Cleanup models

Siamese architectures no longer accept a `backbone_module`. They have to be
initialized with an pre-initialized backbone object instead. This is so that the
visualization callbacks could use the very same object for visualization
purposes. Also, there's no longer a dependent copy of the backbone. It is
managed simply with `requires_grad` instead.
This commit is contained in:
Jensun Ravichandran 2021-05-17 17:00:23 +02:00
parent 7a87636ad7
commit 81346785bd
2 changed files with 107 additions and 151 deletions

View File

@ -1,5 +1,6 @@
import pytorch_lightning as pl
import torch
from prototorch.functions.competitions import wtac
from torch.optim.lr_scheduler import ExponentialLR
@ -29,3 +30,33 @@ class AbstractPrototypeModel(pl.LightningModule):
class PrototypeImageModel(pl.LightningModule):
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.proto_layer.components.data.clamp_(0.0, 1.0)
class SiamesePrototypeModel(pl.LightningModule):
def configure_optimizers(self):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
if list(self.backbone.parameters()):
# only add an optimizer is the backbone has trainable parameters
# otherwise, the next line fails
bb_opt = self.optimizer(self.backbone.parameters(),
lr=self.hparams.bb_lr)
return proto_opt, bb_opt
else:
return proto_opt
def predict_latent(self, x, map_protos=True):
"""Predict `x` assuming it is already embedded in the latent space.
Only the prototypes are embedded in the latent space using the
backbone.
"""
# model.eval() # ?!
with torch.no_grad():
protos, plabels = self.proto_layer()
if map_protos:
protos = self.backbone(protos)
d = self.distance_fn(x, protos)
y_pred = wtac(d, plabels)
return y_pred

View File

@ -4,11 +4,12 @@ from prototorch.components import LabeledComponents
from prototorch.functions.activations import get_activation
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import (euclidean_distance, omega_distance,
squared_euclidean_distance)
sed)
from prototorch.functions.helper import get_flat
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
from .abstract import AbstractPrototypeModel, PrototypeImageModel
from .abstract import (AbstractPrototypeModel, PrototypeImageModel,
SiamesePrototypeModel)
class GLVQ(AbstractPrototypeModel):
@ -25,11 +26,11 @@ class GLVQ(AbstractPrototypeModel):
self.save_hyperparameters(hparams)
self.distance_fn = kwargs.get("distance_fn", euclidean_distance)
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
prototype_initializer = kwargs.get("prototype_initializer", None)
# Default Values
self.hparams.setdefault("distance", euclidean_distance)
self.hparams.setdefault("transfer_function", "identity")
self.hparams.setdefault("transfer_beta", 10.0)
@ -48,7 +49,7 @@ class GLVQ(AbstractPrototypeModel):
def forward(self, x):
protos, _ = self.proto_layer()
dis = self.hparams.distance(x, protos)
dis = self.distance_fn(x, protos)
return dis
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
@ -87,33 +88,7 @@ class GLVQ(AbstractPrototypeModel):
return y_pred
class LVQ1(GLVQ):
"""Learning Vector Quantization 1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.loss = lvq1_loss
self.optimizer = torch.optim.SGD
class LVQ21(GLVQ):
"""Learning Vector Quantization 2.1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.loss = lvq21_loss
self.optimizer = torch.optim.SGD
class ImageGLVQ(GLVQ, PrototypeImageModel):
"""GLVQ for training on image data.
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
pass
class SiameseGLVQ(GLVQ):
class SiameseGLVQ(SiamesePrototypeModel, GLVQ):
"""GLVQ in a Siamese setting.
GLVQ model that applies an arbitrary transformation on the inputs and the
@ -123,110 +98,62 @@ class SiameseGLVQ(GLVQ):
"""
def __init__(self,
hparams,
backbone_module=torch.nn.Identity,
backbone_params={},
sync=True,
backbone=torch.nn.Identity(),
both_path_gradients=False,
**kwargs):
super().__init__(hparams, **kwargs)
self.backbone = backbone_module(**backbone_params)
self.backbone_dependent = backbone_module(
**backbone_params).requires_grad_(False)
self.sync = sync
def sync_backbones(self):
master_state = self.backbone.state_dict()
self.backbone_dependent.load_state_dict(master_state, strict=True)
def configure_optimizers(self):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
if list(self.backbone.parameters()):
# only add an optimizer is the backbone has trainable parameters
# otherwise, the next line fails
bb_opt = self.optimizer(self.backbone.parameters(),
lr=self.hparams.bb_lr)
return proto_opt, bb_opt
else:
return proto_opt
self.backbone = backbone
self.both_path_gradients = both_path_gradients
self.distance_fn = kwargs.get("distance_fn", sed)
def forward(self, x):
if self.sync:
self.sync_backbones()
protos, _ = self.proto_layer()
latent_x = self.backbone(x)
latent_protos = self.backbone_dependent(protos)
dis = euclidean_distance(latent_x, latent_protos)
self.backbone.requires_grad_(self.both_path_gradients)
latent_protos = self.backbone(protos)
self.backbone.requires_grad_(True)
dis = self.distance_fn(latent_x, latent_protos)
return dis
def predict_latent(self, x):
"""Predict `x` assuming it is already embedded in the latent space.
Only the prototypes are embedded in the latent space using the
backbone.
"""
# model.eval() # ?!
with torch.no_grad():
protos, plabels = self.proto_layer()
latent_protos = self.backbone_dependent(protos)
d = euclidean_distance(x, latent_protos)
y_pred = wtac(d, plabels)
return y_pred
class GRLVQ(GLVQ):
class GRLVQ(SiamesePrototypeModel, GLVQ):
"""Generalized Relevance Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.relevances = torch.nn.parameter.Parameter(
torch.ones(self.hparams.input_dim))
self.distance_fn = kwargs.get("distance_fn", sed)
@property
def relevance_profile(self):
return self.relevances.detach().cpu()
def backbone(self, x):
"""Namespace hook for the visualization callbacks to work."""
return x @ torch.diag(self.relevances)
def forward(self, x):
protos, _ = self.proto_layer()
dis = omega_distance(x, protos, torch.diag(self.relevances))
return dis
def backbone(self, x):
return x @ torch.diag(self.relevances)
@property
def relevance_profile(self):
return self.relevances.detach().cpu()
def predict_latent(self, x):
"""Predict `x` assuming it is already embedded in the latent space.
Only the prototypes are embedded in the latent space using the
backbone.
"""
# model.eval() # ?!
with torch.no_grad():
protos, plabels = self.proto_layer()
latent_protos = protos @ torch.diag(self.relevances)
d = squared_euclidean_distance(x, latent_protos)
y_pred = wtac(d, plabels)
return y_pred
class GMLVQ(GLVQ):
class GMLVQ(SiamesePrototypeModel, GLVQ):
"""Generalized Matrix Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.omega_layer = torch.nn.Linear(self.hparams.input_dim,
self.hparams.latent_dim,
bias=False)
# Namespace hook for the visualization callbacks to work
self.backbone = self.omega_layer
self.backbone = torch.nn.Linear(self.hparams.input_dim,
self.hparams.latent_dim,
bias=False)
self.distance_fn = kwargs.get("distance_fn", sed)
@property
def omega_matrix(self):
return self.omega_layer.weight.detach().cpu()
return self.backbone.weight.detach().cpu()
@property
def lambda_matrix(self):
omega = self.omega_layer.weight # (latent_dim, input_dim)
omega = self.backbone.weight # (latent_dim, input_dim)
lam = omega.T @ omega
return lam.detach().cpu()
@ -243,38 +170,13 @@ class GMLVQ(GLVQ):
def forward(self, x):
protos, _ = self.proto_layer()
x, protos = get_flat(x, protos)
latent_x = self.omega_layer(x)
latent_protos = self.omega_layer(protos)
dis = squared_euclidean_distance(latent_x, latent_protos)
latent_x = self.backbone(x)
latent_protos = self.backbone(protos)
dis = self.distance_fn(latent_x, latent_protos)
return dis
def predict_latent(self, x):
"""Predict `x` assuming it is already embedded in the latent space.
Only the prototypes are embedded in the latent space using the
backbone.
"""
# model.eval() # ?!
with torch.no_grad():
protos, plabels = self.proto_layer()
latent_protos = self.omega_layer(protos)
d = squared_euclidean_distance(x, latent_protos)
y_pred = wtac(d, plabels)
return y_pred
class ImageGMLVQ(GMLVQ, PrototypeImageModel):
"""GMLVQ for training on image data.
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
pass
class LVQMLN(GLVQ):
class LVQMLN(SiamesePrototypeModel, GLVQ):
"""Learning Vector Quantization Multi-Layer Network.
GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT
@ -283,27 +185,50 @@ class LVQMLN(GLVQ):
rather in the embedding space.
"""
def __init__(self,
hparams,
backbone_module=torch.nn.Identity,
backbone_params={},
**kwargs):
def __init__(self, hparams, backbone=torch.nn.Identity(), **kwargs):
super().__init__(hparams, **kwargs)
self.backbone = backbone_module(**backbone_params)
with torch.no_grad():
protos = self.backbone(self.proto_layer()[0])
self.proto_layer.load_state_dict({"_components": protos}, strict=False)
self.backbone = backbone
self.distance_fn = kwargs.get("distance_fn", sed)
def forward(self, x):
latent_protos, _ = self.proto_layer()
latent_x = self.backbone(x)
dis = euclidean_distance(latent_x, latent_protos)
dis = self.distance_fn(latent_x, latent_protos)
return dis
def predict_latent(self, x):
"""Predict `x` assuming it is already embedded in the latent space."""
with torch.no_grad():
latent_protos, plabels = self.proto_layer()
d = euclidean_distance(x, latent_protos)
y_pred = wtac(d, plabels)
return y_pred
class LVQ1(GLVQ):
"""Learning Vector Quantization 1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.loss = lvq1_loss
self.optimizer = torch.optim.SGD
class LVQ21(GLVQ):
"""Learning Vector Quantization 2.1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.loss = lvq21_loss
self.optimizer = torch.optim.SGD
class ImageGLVQ(PrototypeImageModel, GLVQ):
"""GLVQ for training on image data.
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
pass
class ImageGMLVQ(PrototypeImageModel, GMLVQ):
"""GMLVQ for training on image data.
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
pass