Add partial metric/hparam features [BROKEN STATE]
This commit is contained in:
parent
5a1ef841d3
commit
fe36e5fad9
@ -1,5 +1,7 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
@ -60,6 +62,31 @@ class VisualizationCallback(pl.Callback):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Hyperparameters
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--epochs",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Epochs to train.")
|
||||
parser.add_argument("--lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="Learning rate.")
|
||||
parser.add_argument("--batch_size",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Batch size.")
|
||||
parser.add_argument("--gpus",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of GPUs to use.")
|
||||
parser.add_argument("--ppc",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Prototypes-Per-Class.")
|
||||
args = parser.parse_args()
|
||||
# https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
@ -72,10 +99,10 @@ if __name__ == "__main__":
|
||||
model = GLVQ(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_distribution=[2, 7, 5],
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[x_train, y_train],
|
||||
lr=0.1,
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
@ -85,12 +112,24 @@ if __name__ == "__main__":
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=1000, callbacks=[vis])
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=hparams.epochs,
|
||||
auto_lr_find=
|
||||
True, # finds learning rate automatically with `trainer.tune(model)`
|
||||
callbacks=[
|
||||
vis, # comment this line out to disable the visualization
|
||||
],
|
||||
)
|
||||
trainer.tune(model)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Visualization
|
||||
protos = model.prototypes
|
||||
plabels = model.prototype_labels
|
||||
visualize(x_train, y_train, protos, plabels)
|
||||
# Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate)
|
||||
ckpt = "glvq_iris.ckpt"
|
||||
trainer.save_checkpoint(ckpt)
|
||||
|
||||
# Load the checkpoint
|
||||
new_model = GLVQ.load_from_checkpoint(checkpoint_path=ckpt)
|
||||
|
||||
print(new_model)
|
||||
|
@ -1,5 +1,6 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.initializers import get_initializer
|
||||
@ -9,10 +10,11 @@ from prototorch.modules.prototypes import Prototypes1D
|
||||
|
||||
class GLVQ(pl.LightningModule):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
def __init__(self, lr=1e-3, **kwargs):
|
||||
def __init__(self, hparams):
|
||||
super().__init__()
|
||||
self.lr = lr
|
||||
self.lr = hparams.lr
|
||||
self.proto_layer = Prototypes1D(**kwargs)
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
|
||||
@property
|
||||
def prototypes(self):
|
||||
@ -39,10 +41,21 @@ class GLVQ(pl.LightningModule):
|
||||
mu = glvq_loss(dis, y, prototype_labels=plabels)
|
||||
loss = mu.sum(dim=0)
|
||||
self.log("train_loss", loss)
|
||||
with torch.no_grad():
|
||||
preds = wtac(dis, plabels)
|
||||
# self.train_acc.update(preds.int(), y.int())
|
||||
self.train_acc(preds.int(), y.int()) # FloatTensors are assumed to be class probabilities
|
||||
self.log("Training Accuracy", self.train_acc, on_step=False, on_epoch=True)
|
||||
return loss
|
||||
|
||||
# def training_epoch_end(self, outs):
|
||||
# # Calling `self.train_acc.compute()` is
|
||||
# # automatically done by setting `on_epoch=True` when logging in `self.training_step(...)`
|
||||
# self.log("train_acc_epoch", self.train_acc.compute())
|
||||
|
||||
def predict(self, x):
|
||||
with torch.no_grad():
|
||||
# model.eval() # ?!
|
||||
d = self(x)
|
||||
plabels = self.proto_layer.prototype_labels
|
||||
y_pred = wtac(d, plabels)
|
||||
|
2
setup.py
2
setup.py
@ -20,7 +20,7 @@ DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
|
||||
with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
INSTALL_REQUIRES = ["prototorch", "pytorch_lightning"]
|
||||
INSTALL_REQUIRES = ["prototorch", "pytorch_lightning", "torchmetrics"]
|
||||
EXAMPLES = ["matplotlib", "scikit-learn"]
|
||||
TESTS = ["pytest"]
|
||||
ALL = EXAMPLES + TESTS
|
||||
|
Loading…
Reference in New Issue
Block a user