34 Commits
v0.5.0 ... main

Author SHA1 Message Date
Alexander Engelsberger
d4bf6dbbe9 build: bump version 0.7.0 → 0.7.1 2023-10-25 15:56:53 +02:00
Alexander Engelsberger
c99fdb436c ci: update action to pyproject toml workflow 2023-10-25 15:56:19 +02:00
Alexander Engelsberger
28ac5f5ed9 build: bump version 0.6.0 → 0.7.0 2023-10-25 15:19:04 +02:00
Alexander Engelsberger
b7f510a9fe chore: update bumpversion config 2023-10-25 15:18:45 +02:00
Alexander Engelsberger
781ef93b06 ci: remove Python 3.12 2023-10-25 15:09:14 +02:00
Alexander Engelsberger
072e61b3cd ci: Add Python 3.12 2023-10-25 15:04:05 +02:00
Alexander Engelsberger
71167a8f77 chore: remove optimizer_idx from all steps 2023-10-25 15:03:13 +02:00
Alexander Engelsberger
60990f42d2 fix: update import in tests 2023-06-20 21:18:28 +02:00
Alexander Engelsberger
1e83c439f7 ci: Trigger example test 2023-06-20 19:29:59 +02:00
Alexander Engelsberger
cbbbbeda98 fix: setuptools configuration 2023-06-20 19:25:35 +02:00
Alexander Engelsberger
1b5093627e build: bump version 0.5.4 → 0.6.0 2023-06-20 18:50:03 +02:00
Alexander Engelsberger
497da90f9c chore: small changes to configuration 2023-06-20 18:49:57 +02:00
Alexander Engelsberger
2a665e220f fix: use multiclass accuracy by default 2023-06-20 18:30:18 +02:00
Alexander Engelsberger
4cd6aee330 chore: replace config by pyproject.toml 2023-06-20 18:30:05 +02:00
Alexander Engelsberger
634ef86a2c fix: example test fixed 2023-06-20 17:42:36 +02:00
Alexander Engelsberger
72e9587a10 fix: remove removed CLI syntax from examples 2023-06-20 17:30:21 +02:00
Alexander Engelsberger
f5e1edf31f ci: upgrade workflows 2023-06-20 16:39:13 +02:00
Alexander Engelsberger
5e5675d12e ci: upgrade pre-commit config 2023-06-20 16:37:11 +02:00
Alexander Engelsberger
16f410e809 fix: style fixes 2023-03-09 15:59:49 +01:00
Alexander Engelsberger
46dfb82371 Fix: saving GMLVQ and GRLVQ fixed 2023-03-09 15:50:13 +01:00
Alexander Engelsberger
87fa3f0729 build: bump version 0.5.3 → 0.5.4 2023-03-02 17:29:54 +00:00
Alexander Engelsberger
08db94d507 fix: fix entrypoint configuration 2023-03-02 17:29:23 +00:00
Alexander Engelsberger
8ecf9948b2 build: bump version 0.5.2 → 0.5.3 2023-03-02 17:24:11 +00:00
Alexander Engelsberger
c5f0b86114 chore: upgrade pre commit 2023-03-02 17:23:41 +00:00
Alexander Engelsberger
7506614ada fix: Update dependency versions 2023-03-02 17:05:39 +00:00
Alexander Engelsberger
fcd944d3ff build: bump version 0.5.1 → 0.5.2 2022-06-01 14:25:44 +02:00
Alexander Engelsberger
054720dd7b fix(hotfix): Protobuf error workaround 2022-06-01 14:14:57 +02:00
Alexander Engelsberger
d16a0de202 build: bump version 0.5.0 → 0.5.1 2022-05-17 12:04:08 +02:00
Alexander Engelsberger
76fea3f881 chore: update all examples to pytorch 1.6 2022-05-17 12:03:43 +02:00
Alexander Engelsberger
c00513ae0d chore: minor updates and version updates 2022-05-17 12:00:52 +02:00
Alexander Engelsberger
bccef8bef0 chore: replace relative imports 2022-05-16 11:12:53 +02:00
Alexander Engelsberger
29ee326b85 ci: Update PreCommit hooks 2022-05-16 11:11:48 +02:00
Jensun Ravichandran
055568dc86 fix: glvq_iris example works again 2022-05-09 17:33:52 +02:00
Alexander Engelsberger
3a7328e290 chore: small changes 2022-04-27 10:37:12 +02:00
40 changed files with 1176 additions and 749 deletions

View File

@@ -1,13 +1,13 @@
[bumpversion] [bumpversion]
current_version = 0.5.0 current_version = 0.7.1
commit = True commit = True
tag = True tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+) parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
serialize = {major}.{minor}.{patch} serialize = {major}.{minor}.{patch}
message = build: bump version {current_version} → {new_version} message = build: bump version {current_version} → {new_version}
[bumpversion:file:setup.py] [bumpversion:file:pyproject.toml]
[bumpversion:file:./prototorch/models/__init__.py] [bumpversion:file:./src/prototorch/models/__init__.py]
[bumpversion:file:./docs/source/conf.py] [bumpversion:file:./docs/source/conf.py]

View File

@@ -6,20 +6,20 @@ name: examples
on: on:
push: push:
paths: paths:
- 'examples/**.py' - "examples/**.py"
jobs: jobs:
cpu: cpu:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v3
- name: Set up Python 3.10 - name: Set up Python 3.11
uses: actions/setup-python@v2 uses: actions/setup-python@v4
with: with:
python-version: "3.10" python-version: "3.11"
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
- name: Run examples - name: Run examples
run: | run: |
./tests/test_examples.sh examples/ ./tests/test_examples.sh examples/

View File

@@ -6,70 +6,70 @@ name: tests
on: on:
push: push:
pull_request: pull_request:
branches: [ master ] branches: [master]
jobs: jobs:
style: style:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v3
- name: Set up Python 3.10 - name: Set up Python 3.11
uses: actions/setup-python@v2 uses: actions/setup-python@v4
with: with:
python-version: "3.10" python-version: "3.11"
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
- uses: pre-commit/action@v2.0.3 - uses: pre-commit/action@v3.0.0
compatibility: compatibility:
needs: style needs: style
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
python-version: ["3.7", "3.8", "3.9", "3.10"] python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, windows-latest] os: [ubuntu-latest, windows-latest]
exclude: exclude:
- os: windows-latest - os: windows-latest
python-version: "3.7" python-version: "3.8"
- os: windows-latest - os: windows-latest
python-version: "3.8" python-version: "3.9"
- os: windows-latest - os: windows-latest
python-version: "3.9" python-version: "3.10"
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }} - name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2 uses: actions/setup-python@v4
with: with:
python-version: ${{ matrix.python-version }} python-version: ${{ matrix.python-version }}
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
- name: Test with pytest - name: Test with pytest
run: | run: |
pytest pytest
publish_pypi: publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags') if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility needs: compatibility
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v3
- name: Set up Python 3.10 - name: Set up Python 3.11
uses: actions/setup-python@v2 uses: actions/setup-python@v4
with: with:
python-version: "3.10" python-version: "3.11"
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
pip install wheel pip install build
- name: Build package - name: Build package
run: python setup.py sdist bdist_wheel run: python -m build . -C verbose
- name: Publish a Python distribution to PyPI - name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1 uses: pypa/gh-action-pypi-publish@release/v1
with: with:
user: __token__ user: __token__
password: ${{ secrets.PYPI_API_TOKEN }} password: ${{ secrets.PYPI_API_TOKEN }}

View File

@@ -2,52 +2,53 @@
# See https://pre-commit.com/hooks.html for more hooks # See https://pre-commit.com/hooks.html for more hooks
repos: repos:
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.1.0 rev: v4.4.0
hooks: hooks:
- id: trailing-whitespace - id: trailing-whitespace
- id: end-of-file-fixer - id: end-of-file-fixer
- id: check-yaml - id: check-yaml
- id: check-added-large-files - id: check-added-large-files
- id: check-ast - id: check-ast
- id: check-case-conflict - id: check-case-conflict
- repo: https://github.com/myint/autoflake - repo: https://github.com/myint/autoflake
rev: v1.4 rev: v2.1.1
hooks: hooks:
- id: autoflake - id: autoflake
- repo: http://github.com/PyCQA/isort - repo: http://github.com/PyCQA/isort
rev: 5.10.1 rev: 5.12.0
hooks: hooks:
- id: isort - id: isort
- repo: https://github.com/pre-commit/mirrors-mypy - repo: https://github.com/pre-commit/mirrors-mypy
rev: v0.931 rev: v1.3.0
hooks: hooks:
- id: mypy - id: mypy
files: prototorch files: prototorch
additional_dependencies: [types-pkg_resources] additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf - repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0 rev: v0.32.0
hooks: hooks:
- id: yapf - id: yapf
additional_dependencies: ["toml"]
- repo: https://github.com/pre-commit/pygrep-hooks - repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.9.0 rev: v1.10.0
hooks: hooks:
- id: python-use-type-annotations - id: python-use-type-annotations
- id: python-no-log-warn - id: python-no-log-warn
- id: python-check-blanket-noqa - id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade - repo: https://github.com/asottile/pyupgrade
rev: v2.31.0 rev: v3.7.0
hooks: hooks:
- id: pyupgrade - id: pyupgrade
- repo: https://github.com/si-cim/gitlint - repo: https://github.com/si-cim/gitlint
rev: v0.15.2-unofficial rev: v0.15.2-unofficial
hooks: hooks:
- id: gitlint - id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename] args: [--contrib=CT1, --ignore=B6, --msg-filename]

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags # The full version, including alpha/beta/rc tags
# #
release = "0.5.0" release = "0.7.1"
# -- General configuration --------------------------------------------------- # -- General configuration ---------------------------------------------------

View File

@@ -1,25 +1,32 @@
"""CBC example using the Iris dataset.""" """CBC example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import CBC, VisCBC2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32) train_loader = DataLoader(train_ds, batch_size=32)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -30,23 +37,32 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.CBC( model = CBC(
hparams, hparams,
components_initializer=pt.initializers.SSCI(train_ds, noise=0.01), components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
reasonings_iniitializer=pt.initializers. reasonings_initializer=pt.initializers.
PurePositiveReasoningsInitializer(), PurePositiveReasoningsInitializer(),
) )
# Callbacks # Callbacks
vis = pt.models.VisCBC2D(data=train_ds, vis = VisCBC2D(
title="CBC Iris Example", data=train_ds,
resolution=100, title="CBC Iris Example",
axis_off=True) resolution=100,
axis_off=True,
)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
detect_anomaly=True,
log_every_n_steps=1,
max_epochs=1000,
) )
# Training loop # Training loop

View File

@@ -1,30 +1,50 @@
"""Dynamically prune 'loser' prototypes in GLVQ-type models.""" """Dynamically prune 'loser' prototypes in GLVQ-type models."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
CELVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
num_classes = 4 num_classes = 4
num_features = 2 num_features = 2
num_clusters = 1 num_clusters = 1
train_ds = pt.datasets.Random(num_samples=500, train_ds = pt.datasets.Random(
num_classes=num_classes, num_samples=500,
num_features=num_features, num_classes=num_classes,
num_clusters=num_clusters, num_features=num_features,
separation=3.0, num_clusters=num_clusters,
seed=42) separation=3.0,
seed=42,
)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256) train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters # Hyperparameters
prototypes_per_class = num_clusters * 5 prototypes_per_class = num_clusters * 5
@@ -34,7 +54,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.CELVQ( model = CELVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.FVCI(2, 3.0), prototypes_initializer=pt.initializers.FVCI(2, 3.0),
) )
@@ -43,18 +63,18 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(train_ds) vis = VisGLVQ2D(train_ds)
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, # prune prototype if it wins less than 1% threshold=0.01, # prune prototype if it wins less than 1%
idle_epochs=20, # pruning too early may cause problems idle_epochs=20, # pruning too early may cause problems
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
frequency=1, # prune every epoch frequency=1, # prune every epoch
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@@ -64,17 +84,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
es, es,
], ],
progress_bar_refresh_rate=0, detect_anomaly=True,
terminate_on_nan=True, log_every_n_steps=1,
weights_summary="full", max_epochs=1000,
accelerator="ddp",
) )
# Training loop # Training loop

View File

@@ -1,23 +1,35 @@
"""GLVQ example using the Iris dataset.""" """GLVQ example using the Iris dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -29,7 +41,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GLVQ( model = GLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
@@ -41,14 +53,19 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
accelerator="ddp", callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
@@ -58,8 +75,8 @@ if __name__ == "__main__":
trainer.save_checkpoint("./glvq_iris.ckpt") trainer.save_checkpoint("./glvq_iris.ckpt")
# Load saved model # Load saved model
new_model = pt.models.GLVQ.load_from_checkpoint( new_model = GLVQ.load_from_checkpoint(
checkpoint_path="./glvq_iris.ckpt", checkpoint_path="./glvq_iris.ckpt",
strict=False, strict=False,
) )
print(new_model) logging.info(new_model)

View File

@@ -1,23 +1,36 @@
"""GMLVQ example using the Iris dataset.""" """GMLVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GMLVQ, VisGMLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -32,7 +45,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GMLVQ( model = GMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
@@ -44,15 +57,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 4) model.example_input_array = torch.zeros(4, 4)
# Callbacks # Callbacks
vis = pt.models.VisGMLVQ2D(data=train_ds) vis = VisGMLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
accelerator="ddp", callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
trainer.fit(model, train_loader) trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

View File

@@ -1,17 +1,33 @@
"""GMLVQ example using the MNIST dataset.""" """GMLVQ example using the MNIST dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGMLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms from torchvision import transforms
from torchvision.datasets import MNIST from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
@@ -33,12 +49,8 @@ if __name__ == "__main__":
) )
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
num_workers=0, test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
# Hyperparameters # Hyperparameters
num_classes = 10 num_classes = 10
@@ -52,14 +64,14 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.ImageGMLVQ( model = ImageGMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
) )
# Callbacks # Callbacks
vis = pt.models.VisImgComp( vis = VisImgComp(
data=train_ds, data=train_ds,
num_columns=10, num_columns=10,
show=False, show=False,
@@ -69,14 +81,14 @@ if __name__ == "__main__":
embedding_data=200, embedding_data=200,
flatten_data=False, flatten_data=False,
) )
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=1, idle_epochs=1,
prune_quota_per_epoch=10, prune_quota_per_epoch=10,
frequency=1, frequency=1,
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=15, patience=15,
@@ -85,16 +97,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
# es, es,
], ],
terminate_on_nan=True, max_epochs=1000,
weights_summary=None, log_every_n_steps=1,
# accelerator="ddp", detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,22 +1,39 @@
"""GMLVQ example using the spiral dataset.""" """GMLVQ example using the spiral dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GMLVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5) train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256) train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters # Hyperparameters
num_classes = 2 num_classes = 2
@@ -32,19 +49,19 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GMLVQ( model = GMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
) )
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D( vis = VisGLVQ2D(
train_ds, train_ds,
show_last_only=False, show_last_only=False,
block=False, block=False,
) )
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=10, idle_epochs=10,
prune_quota_per_epoch=5, prune_quota_per_epoch=5,
@@ -53,7 +70,7 @@ if __name__ == "__main__":
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=1.0, min_delta=1.0,
patience=5, patience=5,
@@ -62,14 +79,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
es, es,
pruning, pruning,
], ],
terminate_on_nan=True, max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,23 +1,33 @@
"""Growing Neural Gas example using the Iris dataset.""" """Growing Neural Gas example using the Iris dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GrowingNeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Prepare the data # Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -27,7 +37,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GrowingNeuralGas( model = GrowingNeuralGas(
hparams, hparams,
prototypes_initializer=pt.initializers.ZCI(2), prototypes_initializer=pt.initializers.ZCI(2),
) )
@@ -36,17 +46,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Model summary # Model summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisNG2D(data=train_loader) vis = VisNG2D(data=train_loader)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=100, max_epochs=100,
callbacks=[vis], log_every_n_steps=1,
weights_summary="full", detect_anomaly=True,
) )
# Training loop # Training loop

77
examples/grlvq_iris.py Normal file
View File

@@ -0,0 +1,77 @@
"""GMLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GRLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris([0, 1])
# Dataloaders
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
input_dim=2,
distribution={
"num_classes": 3,
"per_class": 2
},
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = GRLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = VisSiameseGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=5,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

View File

@@ -1,17 +1,34 @@
"""GTLVQ example using the MNIST dataset.""" """GTLVQ example using the MNIST dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGTLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms from torchvision import transforms
from torchvision.datasets import MNIST from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
@@ -33,12 +50,8 @@ if __name__ == "__main__":
) )
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
num_workers=0, test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
# Hyperparameters # Hyperparameters
num_classes = 10 num_classes = 10
@@ -52,7 +65,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.ImageGTLVQ( model = ImageGTLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
@@ -61,7 +74,7 @@ if __name__ == "__main__":
next(iter(train_loader))[0].reshape(256, 28 * 28))) next(iter(train_loader))[0].reshape(256, 28 * 28)))
# Callbacks # Callbacks
vis = pt.models.VisImgComp( vis = VisImgComp(
data=train_ds, data=train_ds,
num_columns=10, num_columns=10,
show=False, show=False,
@@ -71,14 +84,14 @@ if __name__ == "__main__":
embedding_data=200, embedding_data=200,
flatten_data=False, flatten_data=False,
) )
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=1, idle_epochs=1,
prune_quota_per_epoch=10, prune_quota_per_epoch=10,
frequency=1, frequency=1,
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=15, patience=15,
@@ -88,16 +101,18 @@ if __name__ == "__main__":
# Setup trainer # Setup trainer
# using GPUs here is strongly recommended! # using GPUs here is strongly recommended!
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
# es, es,
], ],
terminate_on_nan=True, max_epochs=1000,
weights_summary=None, log_every_n_steps=1,
accelerator="ddp", detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,45 +1,58 @@
"""Localized-GTLVQ example using the Moons dataset.""" """Localized-GTLVQ example using the Moons dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GTLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=2) seed_everything(seed=2)
# Dataset # Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42) train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, train_loader = DataLoader(
batch_size=256, train_ds,
shuffle=True) batch_size=256,
shuffle=True,
)
# Hyperparameters # Hyperparameters
# Latent_dim should be lower than input dim. # Latent_dim should be lower than input dim.
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1) hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
# Initialize the model # Initialize the model
model = pt.models.GTLVQ( model = GTLVQ(hparams,
hparams, prototypes_initializer=pt.initializers.SMCI(train_ds)) prototypes_initializer=pt.initializers.SMCI(train_ds))
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_acc", monitor="train_acc",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@@ -49,14 +62,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
es, es,
], ],
weights_summary="full", max_epochs=1000,
accelerator="ddp", log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,60 +1,75 @@
"""k-NN example using the Iris dataset from scikit-learn.""" """k-NN example using the Iris dataset from scikit-learn."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from prototorch.models import KNN, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
X, y = load_iris(return_X_y=True) X, y = load_iris(return_X_y=True)
X = X[:, [0, 2]] X = X[:, 0:3:2]
X_train, X_test, y_train, y_test = train_test_split(X, X_train, X_test, y_train, y_test = train_test_split(
y, X,
test_size=0.5, y,
random_state=42) test_size=0.5,
random_state=42,
)
train_ds = pt.datasets.NumpyDataset(X_train, y_train) train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test) test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16) train_loader = DataLoader(train_ds, batch_size=16)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16) test_loader = DataLoader(test_ds, batch_size=16)
# Hyperparameters # Hyperparameters
hparams = dict(k=5) hparams = dict(k=5)
# Initialize the model # Initialize the model
model = pt.models.KNN(hparams, data=train_ds) model = KNN(hparams, data=train_ds)
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D( vis = VisGLVQ2D(
data=(X_train, y_train), data=(X_train, y_train),
resolution=200, resolution=200,
block=True, block=True,
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=1, max_epochs=1,
callbacks=[vis], callbacks=[
weights_summary="full", vis,
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
@@ -63,7 +78,7 @@ if __name__ == "__main__":
# Recall # Recall
y_pred = model.predict(torch.tensor(X_train)) y_pred = model.predict(torch.tensor(X_train))
print(y_pred) logging.info(y_pred)
# Test # Test
trainer.test(model, dataloaders=test_loader) trainer.test(model, dataloaders=test_loader)

View File

@@ -1,12 +1,21 @@
"""Kohonen Self Organizing Map.""" """Kohonen Self Organizing Map."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from prototorch.models import KohonenSOM
from prototorch.utils.colors import hex_to_rgb from prototorch.utils.colors import hex_to_rgb
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader, TensorDataset
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Vis2DColorSOM(pl.Callback): class Vis2DColorSOM(pl.Callback):
@@ -18,7 +27,7 @@ class Vis2DColorSOM(pl.Callback):
self.data = data self.data = data
self.pause_time = pause_time self.pause_time = pause_time
def on_epoch_end(self, trainer, pl_module): def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
ax = self.fig.gca() ax = self.fig.gca()
ax.cla() ax.cla()
ax.set_title(self.title) ax.set_title(self.title)
@@ -31,12 +40,14 @@ class Vis2DColorSOM(pl.Callback):
d = pl_module.compute_distances(self.data) d = pl_module.compute_distances(self.data)
wp = pl_module.predict_from_distances(d) wp = pl_module.predict_from_distances(d)
for i, iloc in enumerate(wp): for i, iloc in enumerate(wp):
plt.text(iloc[1], plt.text(
iloc[0], iloc[1],
cnames[i], iloc[0],
ha="center", color_names[i],
va="center", ha="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0)) va="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0),
)
if trainer.current_epoch != trainer.max_epochs - 1: if trainer.current_epoch != trainer.max_epochs - 1:
plt.pause(self.pause_time) plt.pause(self.pause_time)
@@ -47,11 +58,12 @@ class Vis2DColorSOM(pl.Callback):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Prepare the data # Prepare the data
hex_colors = [ hex_colors = [
@@ -59,15 +71,15 @@ if __name__ == "__main__":
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff", "#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500" "#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
] ]
cnames = [ color_names = [
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green", "black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey", "red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
"lightgrey", "olive", "purple", "orange" "lightgrey", "olive", "purple", "orange"
] ]
colors = list(hex_to_rgb(hex_colors)) colors = list(hex_to_rgb(hex_colors))
data = torch.Tensor(colors) / 255.0 data = torch.Tensor(colors) / 255.0
train_ds = torch.utils.data.TensorDataset(data) train_ds = TensorDataset(data)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8) train_loader = DataLoader(train_ds, batch_size=8)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -78,7 +90,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.KohonenSOM( model = KohonenSOM(
hparams, hparams,
prototypes_initializer=pt.initializers.RNCI(3), prototypes_initializer=pt.initializers.RNCI(3),
) )
@@ -87,17 +99,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 3) model.example_input_array = torch.zeros(4, 3)
# Model summary # Model summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = Vis2DColorSOM(data=data) vis = Vis2DColorSOM(data=data)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=500, max_epochs=500,
callbacks=[vis], callbacks=[
weights_summary="full", vis,
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,27 +1,36 @@
"""Localized-GMLVQ example using the Moons dataset.""" """Localized-GMLVQ example using the Moons dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import LGMLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=2) seed_everything(seed=2)
# Dataset # Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42) train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
batch_size=256,
shuffle=True)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -31,7 +40,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.LGMLVQ( model = LGMLVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
) )
@@ -40,11 +49,11 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_acc", monitor="train_acc",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@@ -54,14 +63,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
es, es,
], ],
weights_summary="full", log_every_n_steps=1,
accelerator="ddp", max_epochs=1000,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,10 +1,22 @@
"""LVQMLN example using all four dimensions of the Iris dataset.""" """LVQMLN example using all four dimensions of the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
LVQMLN,
PruneLoserPrototypes,
VisSiameseGLVQ2D,
)
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module): class Backbone(torch.nn.Module):
@@ -27,17 +39,18 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -50,7 +63,7 @@ if __name__ == "__main__":
backbone = Backbone() backbone = Backbone()
# Initialize the model # Initialize the model
model = pt.models.LVQMLN( model = LVQMLN(
hparams, hparams,
prototypes_initializer=pt.initializers.SSCI( prototypes_initializer=pt.initializers.SSCI(
train_ds, train_ds,
@@ -59,18 +72,15 @@ if __name__ == "__main__":
backbone=backbone, backbone=backbone,
) )
# Model summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisSiameseGLVQ2D( vis = VisSiameseGLVQ2D(
data=train_ds, data=train_ds,
map_protos=False, map_protos=False,
border=0.1, border=0.1,
resolution=500, resolution=500,
axis_off=True, axis_off=True,
) )
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=20, idle_epochs=20,
prune_quota_per_epoch=2, prune_quota_per_epoch=2,
@@ -79,12 +89,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
], ],
log_every_n_steps=1,
max_epochs=1000,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,28 +1,40 @@
"""Median-LVQ example using the Iris dataset.""" """Median-LVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import MedianLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader( train_loader = DataLoader(
train_ds, train_ds,
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
) )
# Initialize the model # Initialize the model
model = pt.models.MedianLVQ( model = MedianLVQ(
hparams=dict(distribution=(3, 2), lr=0.01), hparams=dict(distribution=(3, 2), lr=0.01),
prototypes_initializer=pt.initializers.SSCI(train_ds), prototypes_initializer=pt.initializers.SSCI(train_ds),
) )
@@ -31,8 +43,8 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_acc", monitor="train_acc",
min_delta=0.01, min_delta=0.01,
patience=5, patience=5,
@@ -42,10 +54,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis, es], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,23 +1,35 @@
"""Neural Gas example using the Iris dataset.""" """Neural Gas example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import NeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Prepare and pre-process the dataset # Prepare and pre-process the dataset
x_train, y_train = load_iris(return_X_y=True) x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]] x_train = x_train[:, 0:3:2]
scaler = StandardScaler() scaler = StandardScaler()
scaler.fit(x_train) scaler.fit(x_train)
x_train = scaler.transform(x_train) x_train = scaler.transform(x_train)
@@ -25,7 +37,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.NumpyDataset(x_train, y_train) train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -35,7 +47,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.NeuralGas( model = NeuralGas(
hparams, hparams,
prototypes_initializer=pt.core.ZCI(2), prototypes_initializer=pt.core.ZCI(2),
lr_scheduler=ExponentialLR, lr_scheduler=ExponentialLR,
@@ -45,17 +57,20 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisNG2D(data=train_ds) vis = VisNG2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,25 +1,34 @@
"""RSLVQ example using the Iris dataset.""" """RSLVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import RSLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@@ -33,7 +42,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.RSLVQ( model = RSLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
@@ -42,19 +51,20 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
terminate_on_nan=True, fast_dev_run=args.fast_dev_run,
weights_summary="full", callbacks=[
accelerator="ddp", vis,
],
detect_anomaly=True,
max_epochs=100,
log_every_n_steps=1,
) )
# Training loop # Training loop

View File

@@ -1,10 +1,18 @@
"""Siamese GLVQ example using all four dimensions of the Iris dataset.""" """Siamese GLVQ example using all four dimensions of the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module): class Backbone(torch.nn.Module):
@@ -27,46 +35,50 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=2) seed_everything(seed=2)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
distribution=[1, 2, 3], distribution=[1, 2, 3],
proto_lr=0.01, lr=0.01,
bb_lr=0.01,
) )
# Initialize the backbone # Initialize the backbone
backbone = Backbone() backbone = Backbone()
# Initialize the model # Initialize the model
model = pt.models.SiameseGLVQ( model = SiameseGLVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone, backbone=backbone,
both_path_gradients=False, both_path_gradients=False,
) )
# Model summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1) vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,10 +1,18 @@
"""Siamese GTLVQ example using all four dimensions of the Iris dataset.""" """Siamese GTLVQ example using all four dimensions of the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module): class Backbone(torch.nn.Module):
@@ -27,46 +35,52 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=2) seed_everything(seed=2)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict(distribution=[1, 2, 3], hparams = dict(
proto_lr=0.01, distribution=[1, 2, 3],
bb_lr=0.01, lr=0.01,
input_dim=2, input_dim=2,
latent_dim=1) latent_dim=1,
)
# Initialize the backbone # Initialize the backbone
backbone = Backbone(latent_size=hparams["input_dim"]) backbone = Backbone(latent_size=hparams["input_dim"])
# Initialize the model # Initialize the model
model = pt.models.SiameseGTLVQ( model = SiameseGTLVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone, backbone=backbone,
both_path_gradients=False, both_path_gradients=False,
) )
# Model summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1) vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@@ -1,24 +1,42 @@
"""Warm-starting GLVQ with prototypes from Growing Neural Gas.""" """Warm-starting GLVQ with prototypes from Growing Neural Gas."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GLVQ,
KNN,
GrowingNeuralGas,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Prepare the data # Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
# Initialize the gng # Initialize the gng
gng = pt.models.GrowingNeuralGas( gng = GrowingNeuralGas(
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1), hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
prototypes_initializer=pt.initializers.ZCI(2), prototypes_initializer=pt.initializers.ZCI(2),
lr_scheduler=ExponentialLR, lr_scheduler=ExponentialLR,
@@ -26,7 +44,7 @@ if __name__ == "__main__":
) )
# Callbacks # Callbacks
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="loss", monitor="loss",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@@ -37,9 +55,14 @@ if __name__ == "__main__":
# Setup trainer for GNG # Setup trainer for GNG
trainer = pl.Trainer( trainer = pl.Trainer(
max_epochs=100, accelerator="cpu",
callbacks=[es], max_epochs=50 if args.fast_dev_run else
weights_summary=None, 1000, # 10 epochs fast dev run reproducible DIV error.
callbacks=[
es,
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
@@ -52,12 +75,12 @@ if __name__ == "__main__":
) )
# Warm-start prototypes # Warm-start prototypes
knn = pt.models.KNN(dict(k=1), data=train_ds) knn = KNN(dict(k=1), data=train_ds)
prototypes = gng.prototypes prototypes = gng.prototypes
plabels = knn.predict(prototypes) plabels = knn.predict(prototypes)
# Initialize the model # Initialize the model
model = pt.models.GLVQ( model = GLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.LCI(prototypes), prototypes_initializer=pt.initializers.LCI(prototypes),
@@ -70,15 +93,15 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.02, threshold=0.02,
idle_epochs=2, idle_epochs=2,
prune_quota_per_epoch=5, prune_quota_per_epoch=5,
frequency=1, frequency=1,
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=10, patience=10,
@@ -88,15 +111,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
es, es,
], ],
weights_summary="full", max_epochs=1000,
accelerator="ddp", log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

90
pyproject.toml Normal file
View File

@@ -0,0 +1,90 @@
[project]
name = "prototorch-models"
version = "0.7.1"
description = "Pre-packaged prototype-based machine learning models using ProtoTorch and PyTorch-Lightning."
authors = [
{ name = "Jensun Ravichandran", email = "jjensun@gmail.com" },
{ name = "Alexander Engelsberger", email = "engelsbe@hs-mittweida.de" },
]
dependencies = ["lightning>=2.0.0", "prototorch>=0.7.5"]
requires-python = ">=3.8"
readme = "README.md"
license = { text = "MIT" }
classifiers = [
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
]
[project.urls]
Homepage = "https://github.com/si-cim/prototorch_models"
Downloads = "https://github.com/si-cim/prototorch_models.git"
[project.optional-dependencies]
dev = ["bumpversion", "pre-commit", "yapf", "toml"]
examples = ["matplotlib", "scikit-learn"]
ci = ["pytest", "pre-commit"]
docs = [
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
all = [
"bumpversion",
"pre-commit",
"yapf",
"toml",
"pytest",
"matplotlib",
"scikit-learn",
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
[build-system]
requires = ["setuptools>=61", "wheel"]
build-backend = "setuptools.build_meta"
[tool.yapf]
based_on_style = "pep8"
spaces_before_comment = 2
split_before_logical_operator = true
[tool.pylint]
disable = ["too-many-arguments", "too-few-public-methods", "fixme"]
[tool.isort]
profile = "hug"
src_paths = ["isort", "test"]
multi_line_output = 3
include_trailing_comma = true
force_grid_wrap = 3
use_parentheses = true
line_length = 79
[tool.mypy]
explicit_package_bases = true
namespace_packages = true

View File

@@ -1,23 +0,0 @@
[yapf]
based_on_style = pep8
spaces_before_comment = 2
split_before_logical_operator = true
[pylint]
disable =
too-many-arguments,
too-few-public-methods,
fixme,
[pycodestyle]
max-line-length = 79
[isort]
profile = hug
src_paths = isort, test
multi_line_output = 3
include_trailing_comma = True
force_grid_wrap = 3
use_parentheses = True
line_length = 79

View File

@@ -1,97 +0,0 @@
"""
######
# # ##### #### ##### #### ##### #### ##### #### # #
# # # # # # # # # # # # # # # # # #
###### # # # # # # # # # # # # # ######
# ##### # # # # # # # # ##### # # #
# # # # # # # # # # # # # # # # #
# # # #### # #### # #### # # #### # #Plugin
ProtoTorch models Plugin Package
"""
from pkg_resources import safe_name
from setuptools import find_namespace_packages, setup
PLUGIN_NAME = "models"
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
with open("README.md", "r") as fh:
long_description = fh.read()
INSTALL_REQUIRES = [
"prototorch>=0.7.3",
"pytorch_lightning>=1.6.0",
"torchmetrics",
]
CLI = [
"jsonargparse",
]
DEV = [
"bumpversion",
"pre-commit",
]
DOCS = [
"recommonmark",
"sphinx",
"nbsphinx",
"ipykernel",
"sphinx_rtd_theme",
"sphinxcontrib-katex",
"sphinxcontrib-bibtex",
]
EXAMPLES = [
"matplotlib",
"scikit-learn",
]
TESTS = [
"codecov",
"pytest",
]
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
setup(
name=safe_name("prototorch_" + PLUGIN_NAME),
version="0.5.0",
description="Pre-packaged prototype-based "
"machine learning models using ProtoTorch and PyTorch-Lightning.",
long_description=long_description,
long_description_content_type="text/markdown",
author="Alexander Engelsberger",
author_email="engelsbe@hs-mittweida.de",
url=PROJECT_URL,
download_url=DOWNLOAD_URL,
license="MIT",
python_requires=">=3.7",
install_requires=INSTALL_REQUIRES,
extras_require={
"dev": DEV,
"examples": EXAMPLES,
"tests": TESTS,
"all": ALL,
},
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.7",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
entry_points={
"prototorch.plugins": f"{PLUGIN_NAME} = prototorch.{PLUGIN_NAME}"
},
packages=find_namespace_packages(include=["prototorch.*"]),
zip_safe=False,
)

View File

@@ -36,4 +36,4 @@ from .unsupervised import (
) )
from .vis import * from .vis import *
__version__ = "0.5.0" __version__ = "0.7.1"

View File

@@ -1,15 +1,24 @@
"""Abstract classes to be inherited by prototorch models.""" """Abstract classes to be inherited by prototorch models."""
import logging
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
import torch.nn.functional as F
import torchmetrics import torchmetrics
from prototorch.core.competitions import WTAC
from ..core.competitions import WTAC from prototorch.core.components import (
from ..core.components import Components, LabeledComponents AbstractComponents,
from ..core.distances import euclidean_distance Components,
from ..core.initializers import LabelsInitializer, ZerosCompInitializer LabeledComponents,
from ..core.pooling import stratified_min_pooling )
from ..nn.wrappers import LambdaLayer from prototorch.core.distances import euclidean_distance
from prototorch.core.initializers import (
LabelsInitializer,
ZerosCompInitializer,
)
from prototorch.core.pooling import stratified_min_pooling
from prototorch.nn.wrappers import LambdaLayer
class ProtoTorchBolt(pl.LightningModule): class ProtoTorchBolt(pl.LightningModule):
@@ -30,7 +39,7 @@ class ProtoTorchBolt(pl.LightningModule):
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict()) self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
def configure_optimizers(self): def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr) optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
if self.lr_scheduler is not None: if self.lr_scheduler is not None:
scheduler = self.lr_scheduler(optimizer, scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs) **self.lr_scheduler_kwargs)
@@ -43,7 +52,10 @@ class ProtoTorchBolt(pl.LightningModule):
return optimizer return optimizer
def reconfigure_optimizers(self): def reconfigure_optimizers(self):
self.trainer.strategy.setup_optimizers(self.trainer) if self.trainer:
self.trainer.strategy.setup_optimizers(self.trainer)
else:
logging.warning("No trainer to reconfigure optimizers!")
def __repr__(self): def __repr__(self):
surep = super().__repr__() surep = super().__repr__()
@@ -53,12 +65,13 @@ class ProtoTorchBolt(pl.LightningModule):
class PrototypeModel(ProtoTorchBolt): class PrototypeModel(ProtoTorchBolt):
proto_layer: AbstractComponents
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
distance_fn = kwargs.get("distance_fn", euclidean_distance) distance_fn = kwargs.get("distance_fn", euclidean_distance)
self.distance_layer = LambdaLayer(distance_fn) self.distance_layer = LambdaLayer(distance_fn, name="distance_fn")
@property @property
def num_prototypes(self): def num_prototypes(self):
@@ -75,16 +88,17 @@ class PrototypeModel(ProtoTorchBolt):
def add_prototypes(self, *args, **kwargs): def add_prototypes(self, *args, **kwargs):
self.proto_layer.add_components(*args, **kwargs) self.proto_layer.add_components(*args, **kwargs)
self.hparams.distribution = self.proto_layer.distribution self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers() self.reconfigure_optimizers()
def remove_prototypes(self, indices): def remove_prototypes(self, indices):
self.proto_layer.remove_components(indices) self.proto_layer.remove_components(indices)
self.hparams.distribution = self.proto_layer.distribution self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers() self.reconfigure_optimizers()
class UnsupervisedPrototypeModel(PrototypeModel): class UnsupervisedPrototypeModel(PrototypeModel):
proto_layer: Components
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@@ -93,7 +107,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
prototypes_initializer = kwargs.get("prototypes_initializer", None) prototypes_initializer = kwargs.get("prototypes_initializer", None)
if prototypes_initializer is not None: if prototypes_initializer is not None:
self.proto_layer = Components( self.proto_layer = Components(
self.hparams.num_prototypes, self.hparams["num_prototypes"],
initializer=prototypes_initializer, initializer=prototypes_initializer,
) )
@@ -108,6 +122,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
class SupervisedPrototypeModel(PrototypeModel): class SupervisedPrototypeModel(PrototypeModel):
proto_layer: LabeledComponents
def __init__(self, hparams, skip_proto_layer=False, **kwargs): def __init__(self, hparams, skip_proto_layer=False, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@@ -127,13 +142,13 @@ class SupervisedPrototypeModel(PrototypeModel):
labels_initializer=labels_initializer, labels_initializer=labels_initializer,
) )
proto_shape = self.proto_layer.components.shape[1:] proto_shape = self.proto_layer.components.shape[1:]
self.hparams.initialized_proto_shape = proto_shape self.hparams["initialized_proto_shape"] = proto_shape
else: else:
# when restoring a checkpointed model # when restoring a checkpointed model
self.proto_layer = LabeledComponents( self.proto_layer = LabeledComponents(
distribution=distribution, distribution=distribution,
components_initializer=ZerosCompInitializer( components_initializer=ZerosCompInitializer(
self.hparams.initialized_proto_shape), self.hparams["initialized_proto_shape"]),
) )
self.competition_layer = WTAC() self.competition_layer = WTAC()
@@ -154,7 +169,7 @@ class SupervisedPrototypeModel(PrototypeModel):
distances = self.compute_distances(x) distances = self.compute_distances(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
winning = stratified_min_pooling(distances, plabels) winning = stratified_min_pooling(distances, plabels)
y_pred = torch.nn.functional.softmin(winning, dim=1) y_pred = F.softmin(winning, dim=1)
return y_pred return y_pred
def predict_from_distances(self, distances): def predict_from_distances(self, distances):
@@ -171,26 +186,37 @@ class SupervisedPrototypeModel(PrototypeModel):
def log_acc(self, distances, targets, tag): def log_acc(self, distances, targets, tag):
preds = self.predict_from_distances(distances) preds = self.predict_from_distances(distances)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int()) accuracy = torchmetrics.functional.accuracy(
# `.int()` because FloatTensors are assumed to be class probabilities preds.int(),
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log(tag, self.log(
accuracy, tag,
on_step=False, accuracy,
on_epoch=True, on_step=False,
prog_bar=True, on_epoch=True,
logger=True) prog_bar=True,
logger=True,
)
def test_step(self, batch, batch_idx): def test_step(self, batch, batch_idx):
x, targets = batch x, targets = batch
preds = self.predict(x) preds = self.predict(x)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int()) accuracy = torchmetrics.functional.accuracy(
preds.int(),
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log("test_acc", accuracy) self.log("test_acc", accuracy)
class ProtoTorchMixin(object): class ProtoTorchMixin:
"""All mixins are ProtoTorchMixins.""" """All mixins are ProtoTorchMixins."""
@@ -201,14 +227,16 @@ class NonGradientMixin(ProtoTorchMixin):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.automatic_optimization = False self.automatic_optimization = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
raise NotImplementedError raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin): class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes.""" """Mixin for models with image prototypes."""
proto_layer: Components
components: torch.Tensor
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates.""" """Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0) self.proto_layer.components.data.clamp_(0.0, 1.0)

View File

@@ -1,25 +1,30 @@
"""Lightning Callbacks.""" """Lightning Callbacks."""
import logging import logging
from typing import TYPE_CHECKING
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from prototorch.core.initializers import LiteralCompInitializer
from ..core.components import Components
from ..core.initializers import LiteralCompInitializer
from .extras import ConnectionTopology from .extras import ConnectionTopology
if TYPE_CHECKING:
from prototorch.models import GLVQ, GrowingNeuralGas
class PruneLoserPrototypes(pl.Callback): class PruneLoserPrototypes(pl.Callback):
def __init__(self, def __init__(
threshold=0.01, self,
idle_epochs=10, threshold=0.01,
prune_quota_per_epoch=-1, idle_epochs=10,
frequency=1, prune_quota_per_epoch=-1,
replace=False, frequency=1,
prototypes_initializer=None, replace=False,
verbose=False): prototypes_initializer=None,
verbose=False,
):
self.threshold = threshold # minimum win ratio self.threshold = threshold # minimum win ratio
self.idle_epochs = idle_epochs # epochs to wait before pruning self.idle_epochs = idle_epochs # epochs to wait before pruning
self.prune_quota_per_epoch = prune_quota_per_epoch self.prune_quota_per_epoch = prune_quota_per_epoch
@@ -28,7 +33,7 @@ class PruneLoserPrototypes(pl.Callback):
self.verbose = verbose self.verbose = verbose
self.prototypes_initializer = prototypes_initializer self.prototypes_initializer = prototypes_initializer
def on_epoch_end(self, trainer, pl_module): def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
if (trainer.current_epoch + 1) < self.idle_epochs: if (trainer.current_epoch + 1) < self.idle_epochs:
return None return None
if (trainer.current_epoch + 1) % self.frequency: if (trainer.current_epoch + 1) % self.frequency:
@@ -43,27 +48,29 @@ class PruneLoserPrototypes(pl.Callback):
prune_labels = prune_labels[:self.prune_quota_per_epoch] prune_labels = prune_labels[:self.prune_quota_per_epoch]
if len(to_prune) > 0: if len(to_prune) > 0:
if self.verbose: logging.debug(f"\nPrototype win ratios: {ratios}")
print(f"\nPrototype win ratios: {ratios}") logging.debug(f"Pruning prototypes at: {to_prune}")
print(f"Pruning prototypes at: {to_prune}") logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
print(f"Corresponding labels are: {prune_labels.tolist()}")
cur_num_protos = pl_module.num_prototypes cur_num_protos = pl_module.num_prototypes
pl_module.remove_prototypes(indices=to_prune) pl_module.remove_prototypes(indices=to_prune)
if self.replace: if self.replace:
labels, counts = torch.unique(prune_labels, labels, counts = torch.unique(prune_labels,
sorted=True, sorted=True,
return_counts=True) return_counts=True)
distribution = dict(zip(labels.tolist(), counts.tolist())) distribution = dict(zip(labels.tolist(), counts.tolist()))
if self.verbose:
print(f"Re-adding pruned prototypes...") logging.info(f"Re-adding pruned prototypes...")
print(f"distribution={distribution}") logging.debug(f"distribution={distribution}")
pl_module.add_prototypes( pl_module.add_prototypes(
distribution=distribution, distribution=distribution,
components_initializer=self.prototypes_initializer) components_initializer=self.prototypes_initializer)
new_num_protos = pl_module.num_prototypes new_num_protos = pl_module.num_prototypes
if self.verbose:
print(f"`num_prototypes` changed from {cur_num_protos} " logging.info(f"`num_prototypes` changed from {cur_num_protos} "
f"to {new_num_protos}.") f"to {new_num_protos}.")
return True return True
@@ -74,11 +81,11 @@ class PrototypeConvergence(pl.Callback):
self.idle_epochs = idle_epochs # epochs to wait self.idle_epochs = idle_epochs # epochs to wait
self.verbose = verbose self.verbose = verbose
def on_epoch_end(self, trainer, pl_module): def on_train_epoch_end(self, trainer, pl_module):
if (trainer.current_epoch + 1) < self.idle_epochs: if (trainer.current_epoch + 1) < self.idle_epochs:
return None return None
if self.verbose:
print("Stopping...") logging.info("Stopping...")
# TODO # TODO
return True return True
@@ -96,12 +103,16 @@ class GNGCallback(pl.Callback):
self.reduction = reduction self.reduction = reduction
self.freq = freq self.freq = freq
def on_epoch_end(self, trainer: pl.Trainer, pl_module): def on_train_epoch_end(
self,
trainer: pl.Trainer,
pl_module: "GrowingNeuralGas",
):
if (trainer.current_epoch + 1) % self.freq == 0: if (trainer.current_epoch + 1) % self.freq == 0:
# Get information # Get information
errors = pl_module.errors errors = pl_module.errors
topology: ConnectionTopology = pl_module.topology_layer topology: ConnectionTopology = pl_module.topology_layer
components: Components = pl_module.proto_layer.components components = pl_module.proto_layer.components
# Insertion point # Insertion point
worst = torch.argmax(errors) worst = torch.argmax(errors)
@@ -121,8 +132,9 @@ class GNGCallback(pl.Callback):
# Add component # Add component
pl_module.proto_layer.add_components( pl_module.proto_layer.add_components(
None, 1,
initializer=LiteralCompInitializer(new_component.unsqueeze(0))) initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
)
# Adjust Topology # Adjust Topology
topology.add_prototype() topology.add_prototype()

View File

@@ -1,12 +1,12 @@
import torch import torch
import torchmetrics import torchmetrics
from prototorch.core.competitions import CBCC
from prototorch.core.components import ReasoningComponents
from prototorch.core.initializers import RandomReasoningsInitializer
from prototorch.core.losses import MarginLoss
from prototorch.core.similarities import euclidean_similarity
from prototorch.nn.wrappers import LambdaLayer
from ..core.competitions import CBCC
from ..core.components import ReasoningComponents
from ..core.initializers import RandomReasoningsInitializer
from ..core.losses import MarginLoss
from ..core.similarities import euclidean_similarity
from ..nn.wrappers import LambdaLayer
from .abstract import ImagePrototypesMixin from .abstract import ImagePrototypesMixin
from .glvq import SiameseGLVQ from .glvq import SiameseGLVQ
@@ -44,7 +44,7 @@ class CBC(SiameseGLVQ):
probs = self.competition_layer(detections, reasonings) probs = self.competition_layer(detections, reasonings)
return probs return probs
def shared_step(self, batch, batch_idx, optimizer_idx=None): def shared_step(self, batch, batch_idx):
x, y = batch x, y = batch
y_pred = self(x) y_pred = self(x)
num_classes = self.num_classes num_classes = self.num_classes
@@ -52,17 +52,23 @@ class CBC(SiameseGLVQ):
loss = self.loss(y_pred, y_true).mean() loss = self.loss(y_pred, y_true).mean()
return y_pred, loss return y_pred, loss
def training_step(self, batch, batch_idx, optimizer_idx=None): def training_step(self, batch, batch_idx):
y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx) y_pred, train_loss = self.shared_step(batch, batch_idx)
preds = torch.argmax(y_pred, dim=1) preds = torch.argmax(y_pred, dim=1)
accuracy = torchmetrics.functional.accuracy(preds.int(), accuracy = torchmetrics.functional.accuracy(
batch[1].int()) preds.int(),
self.log("train_acc", batch[1].int(),
accuracy, "multiclass",
on_step=False, num_classes=self.num_classes,
on_epoch=True, )
prog_bar=True, self.log(
logger=True) "train_acc",
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True,
)
return train_loss return train_loss
def predict(self, x): def predict(self, x):

View File

@@ -5,8 +5,7 @@ Modules not yet available in prototorch go here temporarily.
""" """
import torch import torch
from prototorch.core.similarities import gaussian
from ..core.similarities import gaussian
def rank_scaled_gaussian(distances, lambd): def rank_scaled_gaussian(distances, lambd):
@@ -40,7 +39,7 @@ def ltangent_distance(x, y, omegas):
:param `torch.tensor` omegas: Three dimensional matrix :param `torch.tensor` omegas: Three dimensional matrix
:rtype: `torch.tensor` :rtype: `torch.tensor`
""" """
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)] x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm( p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
omegas, omegas.permute([0, 2, 1])) omegas, omegas.permute([0, 2, 1]))
projected_x = x @ p projected_x = x @ p

View File

@@ -1,22 +1,22 @@
"""Models based on the GLVQ framework.""" """Models based on the GLVQ framework."""
import torch import torch
from torch.nn.parameter import Parameter from prototorch.core.competitions import wtac
from prototorch.core.distances import (
from ..core.competitions import wtac
from ..core.distances import (
lomega_distance, lomega_distance,
omega_distance, omega_distance,
squared_euclidean_distance, squared_euclidean_distance,
) )
from ..core.initializers import EyeLinearTransformInitializer from prototorch.core.initializers import EyeLinearTransformInitializer
from ..core.losses import ( from prototorch.core.losses import (
GLVQLoss, GLVQLoss,
lvq1_loss, lvq1_loss,
lvq21_loss, lvq21_loss,
) )
from ..core.transforms import LinearTransform from prototorch.core.transforms import LinearTransform
from ..nn.wrappers import LambdaLayer, LossLayer from prototorch.nn.wrappers import LambdaLayer, LossLayer
from torch.nn.parameter import Parameter
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
from .extras import ltangent_distance, orthogonalization from .extras import ltangent_distance, orthogonalization
@@ -34,9 +34,9 @@ class GLVQ(SupervisedPrototypeModel):
# Loss # Loss
self.loss = GLVQLoss( self.loss = GLVQLoss(
margin=self.hparams.margin, margin=self.hparams["margin"],
transfer_fn=self.hparams.transfer_fn, transfer_fn=self.hparams["transfer_fn"],
beta=self.hparams.transfer_beta, beta=self.hparams["transfer_beta"],
) )
# def on_save_checkpoint(self, checkpoint): # def on_save_checkpoint(self, checkpoint):
@@ -48,7 +48,7 @@ class GLVQ(SupervisedPrototypeModel):
"prototype_win_ratios", "prototype_win_ratios",
torch.zeros(self.num_prototypes, device=self.device)) torch.zeros(self.num_prototypes, device=self.device))
def on_epoch_start(self): def on_train_epoch_start(self):
self.initialize_prototype_win_ratios() self.initialize_prototype_win_ratios()
def log_prototype_win_ratios(self, distances): def log_prototype_win_ratios(self, distances):
@@ -66,15 +66,15 @@ class GLVQ(SupervisedPrototypeModel):
prototype_wr, prototype_wr,
]) ])
def shared_step(self, batch, batch_idx, optimizer_idx=None): def shared_step(self, batch, batch_idx):
x, y = batch x, y = batch
out = self.compute_distances(x) out = self.compute_distances(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
loss = self.loss(out, y, plabels) loss = self.loss(out, y, plabels)
return out, loss return out, loss
def training_step(self, batch, batch_idx, optimizer_idx=None): def training_step(self, batch, batch_idx):
out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx) out, train_loss = self.shared_step(batch, batch_idx)
self.log_prototype_win_ratios(out) self.log_prototype_win_ratios(out)
self.log("train_loss", train_loss) self.log("train_loss", train_loss)
self.log_acc(out, batch[-1], tag="train_acc") self.log_acc(out, batch[-1], tag="train_acc")
@@ -99,10 +99,6 @@ class GLVQ(SupervisedPrototypeModel):
test_loss += batch_loss.item() test_loss += batch_loss.item()
self.log("test_loss", test_loss) self.log("test_loss", test_loss)
# TODO
# def predict_step(self, batch, batch_idx, dataloader_idx=None):
# pass
class SiameseGLVQ(GLVQ): class SiameseGLVQ(GLVQ):
"""GLVQ in a Siamese setting. """GLVQ in a Siamese setting.
@@ -123,29 +119,9 @@ class SiameseGLVQ(GLVQ):
self.backbone = backbone self.backbone = backbone
self.both_path_gradients = both_path_gradients self.both_path_gradients = both_path_gradients
def configure_optimizers(self):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
# Only add a backbone optimizer if backbone has trainable parameters
bb_params = list(self.backbone.parameters())
if (bb_params):
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
optimizers = [proto_opt, bb_opt]
else:
optimizers = [proto_opt]
if self.lr_scheduler is not None:
schedulers = []
for optimizer in optimizers:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
schedulers.append(scheduler)
return optimizers, schedulers
else:
return optimizers
def compute_distances(self, x): def compute_distances(self, x):
protos, _ = self.proto_layer() protos, _ = self.proto_layer()
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)] x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
latent_x = self.backbone(x) latent_x = self.backbone(x)
bb_grad = any([el.requires_grad for el in self.backbone.parameters()]) bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
@@ -199,18 +175,22 @@ class GRLVQ(SiameseGLVQ):
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise. TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
""" """
_relevances: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Additional parameters # Additional parameters
relevances = torch.ones(self.hparams.input_dim, device=self.device) relevances = torch.ones(self.hparams["input_dim"], device=self.device)
self.register_parameter("_relevances", Parameter(relevances)) self.register_parameter("_relevances", Parameter(relevances))
# Override the backbone # Override the backbone
self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances), self.backbone = LambdaLayer(self._apply_relevances,
name="relevance scaling") name="relevance scaling")
def _apply_relevances(self, x):
return x @ torch.diag(self._relevances)
@property @property
def relevance_profile(self): def relevance_profile(self):
return self._relevances.detach().cpu() return self._relevances.detach().cpu()
@@ -233,8 +213,8 @@ class SiameseGMLVQ(SiameseGLVQ):
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get("omega_initializer",
EyeLinearTransformInitializer()) EyeLinearTransformInitializer())
self.backbone = LinearTransform( self.backbone = LinearTransform(
self.hparams.input_dim, self.hparams["input_dim"],
self.hparams.latent_dim, self.hparams["latent_dim"],
initializer=omega_initializer, initializer=omega_initializer,
) )
@@ -244,7 +224,7 @@ class SiameseGMLVQ(SiameseGLVQ):
@property @property
def lambda_matrix(self): def lambda_matrix(self):
omega = self.backbone.weight # (input_dim, latent_dim) omega = self.backbone.weights # (input_dim, latent_dim)
lam = omega @ omega.T lam = omega @ omega.T
return lam.detach().cpu() return lam.detach().cpu()
@@ -257,6 +237,9 @@ class GMLVQ(GLVQ):
""" """
# Parameters
_omega: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", omega_distance) distance_fn = kwargs.pop("distance_fn", omega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs) super().__init__(hparams, distance_fn=distance_fn, **kwargs)
@@ -264,11 +247,9 @@ class GMLVQ(GLVQ):
# Additional parameters # Additional parameters
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get("omega_initializer",
EyeLinearTransformInitializer()) EyeLinearTransformInitializer())
omega = omega_initializer.generate(self.hparams.input_dim, omega = omega_initializer.generate(self.hparams["input_dim"],
self.hparams.latent_dim) self.hparams["latent_dim"])
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
self.backbone = LambdaLayer(lambda x: x @ self._omega,
name="omega matrix")
@property @property
def omega_matrix(self): def omega_matrix(self):
@@ -299,8 +280,8 @@ class LGMLVQ(GMLVQ):
# Re-register `_omega` to override the one from the super class. # Re-register `_omega` to override the one from the super class.
omega = torch.randn( omega = torch.randn(
self.num_prototypes, self.num_prototypes,
self.hparams.input_dim, self.hparams["input_dim"],
self.hparams.latent_dim, self.hparams["latent_dim"],
device=self.device, device=self.device,
) )
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
@@ -316,23 +297,27 @@ class GTLVQ(LGMLVQ):
omega_initializer = kwargs.get("omega_initializer") omega_initializer = kwargs.get("omega_initializer")
if omega_initializer is not None: if omega_initializer is not None:
subspace = omega_initializer.generate(self.hparams.input_dim, subspace = omega_initializer.generate(
self.hparams.latent_dim) self.hparams["input_dim"],
omega = torch.repeat_interleave(subspace.unsqueeze(0), self.hparams["latent_dim"],
self.num_prototypes, )
dim=0) omega = torch.repeat_interleave(
subspace.unsqueeze(0),
self.num_prototypes,
dim=0,
)
else: else:
omega = torch.rand( omega = torch.rand(
self.num_prototypes, self.num_prototypes,
self.hparams.input_dim, self.hparams["input_dim"],
self.hparams.latent_dim, self.hparams["latent_dim"],
device=self.device, device=self.device,
) )
# Re-register `_omega` to override the one from the super class. # Re-register `_omega` to override the one from the super class.
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): def on_train_batch_end(self, outputs, batch, batch_idx):
with torch.no_grad(): with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega)) self._omega.copy_(orthogonalization(self._omega))
@@ -389,7 +374,7 @@ class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
""" """
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates.""" """Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0) self.proto_layer.components.data.clamp_(0.0, 1.0)
with torch.no_grad(): with torch.no_grad():

View File

@@ -2,13 +2,14 @@
import warnings import warnings
from ..core.competitions import KNNC from prototorch.core.competitions import KNNC
from ..core.components import LabeledComponents from prototorch.core.components import LabeledComponents
from ..core.initializers import ( from prototorch.core.initializers import (
LiteralCompInitializer, LiteralCompInitializer,
LiteralLabelsInitializer, LiteralLabelsInitializer,
) )
from ..utils.utils import parse_data_arg from prototorch.utils.utils import parse_data_arg
from .abstract import SupervisedPrototypeModel from .abstract import SupervisedPrototypeModel
@@ -33,13 +34,10 @@ class KNN(SupervisedPrototypeModel):
labels_initializer=LiteralLabelsInitializer(targets)) labels_initializer=LiteralLabelsInitializer(targets))
self.competition_layer = KNNC(k=self.hparams.k) self.competition_layer = KNNC(k=self.hparams.k)
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
return 1 # skip training step return 1 # skip training step
def on_train_batch_start(self, def on_train_batch_start(self, train_batch, batch_idx):
train_batch,
batch_idx,
dataloader_idx=None):
warnings.warn("k-NN has no training, skipping!") warnings.warn("k-NN has no training, skipping!")
return -1 return -1

View File

@@ -1,8 +1,11 @@
"""LVQ models that are optimized using non-gradient methods.""" """LVQ models that are optimized using non-gradient methods."""
from ..core.losses import _get_dp_dm import logging
from ..nn.activations import get_activation
from ..nn.wrappers import LambdaLayer from prototorch.core.losses import _get_dp_dm
from prototorch.nn.activations import get_activation
from prototorch.nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin from .abstract import NonGradientMixin
from .glvq import GLVQ from .glvq import GLVQ
@@ -10,7 +13,7 @@ from .glvq import GLVQ
class LVQ1(NonGradientMixin, GLVQ): class LVQ1(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 1.""" """Learning Vector Quantization 1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
protos, plables = self.proto_layer() protos, plables = self.proto_layer()
x, y = train_batch x, y = train_batch
dis = self.compute_distances(x) dis = self.compute_distances(x)
@@ -29,8 +32,8 @@ class LVQ1(NonGradientMixin, GLVQ):
self.proto_layer.load_state_dict({"_components": updated_protos}, self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False) strict=False)
print(f"dis={dis}") logging.debug(f"dis={dis}")
print(f"y={y}") logging.debug(f"y={y}")
# Logging # Logging
self.log_acc(dis, y, tag="train_acc") self.log_acc(dis, y, tag="train_acc")
@@ -40,7 +43,7 @@ class LVQ1(NonGradientMixin, GLVQ):
class LVQ21(NonGradientMixin, GLVQ): class LVQ21(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 2.1.""" """Learning Vector Quantization 2.1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
protos, plabels = self.proto_layer() protos, plabels = self.proto_layer()
x, y = train_batch x, y = train_batch
@@ -73,8 +76,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
""" """
def __init__(self, hparams, verbose=True, **kwargs): def __init__(self, hparams, **kwargs):
self.verbose = verbose
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.transfer_layer = LambdaLayer( self.transfer_layer = LambdaLayer(
@@ -98,7 +100,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
lower_bound = (gamma * f.log()).sum() lower_bound = (gamma * f.log()).sum()
return lower_bound return lower_bound
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
protos, plabels = self.proto_layer() protos, plabels = self.proto_layer()
x, y = train_batch x, y = train_batch
@@ -115,8 +117,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
_protos[i] = xk _protos[i] = xk
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma) _lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
if _lower_bound > lower_bound: if _lower_bound > lower_bound:
if self.verbose: logging.debug(f"Updating prototype {i} to data {k}...")
print(f"Updating prototype {i} to data {k}...")
self.proto_layer.load_state_dict({"_components": _protos}, self.proto_layer.load_state_dict({"_components": _protos},
strict=False) strict=False)
break break

View File

@@ -1,10 +1,13 @@
"""Probabilistic GLVQ methods""" """Probabilistic GLVQ methods"""
import torch import torch
from prototorch.core.losses import nllr_loss, rslvq_loss
from prototorch.core.pooling import (
stratified_min_pooling,
stratified_sum_pooling,
)
from prototorch.nn.wrappers import LossLayer
from ..core.losses import nllr_loss, rslvq_loss
from ..core.pooling import stratified_min_pooling, stratified_sum_pooling
from ..nn.wrappers import LambdaLayer, LossLayer
from .extras import GaussianPrior, RankScaledGaussianPrior from .extras import GaussianPrior, RankScaledGaussianPrior
from .glvq import GLVQ, SiameseGMLVQ from .glvq import GLVQ, SiameseGMLVQ
@@ -18,7 +21,7 @@ class CELVQ(GLVQ):
# Loss # Loss
self.loss = torch.nn.CrossEntropyLoss() self.loss = torch.nn.CrossEntropyLoss()
def shared_step(self, batch, batch_idx, optimizer_idx=None): def shared_step(self, batch, batch_idx):
x, y = batch x, y = batch
out = self.compute_distances(x) # [None, num_protos] out = self.compute_distances(x) # [None, num_protos]
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
@@ -34,17 +37,24 @@ class ProbabilisticLVQ(GLVQ):
def __init__(self, hparams, rejection_confidence=0.0, **kwargs): def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.conditional_distribution = None
self.rejection_confidence = rejection_confidence self.rejection_confidence = rejection_confidence
self._conditional_distribution = None
def forward(self, x): def forward(self, x):
distances = self.compute_distances(x) distances = self.compute_distances(x)
conditional = self.conditional_distribution(distances) conditional = self.conditional_distribution(distances)
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes, prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
device=self.device) device=self.device)
posterior = conditional * prior posterior = conditional * prior
plabels = self.proto_layer._labels plabels = self.proto_layer._labels
y_pred = stratified_sum_pooling(posterior, plabels) if isinstance(plabels, torch.LongTensor) or isinstance(
plabels, torch.cuda.LongTensor): # type: ignore
y_pred = stratified_sum_pooling(posterior, plabels) # type: ignore
else:
raise ValueError("Labels must be LongTensor.")
return y_pred return y_pred
def predict(self, x): def predict(self, x):
@@ -53,7 +63,7 @@ class ProbabilisticLVQ(GLVQ):
prediction[confidence < self.rejection_confidence] = -1 prediction[confidence < self.rejection_confidence] = -1
return prediction return prediction
def training_step(self, batch, batch_idx, optimizer_idx=None): def training_step(self, batch, batch_idx):
x, y = batch x, y = batch
out = self.forward(x) out = self.forward(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
@@ -61,6 +71,12 @@ class ProbabilisticLVQ(GLVQ):
loss = batch_loss.sum() loss = batch_loss.sum()
return loss return loss
def conditional_distribution(self, distances):
"""Conditional distribution of distances."""
if self._conditional_distribution is None:
raise ValueError("Conditional distribution is not set.")
return self._conditional_distribution(distances)
class SLVQ(ProbabilisticLVQ): class SLVQ(ProbabilisticLVQ):
"""Soft Learning Vector Quantization.""" """Soft Learning Vector Quantization."""
@@ -72,7 +88,7 @@ class SLVQ(ProbabilisticLVQ):
self.hparams.setdefault("variance", 1.0) self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance") variance = self.hparams.get("variance")
self.conditional_distribution = GaussianPrior(variance) self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(nllr_loss) self.loss = LossLayer(nllr_loss)
@@ -86,7 +102,7 @@ class RSLVQ(ProbabilisticLVQ):
self.hparams.setdefault("variance", 1.0) self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance") variance = self.hparams.get("variance")
self.conditional_distribution = GaussianPrior(variance) self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(rslvq_loss) self.loss = LossLayer(rslvq_loss)
@@ -107,7 +123,7 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
self.loss = torch.nn.KLDivLoss() self.loss = torch.nn.KLDivLoss()
# FIXME # FIXME
# def training_step(self, batch, batch_idx, optimizer_idx=None): # def training_step(self, batch, batch_idx):
# x, y = batch # x, y = batch
# y_pred = self(x) # y_pred = self(x)
# batch_loss = self.loss(y_pred, y) # batch_loss = self.loss(y_pred, y)

View File

@@ -2,11 +2,10 @@
import numpy as np import numpy as np
import torch import torch
from prototorch.core.competitions import wtac
from prototorch.core.distances import squared_euclidean_distance
from prototorch.core.losses import NeuralGasEnergy
from ..core.competitions import wtac
from ..core.distances import squared_euclidean_distance
from ..core.losses import NeuralGasEnergy
from ..nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
from .callbacks import GNGCallback from .callbacks import GNGCallback
from .extras import ConnectionTopology from .extras import ConnectionTopology
@@ -18,6 +17,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
TODO Allow non-2D grids TODO Allow non-2D grids
""" """
_grid: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
h, w = hparams.get("shape") h, w = hparams.get("shape")
@@ -63,7 +63,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
strict=False, strict=False,
) )
def training_epoch_end(self, training_step_outputs): def on_training_epoch_end(self, training_step_outputs):
self._sigma = self.hparams.sigma * np.exp( self._sigma = self.hparams.sigma * np.exp(
-self.current_epoch / self.trainer.max_epochs) -self.current_epoch / self.trainer.max_epochs)
@@ -93,10 +93,10 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.hparams.setdefault("age_limit", 10) self.hparams.setdefault("age_limit", 10)
self.hparams.setdefault("lm", 1) self.hparams.setdefault("lm", 1)
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm) self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
self.topology_layer = ConnectionTopology( self.topology_layer = ConnectionTopology(
agelimit=self.hparams.age_limit, agelimit=self.hparams["age_limit"],
num_prototypes=self.hparams.num_prototypes, num_prototypes=self.hparams["num_prototypes"],
) )
def training_step(self, train_batch, batch_idx): def training_step(self, train_batch, batch_idx):
@@ -109,12 +109,9 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.log("loss", loss) self.log("loss", loss)
return loss return loss
# def training_epoch_end(self, training_step_outputs):
# print(f"{self.trainer.lr_schedulers}")
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
class GrowingNeuralGas(NeuralGas): class GrowingNeuralGas(NeuralGas):
errors: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@@ -124,7 +121,10 @@ class GrowingNeuralGas(NeuralGas):
self.hparams.setdefault("insert_reduction", 0.1) self.hparams.setdefault("insert_reduction", 0.1)
self.hparams.setdefault("insert_freq", 10) self.hparams.setdefault("insert_freq", 10)
errors = torch.zeros(self.hparams.num_prototypes, device=self.device) errors = torch.zeros(
self.hparams["num_prototypes"],
device=self.device,
)
self.register_buffer("errors", errors) self.register_buffer("errors", errors)
def training_step(self, train_batch, _batch_idx): def training_step(self, train_batch, _batch_idx):
@@ -139,7 +139,7 @@ class GrowingNeuralGas(NeuralGas):
dp = d * mask dp = d * mask
self.errors += torch.sum(dp * dp) self.errors += torch.sum(dp * dp)
self.errors *= self.hparams.step_reduction self.errors *= self.hparams["step_reduction"]
self.topology_layer(d) self.topology_layer(d)
self.log("loss", loss) self.log("loss", loss)
@@ -148,7 +148,7 @@ class GrowingNeuralGas(NeuralGas):
def configure_callbacks(self): def configure_callbacks(self):
return [ return [
GNGCallback( GNGCallback(
reduction=self.hparams.insert_reduction, reduction=self.hparams["insert_reduction"],
freq=self.hparams.insert_freq, freq=self.hparams["insert_freq"],
) )
] ]

View File

@@ -1,15 +1,18 @@
"""Visualization Callbacks.""" """Visualization Callbacks."""
import warnings
from typing import Sized
import numpy as np import numpy as np
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
import torchvision import torchvision
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from prototorch.utils.colors import get_colors, get_legend_handles
from prototorch.utils.utils import mesh2d
from pytorch_lightning.loggers import TensorBoardLogger
from torch.utils.data import DataLoader, Dataset from torch.utils.data import DataLoader, Dataset
from ..utils.colors import get_colors, get_legend_handles
from ..utils.utils import mesh2d
class Vis2DAbstract(pl.Callback): class Vis2DAbstract(pl.Callback):
@@ -34,8 +37,13 @@ class Vis2DAbstract(pl.Callback):
if data: if data:
if isinstance(data, Dataset): if isinstance(data, Dataset):
x, y = next(iter(DataLoader(data, batch_size=len(data)))) if isinstance(data, Sized):
elif isinstance(data, torch.utils.data.DataLoader): x, y = next(iter(DataLoader(data, batch_size=len(data))))
else:
# TODO: Add support for non-sized datasets
raise NotImplementedError(
"Data must be a dataset with a __len__ method.")
elif isinstance(data, DataLoader):
x = torch.tensor([]) x = torch.tensor([])
y = torch.tensor([]) y = torch.tensor([])
for x_b, y_b in data: for x_b, y_b in data:
@@ -123,7 +131,7 @@ class Vis2DAbstract(pl.Callback):
else: else:
plt.show(block=self.block) plt.show(block=self.block)
def on_epoch_end(self, trainer, pl_module): def on_train_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer): if not self.precheck(trainer):
return True return True
self.visualize(pl_module) self.visualize(pl_module)
@@ -132,6 +140,9 @@ class Vis2DAbstract(pl.Callback):
def on_train_end(self, trainer, pl_module): def on_train_end(self, trainer, pl_module):
plt.close() plt.close()
def visualize(self, pl_module):
raise NotImplementedError
class VisGLVQ2D(Vis2DAbstract): class VisGLVQ2D(Vis2DAbstract):
@@ -292,30 +303,45 @@ class VisImgComp(Vis2DAbstract):
self.add_embedding = add_embedding self.add_embedding = add_embedding
self.embedding_data = embedding_data self.embedding_data = embedding_data
def on_train_start(self, trainer, pl_module): def on_train_start(self, _, pl_module):
tb = pl_module.logger.experiment if isinstance(pl_module.logger, TensorBoardLogger):
if self.add_embedding: tb = pl_module.logger.experiment
ind = np.random.choice(len(self.x_train),
size=self.embedding_data,
replace=False)
data = self.x_train[ind]
tb.add_embedding(data.view(len(ind), -1),
label_img=data,
global_step=None,
tag="Data Embedding",
metadata=self.y_train[ind],
metadata_header=None)
if self.random_data: # Add embedding
ind = np.random.choice(len(self.x_train), if self.add_embedding:
size=self.random_data, if self.x_train is not None and self.y_train is not None:
replace=False) ind = np.random.choice(len(self.x_train),
data = self.x_train[ind] size=self.embedding_data,
grid = torchvision.utils.make_grid(data, nrow=self.num_columns) replace=False)
tb.add_image(tag="Data", data = self.x_train[ind]
img_tensor=grid, tb.add_embedding(data.view(len(ind), -1),
global_step=None, label_img=data,
dataformats=self.dataformats) global_step=None,
tag="Data Embedding",
metadata=self.y_train[ind],
metadata_header=None)
else:
raise ValueError("No data for add embedding flag")
# Random Data
if self.random_data:
if self.x_train is not None:
ind = np.random.choice(len(self.x_train),
size=self.random_data,
replace=False)
data = self.x_train[ind]
grid = torchvision.utils.make_grid(data,
nrow=self.num_columns)
tb.add_image(tag="Data",
img_tensor=grid,
global_step=None,
dataformats=self.dataformats)
else:
raise ValueError("No data for random data flag")
else:
warnings.warn(
f"TensorBoardLogger is required, got {type(pl_module.logger)}")
def add_to_tensorboard(self, trainer, pl_module): def add_to_tensorboard(self, trainer, pl_module):
tb = pl_module.logger.experiment tb = pl_module.logger.experiment

View File

@@ -1,195 +1,193 @@
"""prototorch.models test suite.""" """prototorch.models test suite."""
import prototorch as pt import prototorch.models
import pytest
import torch
def test_glvq_model_build(): def test_glvq_model_build():
model = pt.models.GLVQ( model = prototorch.models.GLVQ(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_glvq1_model_build(): def test_glvq1_model_build():
model = pt.models.GLVQ1( model = prototorch.models.GLVQ1(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_glvq21_model_build(): def test_glvq21_model_build():
model = pt.models.GLVQ1( model = prototorch.models.GLVQ1(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_gmlvq_model_build(): def test_gmlvq_model_build():
model = pt.models.GMLVQ( model = prototorch.models.GMLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 2, "input_dim": 2,
"latent_dim": 2, "latent_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_grlvq_model_build(): def test_grlvq_model_build():
model = pt.models.GRLVQ( model = prototorch.models.GRLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 2, "input_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_gtlvq_model_build(): def test_gtlvq_model_build():
model = pt.models.GTLVQ( model = prototorch.models.GTLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 4, "input_dim": 4,
"latent_dim": 2, "latent_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_lgmlvq_model_build(): def test_lgmlvq_model_build():
model = pt.models.LGMLVQ( model = prototorch.models.LGMLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 4, "input_dim": 4,
"latent_dim": 2, "latent_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_image_glvq_model_build(): def test_image_glvq_model_build():
model = pt.models.ImageGLVQ( model = prototorch.models.ImageGLVQ(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(16), prototypes_initializer=prototorch.initializers.RNCI(16),
) )
def test_image_gmlvq_model_build(): def test_image_gmlvq_model_build():
model = pt.models.ImageGMLVQ( model = prototorch.models.ImageGMLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 16, "input_dim": 16,
"latent_dim": 2, "latent_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(16), prototypes_initializer=prototorch.initializers.RNCI(16),
) )
def test_image_gtlvq_model_build(): def test_image_gtlvq_model_build():
model = pt.models.ImageGMLVQ( model = prototorch.models.ImageGMLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 16, "input_dim": 16,
"latent_dim": 2, "latent_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(16), prototypes_initializer=prototorch.initializers.RNCI(16),
) )
def test_siamese_glvq_model_build(): def test_siamese_glvq_model_build():
model = pt.models.SiameseGLVQ( model = prototorch.models.SiameseGLVQ(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(4), prototypes_initializer=prototorch.initializers.RNCI(4),
) )
def test_siamese_gmlvq_model_build(): def test_siamese_gmlvq_model_build():
model = pt.models.SiameseGMLVQ( model = prototorch.models.SiameseGMLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 4, "input_dim": 4,
"latent_dim": 2, "latent_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(4), prototypes_initializer=prototorch.initializers.RNCI(4),
) )
def test_siamese_gtlvq_model_build(): def test_siamese_gtlvq_model_build():
model = pt.models.SiameseGTLVQ( model = prototorch.models.SiameseGTLVQ(
{ {
"distribution": (3, 2), "distribution": (3, 2),
"input_dim": 4, "input_dim": 4,
"latent_dim": 2, "latent_dim": 2,
}, },
prototypes_initializer=pt.initializers.RNCI(4), prototypes_initializer=prototorch.initializers.RNCI(4),
) )
def test_knn_model_build(): def test_knn_model_build():
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = prototorch.datasets.Iris(dims=[0, 2])
model = pt.models.KNN(dict(k=3), data=train_ds) model = prototorch.models.KNN(dict(k=3), data=train_ds)
def test_lvq1_model_build(): def test_lvq1_model_build():
model = pt.models.LVQ1( model = prototorch.models.LVQ1(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_lvq21_model_build(): def test_lvq21_model_build():
model = pt.models.LVQ21( model = prototorch.models.LVQ21(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_median_lvq_model_build(): def test_median_lvq_model_build():
model = pt.models.MedianLVQ( model = prototorch.models.MedianLVQ(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_celvq_model_build(): def test_celvq_model_build():
model = pt.models.CELVQ( model = prototorch.models.CELVQ(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_rslvq_model_build(): def test_rslvq_model_build():
model = pt.models.RSLVQ( model = prototorch.models.RSLVQ(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_slvq_model_build(): def test_slvq_model_build():
model = pt.models.SLVQ( model = prototorch.models.SLVQ(
{"distribution": (3, 2)}, {"distribution": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_growing_neural_gas_model_build(): def test_growing_neural_gas_model_build():
model = pt.models.GrowingNeuralGas( model = prototorch.models.GrowingNeuralGas(
{"num_prototypes": 5}, {"num_prototypes": 5},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_kohonen_som_model_build(): def test_kohonen_som_model_build():
model = pt.models.KohonenSOM( model = prototorch.models.KohonenSOM(
{"shape": (3, 2)}, {"shape": (3, 2)},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )
def test_neural_gas_model_build(): def test_neural_gas_model_build():
model = pt.models.NeuralGas( model = prototorch.models.NeuralGas(
{"num_prototypes": 5}, {"num_prototypes": 5},
prototypes_initializer=pt.initializers.RNCI(2), prototypes_initializer=prototorch.initializers.RNCI(2),
) )