Cleanup models
Siamese architectures no longer accept a `backbone_module`. They have to be initialized with an pre-initialized backbone object instead. This is so that the visualization callbacks could use the very same object for visualization purposes. Also, there's no longer a dependent copy of the backbone. It is managed simply with `requires_grad` instead.
This commit is contained in:
parent
7a87636ad7
commit
81346785bd
@ -1,5 +1,6 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.functions.competitions import wtac
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
|
||||
@ -29,3 +30,33 @@ class AbstractPrototypeModel(pl.LightningModule):
|
||||
class PrototypeImageModel(pl.LightningModule):
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
||||
|
||||
class SiamesePrototypeModel(pl.LightningModule):
|
||||
def configure_optimizers(self):
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
if list(self.backbone.parameters()):
|
||||
# only add an optimizer is the backbone has trainable parameters
|
||||
# otherwise, the next line fails
|
||||
bb_opt = self.optimizer(self.backbone.parameters(),
|
||||
lr=self.hparams.bb_lr)
|
||||
return proto_opt, bb_opt
|
||||
else:
|
||||
return proto_opt
|
||||
|
||||
def predict_latent(self, x, map_protos=True):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
if map_protos:
|
||||
protos = self.backbone(protos)
|
||||
d = self.distance_fn(x, protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
@ -4,11 +4,12 @@ from prototorch.components import LabeledComponents
|
||||
from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
sed)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
|
||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||
from .abstract import (AbstractPrototypeModel, PrototypeImageModel,
|
||||
SiamesePrototypeModel)
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
@ -25,11 +26,11 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
self.distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
self.hparams.setdefault("transfer_function", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
@ -48,7 +49,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
dis = self.hparams.distance(x, protos)
|
||||
dis = self.distance_fn(x, protos)
|
||||
return dis
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
@ -87,33 +88,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
return y_pred
|
||||
|
||||
|
||||
class LVQ1(GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq1_loss
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class LVQ21(GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq21_loss
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(GLVQ, PrototypeImageModel):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class SiameseGLVQ(GLVQ):
|
||||
class SiameseGLVQ(SiamesePrototypeModel, GLVQ):
|
||||
"""GLVQ in a Siamese setting.
|
||||
|
||||
GLVQ model that applies an arbitrary transformation on the inputs and the
|
||||
@ -123,110 +98,62 @@ class SiameseGLVQ(GLVQ):
|
||||
"""
|
||||
def __init__(self,
|
||||
hparams,
|
||||
backbone_module=torch.nn.Identity,
|
||||
backbone_params={},
|
||||
sync=True,
|
||||
backbone=torch.nn.Identity(),
|
||||
both_path_gradients=False,
|
||||
**kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.backbone = backbone_module(**backbone_params)
|
||||
self.backbone_dependent = backbone_module(
|
||||
**backbone_params).requires_grad_(False)
|
||||
self.sync = sync
|
||||
|
||||
def sync_backbones(self):
|
||||
master_state = self.backbone.state_dict()
|
||||
self.backbone_dependent.load_state_dict(master_state, strict=True)
|
||||
|
||||
def configure_optimizers(self):
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
if list(self.backbone.parameters()):
|
||||
# only add an optimizer is the backbone has trainable parameters
|
||||
# otherwise, the next line fails
|
||||
bb_opt = self.optimizer(self.backbone.parameters(),
|
||||
lr=self.hparams.bb_lr)
|
||||
return proto_opt, bb_opt
|
||||
else:
|
||||
return proto_opt
|
||||
self.backbone = backbone
|
||||
self.both_path_gradients = both_path_gradients
|
||||
self.distance_fn = kwargs.get("distance_fn", sed)
|
||||
|
||||
def forward(self, x):
|
||||
if self.sync:
|
||||
self.sync_backbones()
|
||||
protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
dis = euclidean_distance(latent_x, latent_protos)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_protos = self.backbone(protos)
|
||||
self.backbone.requires_grad_(True)
|
||||
dis = self.distance_fn(latent_x, latent_protos)
|
||||
return dis
|
||||
|
||||
def predict_latent(self, x):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
d = euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
class GRLVQ(GLVQ):
|
||||
class GRLVQ(SiamesePrototypeModel, GLVQ):
|
||||
"""Generalized Relevance Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.relevances = torch.nn.parameter.Parameter(
|
||||
torch.ones(self.hparams.input_dim))
|
||||
self.distance_fn = kwargs.get("distance_fn", sed)
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
return self.relevances.detach().cpu()
|
||||
|
||||
def backbone(self, x):
|
||||
"""Namespace hook for the visualization callbacks to work."""
|
||||
return x @ torch.diag(self.relevances)
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
dis = omega_distance(x, protos, torch.diag(self.relevances))
|
||||
return dis
|
||||
|
||||
def backbone(self, x):
|
||||
return x @ torch.diag(self.relevances)
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
return self.relevances.detach().cpu()
|
||||
|
||||
def predict_latent(self, x):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
latent_protos = protos @ torch.diag(self.relevances)
|
||||
d = squared_euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
class GMLVQ(GLVQ):
|
||||
class GMLVQ(SiamesePrototypeModel, GLVQ):
|
||||
"""Generalized Matrix Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.omega_layer = torch.nn.Linear(self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
bias=False)
|
||||
|
||||
# Namespace hook for the visualization callbacks to work
|
||||
self.backbone = self.omega_layer
|
||||
self.backbone = torch.nn.Linear(self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
bias=False)
|
||||
self.distance_fn = kwargs.get("distance_fn", sed)
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self.omega_layer.weight.detach().cpu()
|
||||
return self.backbone.weight.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self.omega_layer.weight # (latent_dim, input_dim)
|
||||
omega = self.backbone.weight # (latent_dim, input_dim)
|
||||
lam = omega.T @ omega
|
||||
return lam.detach().cpu()
|
||||
|
||||
@ -243,38 +170,13 @@ class GMLVQ(GLVQ):
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = get_flat(x, protos)
|
||||
latent_x = self.omega_layer(x)
|
||||
latent_protos = self.omega_layer(protos)
|
||||
dis = squared_euclidean_distance(latent_x, latent_protos)
|
||||
latent_x = self.backbone(x)
|
||||
latent_protos = self.backbone(protos)
|
||||
dis = self.distance_fn(latent_x, latent_protos)
|
||||
return dis
|
||||
|
||||
def predict_latent(self, x):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
latent_protos = self.omega_layer(protos)
|
||||
d = squared_euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
class ImageGMLVQ(GMLVQ, PrototypeImageModel):
|
||||
"""GMLVQ for training on image data.
|
||||
|
||||
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class LVQMLN(GLVQ):
|
||||
class LVQMLN(SiamesePrototypeModel, GLVQ):
|
||||
"""Learning Vector Quantization Multi-Layer Network.
|
||||
|
||||
GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT
|
||||
@ -283,27 +185,50 @@ class LVQMLN(GLVQ):
|
||||
rather in the embedding space.
|
||||
|
||||
"""
|
||||
def __init__(self,
|
||||
hparams,
|
||||
backbone_module=torch.nn.Identity,
|
||||
backbone_params={},
|
||||
**kwargs):
|
||||
def __init__(self, hparams, backbone=torch.nn.Identity(), **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.backbone = backbone_module(**backbone_params)
|
||||
with torch.no_grad():
|
||||
protos = self.backbone(self.proto_layer()[0])
|
||||
self.proto_layer.load_state_dict({"_components": protos}, strict=False)
|
||||
self.backbone = backbone
|
||||
|
||||
self.distance_fn = kwargs.get("distance_fn", sed)
|
||||
|
||||
def forward(self, x):
|
||||
latent_protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
dis = euclidean_distance(latent_x, latent_protos)
|
||||
dis = self.distance_fn(latent_x, latent_protos)
|
||||
return dis
|
||||
|
||||
def predict_latent(self, x):
|
||||
"""Predict `x` assuming it is already embedded in the latent space."""
|
||||
with torch.no_grad():
|
||||
latent_protos, plabels = self.proto_layer()
|
||||
d = euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
class LVQ1(GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq1_loss
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class LVQ21(GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq21_loss
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(PrototypeImageModel, GLVQ):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class ImageGMLVQ(PrototypeImageModel, GMLVQ):
|
||||
"""GMLVQ for training on image data.
|
||||
|
||||
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
Loading…
Reference in New Issue
Block a user