15:03:13 +02:00
Alexander Engelsberger
60990f42d2 fix: update import in tests 2023-06-20 21:18:28 +02:00
Alexander Engelsberger
1e83c439f7 ci: Trigger example test 2023-06-20 19:29:59 +02:00
Alexander Engelsberger
cbbbbeda98 fix: setuptools configuration 2023-06-20 19:25:35 +02:00
Alexander Engelsberger
1b5093627e build: bump version 0.5.4 → 0.6.0 2023-06-20 18:50:03 +02:00
Alexander Engelsberger
497da90f9c chore: small changes to configuration 2023-06-20 18:49:57 +02:00
Alexander Engelsberger
2a665e220f fix: use multiclass accuracy by default 2023-06-20 18:30:18 +02:00
Alexander Engelsberger
4cd6aee330 chore: replace config by pyproject.toml 2023-06-20 18:30:05 +02:00
Alexander Engelsberger
634ef86a2c fix: example test fixed 2023-06-20 17:42:36 +02:00
Alexander Engelsberger
72e9587a10 fix: remove removed CLI syntax from examples 2023-06-20 17:30:21 +02:00
Alexander Engelsberger
f5e1edf31f ci: upgrade workflows 2023-06-20 16:39:13 +02:00
Alexander Engelsberger
5e5675d12e ci: upgrade pre-commit config 2023-06-20 16:37:11 +02:00
Alexander Engelsberger
16f410e809 fix: style fixes 2023-03-09 15:59:49 +01:00
Alexander Engelsberger
46dfb82371 Fix: saving GMLVQ and GRLVQ fixed 2023-03-09 15:50:13 +01:00
Alexander Engelsberger
87fa3f0729 build: bump version 0.5.3 → 0.5.4 2023-03-02 17:29:54 +00:00
Alexander Engelsberger
08db94d507 fix: fix entrypoint configuration 2023-03-02 17:29:23 +00:00
Alexander Engelsberger
8ecf9948b2 build: bump version 0.5.2 → 0.5.3 2023-03-02 17:24:11 +00:00
Alexander Engelsberger
c5f0b86114 chore: upgrade pre commit 2023-03-02 17:23:41 +00:00
Alexander Engelsberger
7506614ada fix: Update dependency versions 2023-03-02 17:05:39 +00:00
Alexander Engelsberger
fcd944d3ff build: bump version 0.5.1 → 0.5.2 2022-06-01 14:25:44 +02:00
Alexander Engelsberger
054720dd7b fix(hotfix): Protobuf error workaround 2022-06-01 14:14:57 +02:00
Alexander Engelsberger
d16a0de202 build: bump version 0.5.0 → 0.5.1 2022-05-17 12:04:08 +02:00
Alexander Engelsberger
76fea3f881 chore: update all examples to pytorch 1.6 2022-05-17 12:03:43 +02:00
Alexander Engelsberger
c00513ae0d chore: minor updates and version updates 2022-05-17 12:00:52 +02:00
Alexander Engelsberger
bccef8bef0 chore: replace relative imports 2022-05-16 11:12:53 +02:00
Alexander Engelsberger
29ee326b85 ci: Update PreCommit hooks 2022-05-16 11:11:48 +02:00
Jensun Ravichandran
055568dc86 fix: glvq_iris example works again 2022-05-09 17:33:52 +02:00
Alexander Engelsberger
3a7328e290 chore: small changes 2022-04-27 10:37:12 +02:00
40 changed files with 1176 additions and 749 deletions

View File

@@ -1,13 +1,13 @@
[bumpversion]
current_version = 0.5.0
current_version = 0.7.0
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
serialize = {major}.{minor}.{patch}
message = build: bump version {current_version} → {new_version}
[bumpversion:file:setup.py]
[bumpversion:file:pyproject.toml]
[bumpversion:file:./prototorch/models/__init__.py]
[bumpversion:file:./src/prototorch/models/__init__.py]
[bumpversion:file:./docs/source/conf.py]

View File

@@ -6,20 +6,20 @@ name: examples
on:
push:
paths:
- 'examples/**.py'
- "examples/**.py"
jobs:
cpu:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.10
uses: actions/setup-python@v2
with:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Run examples
run: |
./tests/test_examples.sh examples/
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Run examples
run: |
./tests/test_examples.sh examples/

View File

@@ -6,70 +6,70 @@ name: tests
on:
push:
pull_request:
branches: [ master ]
branches: [master]
jobs:
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.10
uses: actions/setup-python@v2
with:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- uses: pre-commit/action@v2.0.3
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- uses: pre-commit/action@v3.0.0
compatibility:
needs: style
strategy:
fail-fast: false
matrix:
python-version: ["3.7", "3.8", "3.9", "3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, windows-latest]
exclude:
- os: windows-latest
python-version: "3.7"
- os: windows-latest
python-version: "3.8"
- os: windows-latest
python-version: "3.9"
- os: windows-latest
python-version: "3.8"
- os: windows-latest
python-version: "3.9"
- os: windows-latest
python-version: "3.10"
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Test with pytest
run: |
pytest
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Test with pytest
run: |
pytest
publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.10
uses: actions/setup-python@v2
with:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install wheel
- name: Build package
run: python setup.py sdist bdist_wheel
- name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install wheel
- name: Build package
run: python setup.py sdist bdist_wheel
- name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@@ -2,52 +2,53 @@
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.1.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-ast
- id: check-case-conflict
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-ast
- id: check-case-conflict
- repo: https://github.com/myint/autoflake
rev: v1.4
hooks:
- id: autoflake
- repo: https://github.com/myint/autoflake
rev: v2.1.1
hooks:
- id: autoflake
- repo: http://github.com/PyCQA/isort
rev: 5.10.1
hooks:
- id: isort
- repo: http://github.com/PyCQA/isort
rev: 5.12.0
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v0.931
hooks:
- id: mypy
files: prototorch
additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.3.0
hooks:
- id: mypy
files: prototorch
additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
additional_dependencies: ["toml"]
- repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.9.0
hooks:
- id: python-use-type-annotations
- id: python-no-log-warn
- id: python-check-blanket-noqa
- repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.10.0
hooks:
- id: python-use-type-annotations
- id: python-no-log-warn
- id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade
rev: v2.31.0
hooks:
- id: pyupgrade
- repo: https://github.com/asottile/pyupgrade
rev: v3.7.0
hooks:
- id: pyupgrade
- repo: https://github.com/si-cim/gitlint
rev: v0.15.2-unofficial
hooks:
- id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename]
- repo: https://github.com/si-cim/gitlint
rev: v0.15.2-unofficial
hooks:
- id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename]

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.5.0"
release = "0.7.0"
# -- General configuration ---------------------------------------------------

View File

@@ -1,25 +1,32 @@
"""CBC example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import CBC, VisCBC2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
train_loader = DataLoader(train_ds, batch_size=32)
# Hyperparameters
hparams = dict(
@@ -30,23 +37,32 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.CBC(
model = CBC(
hparams,
components_initializer=pt.initializers.SSCI(train_ds, noise=0.01),
reasonings_iniitializer=pt.initializers.
components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
reasonings_initializer=pt.initializers.
PurePositiveReasoningsInitializer(),
)
# Callbacks
vis = pt.models.VisCBC2D(data=train_ds,
title="CBC Iris Example",
resolution=100,
axis_off=True)
vis = VisCBC2D(
data=train_ds,
title="CBC Iris Example",
resolution=100,
axis_off=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
detect_anomaly=True,
log_every_n_steps=1,
max_epochs=1000,
)
# Training loop

View File

@@ -1,30 +1,50 @@
"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
CELVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
num_classes = 4
num_features = 2
num_clusters = 1
train_ds = pt.datasets.Random(num_samples=500,
num_classes=num_classes,
num_features=num_features,
num_clusters=num_clusters,
separation=3.0,
seed=42)
train_ds = pt.datasets.Random(
num_samples=500,
num_classes=num_classes,
num_features=num_features,
num_clusters=num_clusters,
separation=3.0,
seed=42,
)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters
prototypes_per_class = num_clusters * 5
@@ -34,7 +54,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.CELVQ(
model = CELVQ(
hparams,
prototypes_initializer=pt.initializers.FVCI(2, 3.0),
)
@@ -43,18 +63,18 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(train_ds)
pruning = pt.models.PruneLoserPrototypes(
vis = VisGLVQ2D(train_ds)
pruning = PruneLoserPrototypes(
threshold=0.01, # prune prototype if it wins less than 1%
idle_epochs=20, # pruning too early may cause problems
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
frequency=1, # prune every epoch
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=20,
@@ -64,17 +84,18 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
pruning,
es,
],
progress_bar_refresh_rate=0,
terminate_on_nan=True,
weights_summary="full",
accelerator="ddp",
detect_anomaly=True,
log_every_n_steps=1,
max_epochs=1000,
)
# Training loop

View File

@@ -1,23 +1,35 @@
"""GLVQ example using the Iris dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
# Hyperparameters
hparams = dict(
@@ -29,7 +41,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GLVQ(
model = GLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
@@ -41,14 +53,19 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
vis = VisGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
accelerator="ddp",
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
@@ -58,8 +75,8 @@ if __name__ == "__main__":
trainer.save_checkpoint("./glvq_iris.ckpt")
# Load saved model
new_model = pt.models.GLVQ.load_from_checkpoint(
new_model = GLVQ.load_from_checkpoint(
checkpoint_path="./glvq_iris.ckpt",
strict=False,
)
print(new_model)
logging.info(new_model)

View File

@@ -1,23 +1,36 @@
"""GMLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GMLVQ, VisGMLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
@@ -32,7 +45,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GMLVQ(
model = GMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
@@ -44,15 +57,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 4)
# Callbacks
vis = pt.models.VisGMLVQ2D(data=train_ds)
vis = VisGMLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
accelerator="ddp",
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

View File

@@ -1,17 +1,33 @@
"""GMLVQ example using the MNIST dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGMLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
@@ -33,12 +49,8 @@ if __name__ == "__main__":
)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
# Hyperparameters
num_classes = 10
@@ -52,14 +64,14 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.ImageGMLVQ(
model = ImageGMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
)
# Callbacks
vis = pt.models.VisImgComp(
vis = VisImgComp(
data=train_ds,
num_columns=10,
show=False,
@@ -69,14 +81,14 @@ if __name__ == "__main__":
embedding_data=200,
flatten_data=False,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=1,
prune_quota_per_epoch=10,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=15,
@@ -85,16 +97,18 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
pruning,
# es,
es,
],
terminate_on_nan=True,
weights_summary=None,
# accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,22 +1,39 @@
"""GMLVQ example using the spiral dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GMLVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters
num_classes = 2
@@ -32,19 +49,19 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GMLVQ(
model = GMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
)
# Callbacks
vis = pt.models.VisGLVQ2D(
vis = VisGLVQ2D(
train_ds,
show_last_only=False,
block=False,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=10,
prune_quota_per_epoch=5,
@@ -53,7 +70,7 @@ if __name__ == "__main__":
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=1.0,
patience=5,
@@ -62,14 +79,18 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
pruning,
],
terminate_on_nan=True,
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,23 +1,33 @@
"""Growing Neural Gas example using the Iris dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GrowingNeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
@@ -27,7 +37,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GrowingNeuralGas(
model = GrowingNeuralGas(
hparams,
prototypes_initializer=pt.initializers.ZCI(2),
)
@@ -36,17 +46,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisNG2D(data=train_loader)
vis = VisNG2D(data=train_loader)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=100,
callbacks=[vis],
weights_summary="full",
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

77
examples/grlvq_iris.py Normal file
View File

@@ -0,0 +1,77 @@
"""GMLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GRLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris([0, 1])
# Dataloaders
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
input_dim=2,
distribution={
"num_classes": 3,
"per_class": 2
},
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = GRLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = VisSiameseGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=5,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

View File

@@ -1,17 +1,34 @@
"""GTLVQ example using the MNIST dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGTLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
@@ -33,12 +50,8 @@ if __name__ == "__main__":
)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
# Hyperparameters
num_classes = 10
@@ -52,7 +65,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.ImageGTLVQ(
model = ImageGTLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
@@ -61,7 +74,7 @@ if __name__ == "__main__":
next(iter(train_loader))[0].reshape(256, 28 * 28)))
# Callbacks
vis = pt.models.VisImgComp(
vis = VisImgComp(
data=train_ds,
num_columns=10,
show=False,
@@ -71,14 +84,14 @@ if __name__ == "__main__":
embedding_data=200,
flatten_data=False,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=1,
prune_quota_per_epoch=10,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=15,
@@ -88,16 +101,18 @@ if __name__ == "__main__":
# Setup trainer
# using GPUs here is strongly recommended!
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
pruning,
# es,
es,
],
terminate_on_nan=True,
weights_summary=None,
accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,45 +1,58 @@
"""Localized-GTLVQ example using the Moons dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GTLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
train_loader = DataLoader(
train_ds,
batch_size=256,
shuffle=True,
)
# Hyperparameters
# Latent_dim should be lower than input dim.
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
# Initialize the model
model = pt.models.GTLVQ(
hparams, prototypes_initializer=pt.initializers.SMCI(train_ds))
model = GTLVQ(hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds))
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
@@ -49,14 +62,17 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
],
weights_summary="full",
accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,60 +1,75 @@
"""k-NN example using the Iris dataset from scikit-learn."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import KNN, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
X, y = load_iris(return_X_y=True)
X = X[:, [0, 2]]
X = X[:, 0:3:2]
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.5,
random_state=42)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.5,
random_state=42,
)
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
train_loader = DataLoader(train_ds, batch_size=16)
test_loader = DataLoader(test_ds, batch_size=16)
# Hyperparameters
hparams = dict(k=5)
# Initialize the model
model = pt.models.KNN(hparams, data=train_ds)
model = KNN(hparams, data=train_ds)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(
vis = VisGLVQ2D(
data=(X_train, y_train),
resolution=200,
block=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=1,
callbacks=[vis],
weights_summary="full",
callbacks=[
vis,
],
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
@@ -63,7 +78,7 @@ if __name__ == "__main__":
# Recall
y_pred = model.predict(torch.tensor(X_train))
print(y_pred)
logging.info(y_pred)
# Test
trainer.test(model, dataloaders=test_loader)

View File

@@ -1,12 +1,21 @@
"""Kohonen Self Organizing Map."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from matplotlib import pyplot as plt
from prototorch.models import KohonenSOM
from prototorch.utils.colors import hex_to_rgb
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader, TensorDataset
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Vis2DColorSOM(pl.Callback):
@@ -18,7 +27,7 @@ class Vis2DColorSOM(pl.Callback):
self.data = data
self.pause_time = pause_time
def on_epoch_end(self, trainer, pl_module):
def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
@@ -31,12 +40,14 @@ class Vis2DColorSOM(pl.Callback):
d = pl_module.compute_distances(self.data)
wp = pl_module.predict_from_distances(d)
for i, iloc in enumerate(wp):
plt.text(iloc[1],
iloc[0],
cnames[i],
ha="center",
va="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0))
plt.text(
iloc[1],
iloc[0],
color_names[i],
ha="center",
va="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0),
)
if trainer.current_epoch != trainer.max_epochs - 1:
plt.pause(self.pause_time)
@@ -47,11 +58,12 @@ class Vis2DColorSOM(pl.Callback):
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Prepare the data
hex_colors = [
@@ -59,15 +71,15 @@ if __name__ == "__main__":
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
]
cnames = [
color_names = [
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
"lightgrey", "olive", "purple", "orange"
]
colors = list(hex_to_rgb(hex_colors))
data = torch.Tensor(colors) / 255.0
train_ds = torch.utils.data.TensorDataset(data)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
train_ds = TensorDataset(data)
train_loader = DataLoader(train_ds, batch_size=8)
# Hyperparameters
hparams = dict(
@@ -78,7 +90,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.KohonenSOM(
model = KohonenSOM(
hparams,
prototypes_initializer=pt.initializers.RNCI(3),
)
@@ -87,17 +99,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 3)
# Model summary
print(model)
logging.info(model)
# Callbacks
vis = Vis2DColorSOM(data=data)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=500,
callbacks=[vis],
weights_summary="full",
callbacks=[
vis,
],
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,27 +1,36 @@
"""Localized-GMLVQ example using the Moons dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import LGMLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
# Hyperparameters
hparams = dict(
@@ -31,7 +40,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.LGMLVQ(
model = LGMLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
)
@@ -40,11 +49,11 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
@@ -54,14 +63,17 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
],
weights_summary="full",
accelerator="ddp",
log_every_n_steps=1,
max_epochs=1000,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,10 +1,22 @@
"""LVQMLN example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
LVQMLN,
PruneLoserPrototypes,
VisSiameseGLVQ2D,
)
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
@@ -27,17 +39,18 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
@@ -50,7 +63,7 @@ if __name__ == "__main__":
backbone = Backbone()
# Initialize the model
model = pt.models.LVQMLN(
model = LVQMLN(
hparams,
prototypes_initializer=pt.initializers.SSCI(
train_ds,
@@ -59,18 +72,15 @@ if __name__ == "__main__":
backbone=backbone,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(
vis = VisSiameseGLVQ2D(
data=train_ds,
map_protos=False,
border=0.1,
resolution=500,
axis_off=True,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=20,
prune_quota_per_epoch=2,
@@ -79,12 +89,17 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
pruning,
],
log_every_n_steps=1,
max_epochs=1000,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,28 +1,40 @@
"""Median-LVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import MedianLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(
train_loader = DataLoader(
train_ds,
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
)
# Initialize the model
model = pt.models.MedianLVQ(
model = MedianLVQ(
hparams=dict(distribution=(3, 2), lr=0.01),
prototypes_initializer=pt.initializers.SSCI(train_ds),
)
@@ -31,8 +43,8 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.01,
patience=5,
@@ -42,10 +54,17 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis, es],
weights_summary="full",
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,23 +1,35 @@
"""Neural Gas example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import NeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Prepare and pre-process the dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
x_train = x_train[:, 0:3:2]
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
@@ -25,7 +37,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
@@ -35,7 +47,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.NeuralGas(
model = NeuralGas(
hparams,
prototypes_initializer=pt.core.ZCI(2),
lr_scheduler=ExponentialLR,
@@ -45,17 +57,20 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisNG2D(data=train_ds)
vis = VisNG2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,25 +1,34 @@
"""RSLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import RSLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
@@ -33,7 +42,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.RSLVQ(
model = RSLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
@@ -42,19 +51,20 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
vis = VisGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
terminate_on_nan=True,
weights_summary="full",
accelerator="ddp",
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
detect_anomaly=True,
max_epochs=100,
log_every_n_steps=1,
)
# Training loop

View File

@@ -1,10 +1,18 @@
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
@@ -27,46 +35,50 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
distribution=[1, 2, 3],
proto_lr=0.01,
bb_lr=0.01,
lr=0.01,
)
# Initialize the backbone
backbone = Backbone()
# Initialize the model
model = pt.models.SiameseGLVQ(
model = SiameseGLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,10 +1,18 @@
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
@@ -27,46 +35,52 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(distribution=[1, 2, 3],
proto_lr=0.01,
bb_lr=0.01,
input_dim=2,
latent_dim=1)
hparams = dict(
distribution=[1, 2, 3],
lr=0.01,
input_dim=2,
latent_dim=1,
)
# Initialize the backbone
backbone = Backbone(latent_size=hparams["input_dim"])
# Initialize the model
model = pt.models.SiameseGTLVQ(
model = SiameseGTLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@@ -1,24 +1,42 @@
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GLVQ,
KNN,
GrowingNeuralGas,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
# Initialize the gng
gng = pt.models.GrowingNeuralGas(
gng = GrowingNeuralGas(
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
prototypes_initializer=pt.initializers.ZCI(2),
lr_scheduler=ExponentialLR,
@@ -26,7 +44,7 @@ if __name__ == "__main__":
)
# Callbacks
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="loss",
min_delta=0.001,
patience=20,
@@ -37,9 +55,14 @@ if __name__ == "__main__":
# Setup trainer for GNG
trainer = pl.Trainer(
max_epochs=100,
callbacks=[es],
weights_summary=None,
accelerator="cpu",
max_epochs=50 if args.fast_dev_run else
1000, # 10 epochs fast dev run reproducible DIV error.
callbacks=[
es,
],
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
@@ -52,12 +75,12 @@ if __name__ == "__main__":
)
# Warm-start prototypes
knn = pt.models.KNN(dict(k=1), data=train_ds)
knn = KNN(dict(k=1), data=train_ds)
prototypes = gng.prototypes
plabels = knn.predict(prototypes)
# Initialize the model
model = pt.models.GLVQ(
model = GLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.LCI(prototypes),
@@ -70,15 +93,15 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
pruning = pt.models.PruneLoserPrototypes(
vis = VisGLVQ2D(data=train_ds)
pruning = PruneLoserPrototypes(
threshold=0.02,
idle_epochs=2,
prune_quota_per_epoch=5,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=10,
@@ -88,15 +111,18 @@ if __name__ == "__main__":
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
pruning,
es,
],
weights_summary="full",
accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

90
pyproject.toml Normal file
View File

@@ -0,0 +1,90 @@
[project]
name = "prototorch-models"
version = "0.7.0"
description = "Pre-packaged prototype-based machine learning models using ProtoTorch and PyTorch-Lightning."
authors = [
{ name = "Jensun Ravichandran", email = "jjensun@gmail.com" },
{ name = "Alexander Engelsberger", email = "engelsbe@hs-mittweida.de" },
]
dependencies = ["lightning>=2.0.0", "prototorch>=0.7.5"]
requires-python = ">=3.8"
readme = "README.md"
license = { text = "MIT" }
classifiers = [
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
]
[project.urls]
Homepage = "https://github.com/si-cim/prototorch_models"
Downloads = "https://github.com/si-cim/prototorch_models.git"
[project.optional-dependencies]
dev = ["bumpversion", "pre-commit", "yapf", "toml"]
examples = ["matplotlib", "scikit-learn"]
ci = ["pytest", "pre-commit"]
docs = [
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
all = [
"bumpversion",
"pre-commit",
"yapf",
"toml",
"pytest",
"matplotlib",
"scikit-learn",
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
[build-system]
requires = ["setuptools>=61", "wheel"]
build-backend = "setuptools.build_meta"
[tool.yapf]
based_on_style = "pep8"
spaces_before_comment = 2
split_before_logical_operator = true
[tool.pylint]
disable = ["too-many-arguments", "too-few-public-methods", "fixme"]
[tool.isort]
profile = "hug"
src_paths = ["isort", "test"]
multi_line_output = 3
include_trailing_comma = true
force_grid_wrap = 3
use_parentheses = true
line_length = 79
[tool.mypy]
explicit_package_bases = true
namespace_packages = true

View File

@@ -1,23 +0,0 @@
[yapf]
based_on_style = pep8
spaces_before_comment = 2
split_before_logical_operator = true
[pylint]
disable =
too-many-arguments,
too-few-public-methods,
fixme,
[pycodestyle]
max-line-length = 79
[isort]
profile = hug
src_paths = isort, test
multi_line_output = 3
include_trailing_comma = True
force_grid_wrap = 3
use_parentheses = True
line_length = 79

View File

@@ -1,97 +0,0 @@
"""
######
# # ##### #### ##### #### ##### #### ##### #### # #
# # # # # # # # # # # # # # # # # #
###### # # # # # # # # # # # # # ######
# ##### # # # # # # # # ##### # # #
# # # # # # # # # # # # # # # # #
# # # #### # #### # #### # # #### # #Plugin
ProtoTorch models Plugin Package
"""
from pkg_resources import safe_name
from setuptools import find_namespace_packages, setup
PLUGIN_NAME = "models"
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
with open("README.md", "r") as fh:
long_description = fh.read()
INSTALL_REQUIRES = [
"prototorch>=0.7.3",
"pytorch_lightning>=1.6.0",
"torchmetrics",
]
CLI = [
"jsonargparse",
]
DEV = [
"bumpversion",
"pre-commit",
]
DOCS = [
"recommonmark",
"sphinx",
"nbsphinx",
"ipykernel",
"sphinx_rtd_theme",
"sphinxcontrib-katex",
"sphinxcontrib-bibtex",
]
EXAMPLES = [
"matplotlib",
"scikit-learn",
]
TESTS = [
"codecov",
"pytest",
]
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
setup(
name=safe_name("prototorch_" + PLUGIN_NAME),
version="0.5.0",
description="Pre-packaged prototype-based "
"machine learning models using ProtoTorch and PyTorch-Lightning.",
long_description=long_description,
long_description_content_type="text/markdown",
author="Alexander Engelsberger",
author_email="engelsbe@hs-mittweida.de",
url=PROJECT_URL,
download_url=DOWNLOAD_URL,
license="MIT",
python_requires=">=3.7",
install_requires=INSTALL_REQUIRES,
extras_require={
"dev": DEV,
"examples": EXAMPLES,
"tests": TESTS,
"all": ALL,
},
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.7",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
entry_points={
"prototorch.plugins": f"{PLUGIN_NAME} = prototorch.{PLUGIN_NAME}"
},
packages=find_namespace_packages(include=["prototorch.*"]),
zip_safe=False,
)

View File

@@ -36,4 +36,4 @@ from .unsupervised import (
)
from .vis import *
__version__ = "0.5.0"
__version__ = "0.7.0"

View File

@@ -1,15 +1,24 @@
"""Abstract classes to be inherited by prototorch models."""
import logging
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torchmetrics
from ..core.competitions import WTAC
from ..core.components import Components, LabeledComponents
from ..core.distances import euclidean_distance
from ..core.initializers import LabelsInitializer, ZerosCompInitializer
from ..core.pooling import stratified_min_pooling
from ..nn.wrappers import LambdaLayer
from prototorch.core.competitions import WTAC
from prototorch.core.components import (
AbstractComponents,
Components,
LabeledComponents,
)
from prototorch.core.distances import euclidean_distance
from prototorch.core.initializers import (
LabelsInitializer,
ZerosCompInitializer,
)
from prototorch.core.pooling import stratified_min_pooling
from prototorch.nn.wrappers import LambdaLayer
class ProtoTorchBolt(pl.LightningModule):
@@ -30,7 +39,7 @@ class ProtoTorchBolt(pl.LightningModule):
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
if self.lr_scheduler is not None:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
@@ -43,7 +52,10 @@ class ProtoTorchBolt(pl.LightningModule):
return optimizer
def reconfigure_optimizers(self):
self.trainer.strategy.setup_optimizers(self.trainer)
if self.trainer:
self.trainer.strategy.setup_optimizers(self.trainer)
else:
logging.warning("No trainer to reconfigure optimizers!")
def __repr__(self):
surep = super().__repr__()
@@ -53,12 +65,13 @@ class ProtoTorchBolt(pl.LightningModule):
class PrototypeModel(ProtoTorchBolt):
proto_layer: AbstractComponents
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
distance_fn = kwargs.get("distance_fn", euclidean_distance)
self.distance_layer = LambdaLayer(distance_fn)
self.distance_layer = LambdaLayer(distance_fn, name="distance_fn")
@property
def num_prototypes(self):
@@ -75,16 +88,17 @@ class PrototypeModel(ProtoTorchBolt):
def add_prototypes(self, *args, **kwargs):
self.proto_layer.add_components(*args, **kwargs)
self.hparams.distribution = self.proto_layer.distribution
self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers()
def remove_prototypes(self, indices):
self.proto_layer.remove_components(indices)
self.hparams.distribution = self.proto_layer.distribution
self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers()
class UnsupervisedPrototypeModel(PrototypeModel):
proto_layer: Components
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -93,7 +107,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
prototypes_initializer = kwargs.get("prototypes_initializer", None)
if prototypes_initializer is not None:
self.proto_layer = Components(
self.hparams.num_prototypes,
self.hparams["num_prototypes"],
initializer=prototypes_initializer,
)
@@ -108,6 +122,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
class SupervisedPrototypeModel(PrototypeModel):
proto_layer: LabeledComponents
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
super().__init__(hparams, **kwargs)
@@ -127,13 +142,13 @@ class SupervisedPrototypeModel(PrototypeModel):
labels_initializer=labels_initializer,
)
proto_shape = self.proto_layer.components.shape[1:]
self.hparams.initialized_proto_shape = proto_shape
self.hparams["initialized_proto_shape"] = proto_shape
else:
# when restoring a checkpointed model
self.proto_layer = LabeledComponents(
distribution=distribution,
components_initializer=ZerosCompInitializer(
self.hparams.initialized_proto_shape),
self.hparams["initialized_proto_shape"]),
)
self.competition_layer = WTAC()
@@ -154,7 +169,7 @@ class SupervisedPrototypeModel(PrototypeModel):
distances = self.compute_distances(x)
_, plabels = self.proto_layer()
winning = stratified_min_pooling(distances, plabels)
y_pred = torch.nn.functional.softmin(winning, dim=1)
y_pred = F.softmin(winning, dim=1)
return y_pred
def predict_from_distances(self, distances):
@@ -171,26 +186,37 @@ class SupervisedPrototypeModel(PrototypeModel):
def log_acc(self, distances, targets, tag):
preds = self.predict_from_distances(distances)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
# `.int()` because FloatTensors are assumed to be class probabilities
accuracy = torchmetrics.functional.accuracy(
preds.int(),
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log(tag,
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True)
self.log(
tag,
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True,
)
def test_step(self, batch, batch_idx):
x, targets = batch
preds = self.predict(x)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
accuracy = torchmetrics.functional.accuracy(
preds.int(),
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log("test_acc", accuracy)
class ProtoTorchMixin(object):
class ProtoTorchMixin:
"""All mixins are ProtoTorchMixins."""
@@ -201,14 +227,16 @@ class NonGradientMixin(ProtoTorchMixin):
super().__init__(*args, **kwargs)
self.automatic_optimization = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
proto_layer: Components
components: torch.Tensor
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)

View File

@@ -1,25 +1,30 @@
"""Lightning Callbacks."""
import logging
from typing import TYPE_CHECKING
import pytorch_lightning as pl
import torch
from prototorch.core.initializers import LiteralCompInitializer
from ..core.components import Components
from ..core.initializers import LiteralCompInitializer
from .extras import ConnectionTopology
if TYPE_CHECKING:
from prototorch.models import GLVQ, GrowingNeuralGas
class PruneLoserPrototypes(pl.Callback):
def __init__(self,
threshold=0.01,
idle_epochs=10,
prune_quota_per_epoch=-1,
frequency=1,
replace=False,
prototypes_initializer=None,
verbose=False):
def __init__(
self,
threshold=0.01,
idle_epochs=10,
prune_quota_per_epoch=-1,
frequency=1,
replace=False,
prototypes_initializer=None,
verbose=False,
):
self.threshold = threshold # minimum win ratio
self.idle_epochs = idle_epochs # epochs to wait before pruning
self.prune_quota_per_epoch = prune_quota_per_epoch
@@ -28,7 +33,7 @@ class PruneLoserPrototypes(pl.Callback):
self.verbose = verbose
self.prototypes_initializer = prototypes_initializer
def on_epoch_end(self, trainer, pl_module):
def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
if (trainer.current_epoch + 1) < self.idle_epochs:
return None
if (trainer.current_epoch + 1) % self.frequency:
@@ -43,27 +48,29 @@ class PruneLoserPrototypes(pl.Callback):
prune_labels = prune_labels[:self.prune_quota_per_epoch]
if len(to_prune) > 0:
if self.verbose:
print(f"\nPrototype win ratios: {ratios}")
print(f"Pruning prototypes at: {to_prune}")
print(f"Corresponding labels are: {prune_labels.tolist()}")
logging.debug(f"\nPrototype win ratios: {ratios}")
logging.debug(f"Pruning prototypes at: {to_prune}")
logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
cur_num_protos = pl_module.num_prototypes
pl_module.remove_prototypes(indices=to_prune)
if self.replace:
labels, counts = torch.unique(prune_labels,
sorted=True,
return_counts=True)
distribution = dict(zip(labels.tolist(), counts.tolist()))
if self.verbose:
print(f"Re-adding pruned prototypes...")
print(f"distribution={distribution}")
logging.info(f"Re-adding pruned prototypes...")
logging.debug(f"distribution={distribution}")
pl_module.add_prototypes(
distribution=distribution,
components_initializer=self.prototypes_initializer)
new_num_protos = pl_module.num_prototypes
if self.verbose:
print(f"`num_prototypes` changed from {cur_num_protos} "
f"to {new_num_protos}.")
logging.info(f"`num_prototypes` changed from {cur_num_protos} "
f"to {new_num_protos}.")
return True
@@ -74,11 +81,11 @@ class PrototypeConvergence(pl.Callback):
self.idle_epochs = idle_epochs # epochs to wait
self.verbose = verbose
def on_epoch_end(self, trainer, pl_module):
def on_train_epoch_end(self, trainer, pl_module):
if (trainer.current_epoch + 1) < self.idle_epochs:
return None
if self.verbose:
print("Stopping...")
logging.info("Stopping...")
# TODO
return True
@@ -96,12 +103,16 @@ class GNGCallback(pl.Callback):
self.reduction = reduction
self.freq = freq
def on_epoch_end(self, trainer: pl.Trainer, pl_module):
def on_train_epoch_end(
self,
trainer: pl.Trainer,
pl_module: "GrowingNeuralGas",
):
if (trainer.current_epoch + 1) % self.freq == 0:
# Get information
errors = pl_module.errors
topology: ConnectionTopology = pl_module.topology_layer
components: Components = pl_module.proto_layer.components
components = pl_module.proto_layer.components
# Insertion point
worst = torch.argmax(errors)
@@ -121,8 +132,9 @@ class GNGCallback(pl.Callback):
# Add component
pl_module.proto_layer.add_components(
None,
initializer=LiteralCompInitializer(new_component.unsqueeze(0)))
1,
initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
)
# Adjust Topology
topology.add_prototype()

View File

@@ -1,12 +1,12 @@
import torch
import torchmetrics
from prototorch.core.competitions import CBCC
from prototorch.core.components import ReasoningComponents
from prototorch.core.initializers import RandomReasoningsInitializer
from prototorch.core.losses import MarginLoss
from prototorch.core.similarities import euclidean_similarity
from prototorch.nn.wrappers import LambdaLayer
from ..core.competitions import CBCC
from ..core.components import ReasoningComponents
from ..core.initializers import RandomReasoningsInitializer
from ..core.losses import MarginLoss
from ..core.similarities import euclidean_similarity
from ..nn.wrappers import LambdaLayer
from .abstract import ImagePrototypesMixin
from .glvq import SiameseGLVQ
@@ -44,7 +44,7 @@ class CBC(SiameseGLVQ):
probs = self.competition_layer(detections, reasonings)
return probs
def shared_step(self, batch, batch_idx, optimizer_idx=None):
def shared_step(self, batch, batch_idx):
x, y = batch
y_pred = self(x)
num_classes = self.num_classes
@@ -52,17 +52,23 @@ class CBC(SiameseGLVQ):
loss = self.loss(y_pred, y_true).mean()
return y_pred, loss
def training_step(self, batch, batch_idx, optimizer_idx=None):
y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
def training_step(self, batch, batch_idx):
y_pred, train_loss = self.shared_step(batch, batch_idx)
preds = torch.argmax(y_pred, dim=1)
accuracy = torchmetrics.functional.accuracy(preds.int(),
batch[1].int())
self.log("train_acc",
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True)
accuracy = torchmetrics.functional.accuracy(
preds.int(),
batch[1].int(),
"multiclass",
num_classes=self.num_classes,
)
self.log(
"train_acc",
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True,
)
return train_loss
def predict(self, x):

View File

@@ -5,8 +5,7 @@ Modules not yet available in prototorch go here temporarily.
"""
import torch
from ..core.similarities import gaussian
from prototorch.core.similarities import gaussian
def rank_scaled_gaussian(distances, lambd):
@@ -40,7 +39,7 @@ def ltangent_distance(x, y, omegas):
:param `torch.tensor` omegas: Three dimensional matrix
:rtype: `torch.tensor`
"""
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)]
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
omegas, omegas.permute([0, 2, 1]))
projected_x = x @ p

View File

@@ -1,22 +1,22 @@
"""Models based on the GLVQ framework."""
import torch
from torch.nn.parameter import Parameter
from ..core.competitions import wtac
from ..core.distances import (
from prototorch.core.competitions import wtac
from prototorch.core.distances import (
lomega_distance,
omega_distance,
squared_euclidean_distance,
)
from ..core.initializers import EyeLinearTransformInitializer
from ..core.losses import (
from prototorch.core.initializers import EyeLinearTransformInitializer
from prototorch.core.losses import (
GLVQLoss,
lvq1_loss,
lvq21_loss,
)
from ..core.transforms import LinearTransform
from ..nn.wrappers import LambdaLayer, LossLayer
from prototorch.core.transforms import LinearTransform
from prototorch.nn.wrappers import LambdaLayer, LossLayer
from torch.nn.parameter import Parameter
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
from .extras import ltangent_distance, orthogonalization
@@ -34,9 +34,9 @@ class GLVQ(SupervisedPrototypeModel):
# Loss
self.loss = GLVQLoss(
margin=self.hparams.margin,
transfer_fn=self.hparams.transfer_fn,
beta=self.hparams.transfer_beta,
margin=self.hparams["margin"],
transfer_fn=self.hparams["transfer_fn"],
beta=self.hparams["transfer_beta"],
)
# def on_save_checkpoint(self, checkpoint):
@@ -48,7 +48,7 @@ class GLVQ(SupervisedPrototypeModel):
"prototype_win_ratios",
torch.zeros(self.num_prototypes, device=self.device))
def on_epoch_start(self):
def on_train_epoch_start(self):
self.initialize_prototype_win_ratios()
def log_prototype_win_ratios(self, distances):
@@ -66,15 +66,15 @@ class GLVQ(SupervisedPrototypeModel):
prototype_wr,
])
def shared_step(self, batch, batch_idx, optimizer_idx=None):
def shared_step(self, batch, batch_idx):
x, y = batch
out = self.compute_distances(x)
_, plabels = self.proto_layer()
loss = self.loss(out, y, plabels)
return out, loss
def training_step(self, batch, batch_idx, optimizer_idx=None):
out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
def training_step(self, batch, batch_idx):
out, train_loss = self.shared_step(batch, batch_idx)
self.log_prototype_win_ratios(out)
self.log("train_loss", train_loss)
self.log_acc(out, batch[-1], tag="train_acc")
@@ -99,10 +99,6 @@ class GLVQ(SupervisedPrototypeModel):
test_loss += batch_loss.item()
self.log("test_loss", test_loss)
# TODO
# def predict_step(self, batch, batch_idx, dataloader_idx=None):
# pass
class SiameseGLVQ(GLVQ):
"""GLVQ in a Siamese setting.
@@ -123,29 +119,9 @@ class SiameseGLVQ(GLVQ):
self.backbone = backbone
self.both_path_gradients = both_path_gradients
def configure_optimizers(self):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
# Only add a backbone optimizer if backbone has trainable parameters
bb_params = list(self.backbone.parameters())
if (bb_params):
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
optimizers = [proto_opt, bb_opt]
else:
optimizers = [proto_opt]
if self.lr_scheduler is not None:
schedulers = []
for optimizer in optimizers:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
schedulers.append(scheduler)
return optimizers, schedulers
else:
return optimizers
def compute_distances(self, x):
protos, _ = self.proto_layer()
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
latent_x = self.backbone(x)
bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
@@ -199,18 +175,22 @@ class GRLVQ(SiameseGLVQ):
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
"""
_relevances: torch.Tensor
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
# Additional parameters
relevances = torch.ones(self.hparams.input_dim, device=self.device)
relevances = torch.ones(self.hparams["input_dim"], device=self.device)
self.register_parameter("_relevances", Parameter(relevances))
# Override the backbone
self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances),
self.backbone = LambdaLayer(self._apply_relevances,
name="relevance scaling")
def _apply_relevances(self, x):
return x @ torch.diag(self._relevances)
@property
def relevance_profile(self):
return self._relevances.detach().cpu()
@@ -233,8 +213,8 @@ class SiameseGMLVQ(SiameseGLVQ):
omega_initializer = kwargs.get("omega_initializer",
EyeLinearTransformInitializer())
self.backbone = LinearTransform(
self.hparams.input_dim,
self.hparams.latent_dim,
self.hparams["input_dim"],
self.hparams["latent_dim"],
initializer=omega_initializer,
)
@@ -244,7 +224,7 @@ class SiameseGMLVQ(SiameseGLVQ):
@property
def lambda_matrix(self):
omega = self.backbone.weight # (input_dim, latent_dim)
omega = self.backbone.weights # (input_dim, latent_dim)
lam = omega @ omega.T
return lam.detach().cpu()
@@ -257,6 +237,9 @@ class GMLVQ(GLVQ):
"""
# Parameters
_omega: torch.Tensor
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", omega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
@@ -264,11 +247,9 @@ class GMLVQ(GLVQ):
# Additional parameters
omega_initializer = kwargs.get("omega_initializer",
EyeLinearTransformInitializer())
omega = omega_initializer.generate(self.hparams.input_dim,
self.hparams.latent_dim)
omega = omega_initializer.generate(self.hparams["input_dim"],
self.hparams["latent_dim"])
self.register_parameter("_omega", Parameter(omega))
self.backbone = LambdaLayer(lambda x: x @ self._omega,
name="omega matrix")
@property
def omega_matrix(self):
@@ -299,8 +280,8 @@ class LGMLVQ(GMLVQ):
# Re-register `_omega` to override the one from the super class.
omega = torch.randn(
self.num_prototypes,
self.hparams.input_dim,
self.hparams.latent_dim,
self.hparams["input_dim"],
self.hparams["latent_dim"],
device=self.device,
)
self.register_parameter("_omega", Parameter(omega))
@@ -316,23 +297,27 @@ class GTLVQ(LGMLVQ):
omega_initializer = kwargs.get("omega_initializer")
if omega_initializer is not None:
subspace = omega_initializer.generate(self.hparams.input_dim,
self.hparams.latent_dim)
omega = torch.repeat_interleave(subspace.unsqueeze(0),
self.num_prototypes,
dim=0)
subspace = omega_initializer.generate(
self.hparams["input_dim"],
self.hparams["latent_dim"],
)
omega = torch.repeat_interleave(
subspace.unsqueeze(0),
self.num_prototypes,
dim=0,
)
else:
omega = torch.rand(
self.num_prototypes,
self.hparams.input_dim,
self.hparams.latent_dim,
self.hparams["input_dim"],
self.hparams["latent_dim"],
device=self.device,
)
# Re-register `_omega` to override the one from the super class.
self.register_parameter("_omega", Parameter(omega))
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
def on_train_batch_end(self, outputs, batch, batch_idx):
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))
@@ -389,7 +374,7 @@ class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
"""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
with torch.no_grad():

View File

@@ -2,13 +2,14 @@
import warnings
from ..core.competitions import KNNC
from ..core.components import LabeledComponents
from ..core.initializers import (
from prototorch.core.competitions import KNNC
from prototorch.core.components import LabeledComponents
from prototorch.core.initializers import (
LiteralCompInitializer,
LiteralLabelsInitializer,
)
from ..utils.utils import parse_data_arg
from prototorch.utils.utils import parse_data_arg
from .abstract import SupervisedPrototypeModel
@@ -33,13 +34,10 @@ class KNN(SupervisedPrototypeModel):
labels_initializer=LiteralLabelsInitializer(targets))
self.competition_layer = KNNC(k=self.hparams.k)
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
return 1 # skip training step
def on_train_batch_start(self,
train_batch,
batch_idx,
dataloader_idx=None):
def on_train_batch_start(self, train_batch, batch_idx):
warnings.warn("k-NN has no training, skipping!")
return -1

View File

@@ -1,8 +1,11 @@
"""LVQ models that are optimized using non-gradient methods."""
from ..core.losses import _get_dp_dm
from ..nn.activations import get_activation
from ..nn.wrappers import LambdaLayer
import logging
from prototorch.core.losses import _get_dp_dm
from prototorch.nn.activations import get_activation
from prototorch.nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin
from .glvq import GLVQ
@@ -10,7 +13,7 @@ from .glvq import GLVQ
class LVQ1(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
protos, plables = self.proto_layer()
x, y = train_batch
dis = self.compute_distances(x)
@@ -29,8 +32,8 @@ class LVQ1(NonGradientMixin, GLVQ):
self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False)
print(f"dis={dis}")
print(f"y={y}")
logging.debug(f"dis={dis}")
logging.debug(f"y={y}")
# Logging
self.log_acc(dis, y, tag="train_acc")
@@ -40,7 +43,7 @@ class LVQ1(NonGradientMixin, GLVQ):
class LVQ21(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 2.1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
protos, plabels = self.proto_layer()
x, y = train_batch
@@ -73,8 +76,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
"""
def __init__(self, hparams, verbose=True, **kwargs):
self.verbose = verbose
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.transfer_layer = LambdaLayer(
@@ -98,7 +100,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
lower_bound = (gamma * f.log()).sum()
return lower_bound
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
protos, plabels = self.proto_layer()
x, y = train_batch
@@ -115,8 +117,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
_protos[i] = xk
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
if _lower_bound > lower_bound:
if self.verbose:
print(f"Updating prototype {i} to data {k}...")
logging.debug(f"Updating prototype {i} to data {k}...")
self.proto_layer.load_state_dict({"_components": _protos},
strict=False)
break

View File

@@ -1,10 +1,13 @@
"""Probabilistic GLVQ methods"""
import torch
from prototorch.core.losses import nllr_loss, rslvq_loss
from prototorch.core.pooling import (
stratified_min_pooling,
stratified_sum_pooling,
)
from prototorch.nn.wrappers import LossLayer
from ..core.losses import nllr_loss, rslvq_loss
from ..core.pooling import stratified_min_pooling, stratified_sum_pooling
from ..nn.wrappers import LambdaLayer, LossLayer
from .extras import GaussianPrior, RankScaledGaussianPrior
from .glvq import GLVQ, SiameseGMLVQ
@@ -18,7 +21,7 @@ class CELVQ(GLVQ):
# Loss
self.loss = torch.nn.CrossEntropyLoss()
def shared_step(self, batch, batch_idx, optimizer_idx=None):
def shared_step(self, batch, batch_idx):
x, y = batch
out = self.compute_distances(x) # [None, num_protos]
_, plabels = self.proto_layer()
@@ -34,17 +37,24 @@ class ProbabilisticLVQ(GLVQ):
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
super().__init__(hparams, **kwargs)
self.conditional_distribution = None
self.rejection_confidence = rejection_confidence
self._conditional_distribution = None
def forward(self, x):
distances = self.compute_distances(x)
conditional = self.conditional_distribution(distances)
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
device=self.device)
posterior = conditional * prior
plabels = self.proto_layer._labels
y_pred = stratified_sum_pooling(posterior, plabels)
if isinstance(plabels, torch.LongTensor) or isinstance(
plabels, torch.cuda.LongTensor): # type: ignore
y_pred = stratified_sum_pooling(posterior, plabels) # type: ignore
else:
raise ValueError("Labels must be LongTensor.")
return y_pred
def predict(self, x):
@@ -53,7 +63,7 @@ class ProbabilisticLVQ(GLVQ):
prediction[confidence < self.rejection_confidence] = -1
return prediction
def training_step(self, batch, batch_idx, optimizer_idx=None):
def training_step(self, batch, batch_idx):
x, y = batch
out = self.forward(x)
_, plabels = self.proto_layer()
@@ -61,6 +71,12 @@ class ProbabilisticLVQ(GLVQ):
loss = batch_loss.sum()
return loss
def conditional_distribution(self, distances):
"""Conditional distribution of distances."""
if self._conditional_distribution is None:
raise ValueError("Conditional distribution is not set.")
return self._conditional_distribution(distances)
class SLVQ(ProbabilisticLVQ):
"""Soft Learning Vector Quantization."""
@@ -72,7 +88,7 @@ class SLVQ(ProbabilisticLVQ):
self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance")
self.conditional_distribution = GaussianPrior(variance)
self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(nllr_loss)
@@ -86,7 +102,7 @@ class RSLVQ(ProbabilisticLVQ):
self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance")
self.conditional_distribution = GaussianPrior(variance)
self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(rslvq_loss)
@@ -107,7 +123,7 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
self.loss = torch.nn.KLDivLoss()
# FIXME
# def training_step(self, batch, batch_idx, optimizer_idx=None):
# def training_step(self, batch, batch_idx):
# x, y = batch
# y_pred = self(x)
# batch_loss = self.loss(y_pred, y)

View File

@@ -2,11 +2,10 @@
import numpy as np
import torch
from prototorch.core.competitions import wtac
from prototorch.core.distances import squared_euclidean_distance
from prototorch.core.losses import NeuralGasEnergy
from ..core.competitions import wtac
from ..core.distances import squared_euclidean_distance
from ..core.losses import NeuralGasEnergy
from ..nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
from .callbacks import GNGCallback
from .extras import ConnectionTopology
@@ -18,6 +17,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
TODO Allow non-2D grids
"""
_grid: torch.Tensor
def __init__(self, hparams, **kwargs):
h, w = hparams.get("shape")
@@ -63,7 +63,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
strict=False,
)
def training_epoch_end(self, training_step_outputs):
def on_training_epoch_end(self, training_step_outputs):
self._sigma = self.hparams.sigma * np.exp(
-self.current_epoch / self.trainer.max_epochs)
@@ -93,10 +93,10 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.hparams.setdefault("age_limit", 10)
self.hparams.setdefault("lm", 1)
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
self.topology_layer = ConnectionTopology(
agelimit=self.hparams.age_limit,
num_prototypes=self.hparams.num_prototypes,
agelimit=self.hparams["age_limit"],
num_prototypes=self.hparams["num_prototypes"],
)
def training_step(self, train_batch, batch_idx):
@@ -109,12 +109,9 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.log("loss", loss)
return loss
# def training_epoch_end(self, training_step_outputs):
# print(f"{self.trainer.lr_schedulers}")
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
class GrowingNeuralGas(NeuralGas):
errors: torch.Tensor
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -124,7 +121,10 @@ class GrowingNeuralGas(NeuralGas):
self.hparams.setdefault("insert_reduction", 0.1)
self.hparams.setdefault("insert_freq", 10)
errors = torch.zeros(self.hparams.num_prototypes, device=self.device)
errors = torch.zeros(
self.hparams["num_prototypes"],
device=self.device,
)
self.register_buffer("errors", errors)
def training_step(self, train_batch, _batch_idx):
@@ -139,7 +139,7 @@ class GrowingNeuralGas(NeuralGas):
dp = d * mask
self.errors += torch.sum(dp * dp)
self.errors *= self.hparams.step_reduction
self.errors *= self.hparams["step_reduction"]
self.topology_layer(d)
self.log("loss", loss)
@@ -148,7 +148,7 @@ class GrowingNeuralGas(NeuralGas):
def configure_callbacks(self):
return [
GNGCallback(
reduction=self.hparams.insert_reduction,
freq=self.hparams.insert_freq,
reduction=self.hparams["insert_reduction"],
freq=self.hparams["insert_freq"],
)
]

View File

@@ -1,15 +1,18 @@
"""Visualization Callbacks."""
import warnings
from typing import Sized
import numpy as np
import pytorch_lightning as pl
import torch
import torchvision
from matplotlib import pyplot as plt
from prototorch.utils.colors import get_colors, get_legend_handles
from prototorch.utils.utils import mesh2d
from pytorch_lightning.loggers import TensorBoardLogger
from torch.utils.data import DataLoader, Dataset
from ..utils.colors import get_colors, get_legend_handles
from ..utils.utils import mesh2d
class Vis2DAbstract(pl.Callback):
@@ -34,8 +37,13 @@ class Vis2DAbstract(pl.Callback):
if data:
if isinstance(data, Dataset):
x, y = next(iter(DataLoader(data, batch_size=len(data))))
elif isinstance(data, torch.utils.data.DataLoader):
if isinstance(data, Sized):
x, y = next(iter(DataLoader(data, batch_size=len(data))))
else:
# TODO: Add support for non-sized datasets
raise NotImplementedError(
"Data must be a dataset with a __len__ method.")
elif isinstance(data, DataLoader):
x = torch.tensor([])
y = torch.tensor([])
for x_b, y_b in data:
@@ -123,7 +131,7 @@ class Vis2DAbstract(pl.Callback):
else:
plt.show(block=self.block)
def on_epoch_end(self, trainer, pl_module):
def on_train_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
self.visualize(pl_module)
@@ -132,6 +140,9 @@ class Vis2DAbstract(pl.Callback):
def on_train_end(self, trainer, pl_module):
plt.close()
def visualize(self, pl_module):
raise NotImplementedError
class VisGLVQ2D(Vis2DAbstract):
@@ -292,30 +303,45 @@ class VisImgComp(Vis2DAbstract):
self.add_embedding = add_embedding
self.embedding_data = embedding_data
def on_train_start(self, trainer, pl_module):
tb = pl_module.logger.experiment
if self.add_embedding:
ind = np.random.choice(len(self.x_train),
size=self.embedding_data,
replace=False)
data = self.x_train[ind]
tb.add_embedding(data.view(len(ind), -1),
label_img=data,
global_step=None,
tag="Data Embedding",
metadata=self.y_train[ind],
metadata_header=None)
def on_train_start(self, _, pl_module):
if isinstance(pl_module.logger, TensorBoardLogger):
tb = pl_module.logger.experiment
if self.random_data:
ind = np.random.choice(len(self.x_train),
size=self.random_data,
replace=False)
data = self.x_train[ind]
grid = torchvision.utils.make_grid(data, nrow=self.num_columns)
tb.add_image(tag="Data",
img_tensor=grid,
global_step=None,
dataformats=self.dataformats)
# Add embedding
if self.add_embedding:
if self.x_train is not None and self.y_train is not None:
ind = np.random.choice(len(self.x_train),
size=self.embedding_data,
replace=False)
data = self.x_train[ind]
tb.add_embedding(data.view(len(ind), -1),
label_img=data,
global_step=None,
tag="Data Embedding",
metadata=self.y_train[ind],
metadata_header=None)
else:
raise ValueError("No data for add embedding flag")
# Random Data
if self.random_data:
if self.x_train is not None:
ind = np.random.choice(len(self.x_train),
size=self.random_data,
replace=False)
data = self.x_train[ind]
grid = torchvision.utils.make_grid(data,
nrow=self.num_columns)
tb.add_image(tag="Data",
img_tensor=grid,
global_step=None,
dataformats=self.dataformats)
else:
raise ValueError("No data for random data flag")
else:
warnings.warn(
f"TensorBoardLogger is required, got {type(pl_module.logger)}")
def add_to_tensorboard(self, trainer, pl_module):
tb = pl_module.logger.experiment

View File

@@ -1,195 +1,193 @@
"""prototorch.models test suite."""
import prototorch as pt
import pytest
import torch
import prototorch.models
def test_glvq_model_build():
model = pt.models.GLVQ(
model = prototorch.models.GLVQ(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_glvq1_model_build():
model = pt.models.GLVQ1(
model = prototorch.models.GLVQ1(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_glvq21_model_build():
model = pt.models.GLVQ1(
model = prototorch.models.GLVQ1(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_gmlvq_model_build():
model = pt.models.GMLVQ(
model = prototorch.models.GMLVQ(
{
"distribution": (3, 2),
"input_dim": 2,
"latent_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_grlvq_model_build():
model = pt.models.GRLVQ(
model = prototorch.models.GRLVQ(
{
"distribution": (3, 2),
"input_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_gtlvq_model_build():
model = pt.models.GTLVQ(
model = prototorch.models.GTLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_lgmlvq_model_build():
model = pt.models.LGMLVQ(
model = prototorch.models.LGMLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_image_glvq_model_build():
model = pt.models.ImageGLVQ(
model = prototorch.models.ImageGLVQ(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(16),
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_image_gmlvq_model_build():
model = pt.models.ImageGMLVQ(
model = prototorch.models.ImageGMLVQ(
{
"distribution": (3, 2),
"input_dim": 16,
"latent_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(16),
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_image_gtlvq_model_build():
model = pt.models.ImageGMLVQ(
model = prototorch.models.ImageGMLVQ(
{
"distribution": (3, 2),
"input_dim": 16,
"latent_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(16),
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_siamese_glvq_model_build():
model = pt.models.SiameseGLVQ(
model = prototorch.models.SiameseGLVQ(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(4),
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_siamese_gmlvq_model_build():
model = pt.models.SiameseGMLVQ(
model = prototorch.models.SiameseGMLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(4),
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_siamese_gtlvq_model_build():
model = pt.models.SiameseGTLVQ(
model = prototorch.models.SiameseGTLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=pt.initializers.RNCI(4),
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_knn_model_build():
train_ds = pt.datasets.Iris(dims=[0, 2])
model = pt.models.KNN(dict(k=3), data=train_ds)
train_ds = prototorch.datasets.Iris(dims=[0, 2])
model = prototorch.models.KNN(dict(k=3), data=train_ds)
def test_lvq1_model_build():
model = pt.models.LVQ1(
model = prototorch.models.LVQ1(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_lvq21_model_build():
model = pt.models.LVQ21(
model = prototorch.models.LVQ21(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_median_lvq_model_build():
model = pt.models.MedianLVQ(
model = prototorch.models.MedianLVQ(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_celvq_model_build():
model = pt.models.CELVQ(
model = prototorch.models.CELVQ(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_rslvq_model_build():
model = pt.models.RSLVQ(
model = prototorch.models.RSLVQ(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_slvq_model_build():
model = pt.models.SLVQ(
model = prototorch.models.SLVQ(
{"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_growing_neural_gas_model_build():
model = pt.models.GrowingNeuralGas(
model = prototorch.models.GrowingNeuralGas(
{"num_prototypes": 5},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_kohonen_som_model_build():
model = pt.models.KohonenSOM(
model = prototorch.models.KohonenSOM(
{"shape": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_neural_gas_model_build():
model = pt.models.NeuralGas(
model = prototorch.models.NeuralGas(
{"num_prototypes": 5},
prototypes_initializer=pt.initializers.RNCI(2),
prototypes_initializer=prototorch.initializers.RNCI(2),
)