Add more CBC examples. MNIST is broken.
This commit is contained in:
parent
2e2f6707f6
commit
db4499a103
121
examples/cbc_circle.py
Normal file
121
examples/cbc_circle.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
"""CBC example using the Iris dataset."""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
from prototorch.models.cbc import CBC, rescaled_cosine_similarity, euclidean_similarity
|
||||||
|
from prototorch.models.glvq import GLVQ
|
||||||
|
from sklearn.datasets import make_circles
|
||||||
|
from torch.utils.data import DataLoader, TensorDataset
|
||||||
|
|
||||||
|
|
||||||
|
class NumpyDataset(TensorDataset):
|
||||||
|
def __init__(self, *arrays):
|
||||||
|
# tensors = [torch.from_numpy(arr) for arr in arrays]
|
||||||
|
tensors = [torch.Tensor(arr) for arr in arrays]
|
||||||
|
super().__init__(*tensors)
|
||||||
|
|
||||||
|
|
||||||
|
class VisualizationCallback(pl.Callback):
|
||||||
|
def __init__(self,
|
||||||
|
x_train,
|
||||||
|
y_train,
|
||||||
|
prototype_model=True,
|
||||||
|
title="Prototype Visualization",
|
||||||
|
cmap="viridis"):
|
||||||
|
super().__init__()
|
||||||
|
self.x_train = x_train
|
||||||
|
self.y_train = y_train
|
||||||
|
self.title = title
|
||||||
|
self.fig = plt.figure(self.title)
|
||||||
|
self.cmap = cmap
|
||||||
|
self.prototype_model = prototype_model
|
||||||
|
|
||||||
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
|
if self.prototype_model:
|
||||||
|
protos = pl_module.prototypes
|
||||||
|
color = pl_module.prototype_labels
|
||||||
|
else:
|
||||||
|
protos = pl_module.components
|
||||||
|
color = 'k'
|
||||||
|
ax = self.fig.gca()
|
||||||
|
ax.cla()
|
||||||
|
ax.set_title(self.title)
|
||||||
|
ax.set_xlabel("Data dimension 1")
|
||||||
|
ax.set_ylabel("Data dimension 2")
|
||||||
|
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||||
|
ax.scatter(protos[:, 0],
|
||||||
|
protos[:, 1],
|
||||||
|
c=color,
|
||||||
|
cmap=self.cmap,
|
||||||
|
edgecolor="k",
|
||||||
|
marker="D",
|
||||||
|
s=50)
|
||||||
|
x = np.vstack((x_train, protos))
|
||||||
|
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||||
|
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||||
|
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||||
|
np.arange(y_min, y_max, 1 / 50))
|
||||||
|
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||||
|
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||||
|
y_pred = y_pred.reshape(xx.shape)
|
||||||
|
|
||||||
|
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||||
|
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||||
|
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||||
|
plt.pause(0.1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Dataset
|
||||||
|
x_train, y_train = make_circles(n_samples=300,
|
||||||
|
shuffle=True,
|
||||||
|
noise=0.05,
|
||||||
|
random_state=None,
|
||||||
|
factor=0.5)
|
||||||
|
train_ds = NumpyDataset(x_train, y_train)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
input_dim=x_train.shape[1],
|
||||||
|
nclasses=len(np.unique(y_train)),
|
||||||
|
prototypes_per_class=5,
|
||||||
|
prototype_initializer="randn",
|
||||||
|
lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = CBC(
|
||||||
|
hparams,
|
||||||
|
data=[x_train, y_train],
|
||||||
|
similarity=euclidean_similarity,
|
||||||
|
)
|
||||||
|
|
||||||
|
#model = GLVQ(hparams, data=[x_train, y_train])
|
||||||
|
|
||||||
|
# Fix the component locations
|
||||||
|
# model.proto_layer.requires_grad_(False)
|
||||||
|
|
||||||
|
# import sys
|
||||||
|
# sys.exit()
|
||||||
|
|
||||||
|
# Model summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = VisualizationCallback(x_train, y_train, prototype_model=False)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer(
|
||||||
|
max_epochs=500,
|
||||||
|
callbacks=[
|
||||||
|
vis,
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
128
examples/cbc_mnist.py
Normal file
128
examples/cbc_mnist.py
Normal file
@ -0,0 +1,128 @@
|
|||||||
|
"""CBC example using the MNIST dataset.
|
||||||
|
|
||||||
|
This script also shows how to use Tensorboard for visualizing the prototypes.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torchvision
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
from prototorch.models.cbc import ImageCBC, euclidean_similarity, rescaled_cosine_similarity
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torchvision import transforms
|
||||||
|
from torchvision.datasets import MNIST
|
||||||
|
|
||||||
|
|
||||||
|
class VisualizationCallback(pl.Callback):
|
||||||
|
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
||||||
|
super().__init__()
|
||||||
|
self.to_shape = to_shape
|
||||||
|
self.nrow = nrow
|
||||||
|
|
||||||
|
def on_epoch_end(self, trainer, pl_module: ImageCBC):
|
||||||
|
tb = pl_module.logger.experiment
|
||||||
|
|
||||||
|
# components
|
||||||
|
components = pl_module.components
|
||||||
|
components_img = components.reshape(self.to_shape)
|
||||||
|
grid = torchvision.utils.make_grid(components_img, nrow=self.nrow)
|
||||||
|
tb.add_image(
|
||||||
|
tag="MNIST Components",
|
||||||
|
img_tensor=grid,
|
||||||
|
global_step=trainer.current_epoch,
|
||||||
|
dataformats="CHW",
|
||||||
|
)
|
||||||
|
# Reasonings
|
||||||
|
reasonings = pl_module.reasonings
|
||||||
|
tb.add_images(
|
||||||
|
tag="MNIST Reasoning",
|
||||||
|
img_tensor=reasonings,
|
||||||
|
global_step=trainer.current_epoch,
|
||||||
|
dataformats="NCHW",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--epochs",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="Epochs to train.")
|
||||||
|
parser.add_argument("--lr",
|
||||||
|
type=float,
|
||||||
|
default=0.001,
|
||||||
|
help="Learning rate.")
|
||||||
|
parser.add_argument("--batch_size",
|
||||||
|
type=int,
|
||||||
|
default=256,
|
||||||
|
help="Batch size.")
|
||||||
|
parser.add_argument("--gpus",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="Number of GPUs to use.")
|
||||||
|
parser.add_argument("--ppc",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Prototypes-Per-Class.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
mnist_train = MNIST(
|
||||||
|
"./datasets",
|
||||||
|
train=True,
|
||||||
|
download=True,
|
||||||
|
transform=transforms.Compose([
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||||
|
]),
|
||||||
|
)
|
||||||
|
mnist_test = MNIST(
|
||||||
|
"./datasets",
|
||||||
|
train=False,
|
||||||
|
download=True,
|
||||||
|
transform=transforms.Compose([
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||||
|
]),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = DataLoader(mnist_train, batch_size=1024)
|
||||||
|
test_loader = DataLoader(mnist_test, batch_size=1024)
|
||||||
|
|
||||||
|
# Grab the full dataset to warm-start prototypes
|
||||||
|
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
|
||||||
|
x = x.view(len(mnist_train), -1)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
input_dim=28 * 28,
|
||||||
|
nclasses=10,
|
||||||
|
prototypes_per_class=args.ppc,
|
||||||
|
prototype_initializer="randn",
|
||||||
|
lr=1,
|
||||||
|
similarity=euclidean_similarity,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = ImageCBC(hparams, data=[x, y])
|
||||||
|
# Model summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer(
|
||||||
|
gpus=args.gpus, # change to use GPUs for training
|
||||||
|
max_epochs=args.epochs,
|
||||||
|
callbacks=[vis],
|
||||||
|
track_grad_norm=2,
|
||||||
|
# accelerator="ddp_cpu", # DEBUG-ONLY
|
||||||
|
# num_processes=2, # DEBUG-ONLY
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader, test_loader)
|
@ -33,14 +33,12 @@ class CosineSimilarity(torch.nn.Module):
|
|||||||
|
|
||||||
def forward(self, x, y):
|
def forward(self, x, y):
|
||||||
epsilon = torch.finfo(x.dtype).eps
|
epsilon = torch.finfo(x.dtype).eps
|
||||||
normed_x = (x/ x.pow(2) \
|
normed_x = (x / x.pow(2).sum(dim=tuple(range(
|
||||||
.sum(dim=tuple(range(1, x.ndim)), keepdim=True) \
|
1, x.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||||
.clamp(min=epsilon) \
|
start_dim=1)
|
||||||
.sqrt()).flatten(start_dim=1)
|
normed_y = (y / y.pow(2).sum(dim=tuple(range(
|
||||||
normed_y = (y / y.pow(2) \
|
1, y.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||||
.sum(dim=tuple(range(1, y.ndim)), keepdim=True) \
|
start_dim=1)
|
||||||
.clamp(min=epsilon) \
|
|
||||||
.sqrt()).flatten(start_dim=1)
|
|
||||||
# normed_x = (x / torch.linalg.norm(x, dim=1))
|
# normed_x = (x / torch.linalg.norm(x, dim=1))
|
||||||
diss = torch.inner(normed_x, normed_y)
|
diss = torch.inner(normed_x, normed_y)
|
||||||
return self.activation(diss)
|
return self.activation(diss)
|
||||||
@ -73,14 +71,14 @@ class ReasoningLayer(torch.nn.Module):
|
|||||||
probabilities_init.uniform_(0.4, 0.6)
|
probabilities_init.uniform_(0.4, 0.6)
|
||||||
self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
|
self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
|
||||||
|
|
||||||
# @property
|
@property
|
||||||
# def reasonings(self):
|
def reasonings(self):
|
||||||
# pk = self.reasoning_probabilities[0]
|
pk = self.reasoning_probabilities[0]
|
||||||
# nk = (1 - pk) * self.reasoning_probabilities[1]
|
nk = (1 - pk) * self.reasoning_probabilities[1]
|
||||||
# ik = (1 - pk - nk)
|
ik = (1 - pk - nk)
|
||||||
# # pk is of shape (1, n_components, n_classes)
|
# pk is of shape (1, n_components, n_classes)
|
||||||
# img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
|
img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
|
||||||
# return img.unsqueeze(1) # (n_components, 1, 3, n_classes)
|
return img.unsqueeze(1) # (n_components, 1, 3, n_classes)
|
||||||
|
|
||||||
def forward(self, detections):
|
def forward(self, detections):
|
||||||
pk = self.reasoning_probabilities[0].clamp(0, 1)
|
pk = self.reasoning_probabilities[0].clamp(0, 1)
|
||||||
@ -128,7 +126,11 @@ class CBC(pl.LightningModule):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def components(self):
|
def components(self):
|
||||||
return self.proto_layer.prototypes.detach().numpy()
|
return self.proto_layer.prototypes.detach().cpu()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def reasonings(self):
|
||||||
|
return self.reasoning_layer.reasonings.cpu()
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
||||||
@ -140,8 +142,8 @@ class CBC(pl.LightningModule):
|
|||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
self.sync_backbones()
|
self.sync_backbones()
|
||||||
# protos = self.proto_layer.prototypes
|
protos = self.proto_layer.prototypes
|
||||||
protos, _ = self.proto_layer()
|
# protos, _ = self.proto_layer()
|
||||||
|
|
||||||
latent_x = self.backbone(x)
|
latent_x = self.backbone(x)
|
||||||
latent_protos = self.backbone_dependent(protos)
|
latent_protos = self.backbone_dependent(protos)
|
||||||
@ -163,7 +165,7 @@ class CBC(pl.LightningModule):
|
|||||||
# y_true = torch.nn.functional.one_hot(y, num_classes=nclasses)
|
# y_true = torch.nn.functional.one_hot(y, num_classes=nclasses)
|
||||||
# y_true = torch.eye(nclasses)[y.long()]
|
# y_true = torch.eye(nclasses)[y.long()]
|
||||||
y_true = torch.nn.functional.one_hot(y.long(), num_classes=nclasses)
|
y_true = torch.nn.functional.one_hot(y.long(), num_classes=nclasses)
|
||||||
loss = MarginLoss(self.margin)(y_pred, y_true).sum(dim=0)
|
loss = MarginLoss(self.margin)(y_pred, y_true).mean(dim=0)
|
||||||
self.log("train_loss", loss)
|
self.log("train_loss", loss)
|
||||||
# with torch.no_grad():
|
# with torch.no_grad():
|
||||||
# preds = torch.argmax(y_pred, dim=1)
|
# preds = torch.argmax(y_pred, dim=1)
|
||||||
@ -172,16 +174,18 @@ class CBC(pl.LightningModule):
|
|||||||
# preds.int(),
|
# preds.int(),
|
||||||
# y.int()) # FloatTensors are assumed to be class probabilities
|
# y.int()) # FloatTensors are assumed to be class probabilities
|
||||||
self.train_acc(y_pred, y_true)
|
self.train_acc(y_pred, y_true)
|
||||||
self.log("acc",
|
self.log(
|
||||||
self.train_acc,
|
"acc",
|
||||||
on_step=False,
|
self.train_acc,
|
||||||
on_epoch=True,
|
on_step=False,
|
||||||
prog_bar=True,
|
on_epoch=True,
|
||||||
logger=True)
|
prog_bar=True,
|
||||||
|
logger=True,
|
||||||
|
)
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
# def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
#def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||||
# self.reasoning_layer.reasoning_probabilities.data.clamp_(0., 1.)
|
# self.reasoning_layer.reasoning_probabilities.data.clamp_(0., 1.)
|
||||||
|
|
||||||
# def training_epoch_end(self, outs):
|
# def training_epoch_end(self, outs):
|
||||||
# # Calling `self.train_acc.compute()` is
|
# # Calling `self.train_acc.compute()` is
|
||||||
@ -201,5 +205,5 @@ class ImageCBC(CBC):
|
|||||||
clamping after updates.
|
clamping after updates.
|
||||||
"""
|
"""
|
||||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||||
super().on_train_batch_end(outputs, batch, batch_idx, dataload_idx)
|
#super().on_train_batch_end(outputs, batch, batch_idx, dataloader_idx)
|
||||||
self.proto_layer.prototypes.data.clamp_(0., 1.)
|
self.proto_layer.prototypes.data.clamp_(0.0, 1.0)
|
||||||
|
Loading…
Reference in New Issue
Block a user