[FEATURE] Add example to showcase dynamic pruning of prototypes
This commit is contained in:
parent
398431e7ea
commit
b2009bb563
94
examples/dynamic_pruning.py
Normal file
94
examples/dynamic_pruning.py
Normal file
@ -0,0 +1,94 @@
|
||||
"""Dynamically prune prototypes in GLVQ-type models."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from pytorch_lightning.callbacks import Callback
|
||||
|
||||
|
||||
class PrototypePruning(Callback):
|
||||
def __init__(self, threshold=0.01, prune_after=10, verbose=False):
|
||||
self.threshold = threshold
|
||||
self.prune_after = prune_after
|
||||
self.verbose = verbose
|
||||
|
||||
def on_epoch_start(self, trainer, pl_module):
|
||||
pl_module.initialize_prototype_win_ratios()
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) > self.prune_after:
|
||||
ratios = pl_module.prototype_win_ratios.mean(dim=0)
|
||||
to_prune = torch.arange(len(ratios))[ratios < self.threshold]
|
||||
if len(to_prune) > 0:
|
||||
if self.verbose:
|
||||
print(f"\nPrototype win ratios: {ratios}")
|
||||
print(f"Pruning prototypes at indices: {to_prune}")
|
||||
cur_num_protos = pl_module.num_prototypes
|
||||
pl_module.remove_prototypes(indices=to_prune)
|
||||
new_num_protos = pl_module.num_prototypes
|
||||
if self.verbose:
|
||||
print(f"`num_prototypes` reduced from {cur_num_protos} "
|
||||
f"to {new_num_protos}.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
num_classes = 4
|
||||
num_features = 2
|
||||
num_clusters = 1
|
||||
train_ds = pt.datasets.Random(num_samples=500,
|
||||
num_classes=num_classes,
|
||||
num_features=num_features,
|
||||
num_clusters=num_clusters,
|
||||
separation=3.0,
|
||||
seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
prototypes_per_class = num_clusters * 5
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
lr=0.3,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CELVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Ones(2, scale=3),
|
||||
)
|
||||
|
||||
# Summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(train_ds)
|
||||
pruning = PrototypePruning(
|
||||
threshold=0.01, # prune prototype if it wins less than 1%
|
||||
prune_after=50,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
max_epochs=100,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
Loading…
Reference in New Issue
Block a user