Add partial metric/hparam features [BROKEN STATE]

This commit is contained in:
Jensun Ravichandran 2021-04-21 19:16:57 +02:00
parent 5a1ef841d3
commit fe36e5fad9
3 changed files with 62 additions and 10 deletions

View File

@ -1,5 +1,7 @@
"""GLVQ example using the Iris dataset.""" """GLVQ example using the Iris dataset."""
import argparse
import numpy as np import numpy as np
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
@ -60,6 +62,31 @@ class VisualizationCallback(pl.Callback):
if __name__ == "__main__": if __name__ == "__main__":
# Hyperparameters
parser = argparse.ArgumentParser()
parser.add_argument("--epochs",
type=int,
default=100,
help="Epochs to train.")
parser.add_argument("--lr",
type=float,
default=0.001,
help="Learning rate.")
parser.add_argument("--batch_size",
type=int,
default=256,
help="Batch size.")
parser.add_argument("--gpus",
type=int,
default=0,
help="Number of GPUs to use.")
parser.add_argument("--ppc",
type=int,
default=1,
help="Prototypes-Per-Class.")
args = parser.parse_args()
# https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html
# Dataset # Dataset
x_train, y_train = load_iris(return_X_y=True) x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]] x_train = x_train[:, [0, 2]]
@ -72,10 +99,10 @@ if __name__ == "__main__":
model = GLVQ( model = GLVQ(
input_dim=x_train.shape[1], input_dim=x_train.shape[1],
nclasses=3, nclasses=3,
prototypes_per_class=3, prototype_distribution=[2, 7, 5],
prototype_initializer="stratified_mean", prototype_initializer="stratified_mean",
data=[x_train, y_train], data=[x_train, y_train],
lr=0.1, lr=0.01,
) )
# Model summary # Model summary
@ -85,12 +112,24 @@ if __name__ == "__main__":
vis = VisualizationCallback(x_train, y_train) vis = VisualizationCallback(x_train, y_train)
# Setup trainer # Setup trainer
trainer = pl.Trainer(max_epochs=1000, callbacks=[vis]) trainer = pl.Trainer(
max_epochs=hparams.epochs,
auto_lr_find=
True, # finds learning rate automatically with `trainer.tune(model)`
callbacks=[
vis, # comment this line out to disable the visualization
],
)
trainer.tune(model)
# Training loop # Training loop
trainer.fit(model, train_loader) trainer.fit(model, train_loader)
# Visualization # Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate)
protos = model.prototypes ckpt = "glvq_iris.ckpt"
plabels = model.prototype_labels trainer.save_checkpoint(ckpt)
visualize(x_train, y_train, protos, plabels)
# Load the checkpoint
new_model = GLVQ.load_from_checkpoint(checkpoint_path=ckpt)
print(new_model)

View File

@ -1,5 +1,6 @@
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
import torchmetrics
from prototorch.functions.competitions import wtac from prototorch.functions.competitions import wtac
from prototorch.functions.distances import euclidean_distance from prototorch.functions.distances import euclidean_distance
from prototorch.functions.initializers import get_initializer from prototorch.functions.initializers import get_initializer
@ -9,10 +10,11 @@ from prototorch.modules.prototypes import Prototypes1D
class GLVQ(pl.LightningModule): class GLVQ(pl.LightningModule):
"""Generalized Learning Vector Quantization.""" """Generalized Learning Vector Quantization."""
def __init__(self, lr=1e-3, **kwargs): def __init__(self, hparams):
super().__init__() super().__init__()
self.lr = lr self.lr = hparams.lr
self.proto_layer = Prototypes1D(**kwargs) self.proto_layer = Prototypes1D(**kwargs)
self.train_acc = torchmetrics.Accuracy()
@property @property
def prototypes(self): def prototypes(self):
@ -39,10 +41,21 @@ class GLVQ(pl.LightningModule):
mu = glvq_loss(dis, y, prototype_labels=plabels) mu = glvq_loss(dis, y, prototype_labels=plabels)
loss = mu.sum(dim=0) loss = mu.sum(dim=0)
self.log("train_loss", loss) self.log("train_loss", loss)
with torch.no_grad():
preds = wtac(dis, plabels)
# self.train_acc.update(preds.int(), y.int())
self.train_acc(preds.int(), y.int()) # FloatTensors are assumed to be class probabilities
self.log("Training Accuracy", self.train_acc, on_step=False, on_epoch=True)
return loss return loss
# def training_epoch_end(self, outs):
# # Calling `self.train_acc.compute()` is
# # automatically done by setting `on_epoch=True` when logging in `self.training_step(...)`
# self.log("train_acc_epoch", self.train_acc.compute())
def predict(self, x): def predict(self, x):
with torch.no_grad(): with torch.no_grad():
# model.eval() # ?!
d = self(x) d = self(x)
plabels = self.proto_layer.prototype_labels plabels = self.proto_layer.prototype_labels
y_pred = wtac(d, plabels) y_pred = wtac(d, plabels)

View File

@ -20,7 +20,7 @@ DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
with open("README.md", "r") as fh: with open("README.md", "r") as fh:
long_description = fh.read() long_description = fh.read()
INSTALL_REQUIRES = ["prototorch", "pytorch_lightning"] INSTALL_REQUIRES = ["prototorch", "pytorch_lightning", "torchmetrics"]
EXAMPLES = ["matplotlib", "scikit-learn"] EXAMPLES = ["matplotlib", "scikit-learn"]
TESTS = ["pytest"] TESTS = ["pytest"]
ALL = EXAMPLES + TESTS ALL = EXAMPLES + TESTS