Update Examples to new initializer architecture.
Visualization still borken for some examples.
This commit is contained in:
parent
d644114090
commit
1c3613019b
@ -4,13 +4,12 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from sklearn.datasets import make_circles
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisPointProtos
|
||||
from prototorch.models.cbc import CBC, euclidean_similarity
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
@ -32,7 +31,7 @@ class VisualizationCallback(pl.Callback):
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if self.prototype_model:
|
||||
protos = pl_module.prototypes
|
||||
protos = pl_module.components
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
@ -83,8 +82,8 @@ if __name__ == "__main__":
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=len(np.unique(y_train)),
|
||||
prototypes_per_class=5,
|
||||
prototype_initializer="randn",
|
||||
num_components=5,
|
||||
component_initializer=cinit.RandomInitializer(x_train.shape[1]),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
@ -95,31 +94,15 @@ if __name__ == "__main__":
|
||||
similarity=euclidean_similarity,
|
||||
)
|
||||
|
||||
model = GLVQ(hparams, data=[x_train, y_train])
|
||||
|
||||
# Fix the component locations
|
||||
# model.proto_layer.requires_grad_(False)
|
||||
|
||||
# import sys
|
||||
# sys.exit()
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
dvis = VisPointProtos(
|
||||
data=(x_train, y_train),
|
||||
save=True,
|
||||
snap=False,
|
||||
voronoi=True,
|
||||
resolution=50,
|
||||
pause_time=0.1,
|
||||
make_gif=True,
|
||||
)
|
||||
dvis = VisualizationCallback(x_train,
|
||||
y_train,
|
||||
prototype_model=False,
|
||||
title="CBC Circle Example")
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=10,
|
||||
max_epochs=50,
|
||||
callbacks=[
|
||||
dvis,
|
||||
],
|
||||
|
@ -4,30 +4,38 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
from prototorch.models.cbc import CBC, euclidean_similarity
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
def __init__(
|
||||
self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
cmap="viridis",
|
||||
):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.prototype_model = prototype_model
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
# protos = pl_module.prototypes
|
||||
if self.prototype_model:
|
||||
protos = pl_module.components
|
||||
# plabels = pl_module.prototype_labels
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
color = "k"
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
@ -37,8 +45,7 @@ class VisualizationCallback(pl.Callback):
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
# c=plabels,
|
||||
c="k",
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
@ -71,42 +78,31 @@ if __name__ == "__main__":
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_initializer="stratified_mean",
|
||||
nclasses=len(np.unique(y_train)),
|
||||
num_components=9,
|
||||
component_initializer=cinit.StratifiedMeanInitializer(
|
||||
torch.Tensor(x_train), torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = CBC(hparams, data=[x_train, y_train])
|
||||
|
||||
# Fix the component locations
|
||||
# model.proto_layer.requires_grad_(False)
|
||||
|
||||
# Pure-positive reasonings
|
||||
ncomps = 3
|
||||
nclasses = 3
|
||||
rmat = torch.stack(
|
||||
[0.9 * torch.eye(ncomps),
|
||||
torch.zeros(ncomps, nclasses)], dim=0)
|
||||
# model.reasoning_layer.load_state_dict({"reasoning_probabilities": rmat},
|
||||
# strict=True)
|
||||
|
||||
print(model.reasoning_layer.reasoning_probabilities)
|
||||
# import sys
|
||||
# sys.exit()
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
model = CBC(
|
||||
hparams,
|
||||
data=[x_train, y_train],
|
||||
similarity=euclidean_similarity,
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
dvis = VisualizationCallback(x_train,
|
||||
y_train,
|
||||
prototype_model=False,
|
||||
title="CBC Iris Example")
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=100,
|
||||
max_epochs=50,
|
||||
callbacks=[
|
||||
vis,
|
||||
dvis,
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -4,9 +4,9 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
|
||||
|
||||
@ -110,7 +110,7 @@ if __name__ == "__main__":
|
||||
# Pure-positive reasonings
|
||||
new_reasoning = torch.zeros_like(
|
||||
model.reasoning_layer.reasoning_probabilities)
|
||||
for i, label in enumerate(model.proto_layer.prototype_labels):
|
||||
for i, label in enumerate(model.component_layer.prototype_labels):
|
||||
new_reasoning[0][0][i][int(label)] = 1.0
|
||||
|
||||
model.reasoning_layer.reasoning_probabilities.data = new_reasoning
|
||||
|
@ -8,9 +8,9 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
@ -132,11 +132,12 @@ if __name__ == "__main__":
|
||||
train(glvq_model, x_train, y_train, train_loader, epochs=10)
|
||||
|
||||
# Transfer Prototypes
|
||||
cbc_model.proto_layer.load_state_dict(glvq_model.proto_layer.state_dict())
|
||||
cbc_model.component_layer.load_state_dict(
|
||||
glvq_model.proto_layer.state_dict())
|
||||
# Pure-positive reasonings
|
||||
new_reasoning = torch.zeros_like(
|
||||
cbc_model.reasoning_layer.reasoning_probabilities)
|
||||
for i, label in enumerate(cbc_model.proto_layer.prototype_labels):
|
||||
for i, label in enumerate(cbc_model.component_layer.prototype_labels):
|
||||
new_reasoning[0][0][i][int(label)] = 1.0
|
||||
new_reasoning[1][0][i][1 - int(label)] = 1.0
|
||||
|
||||
|
@ -1,86 +1,16 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class GLVQIris(GLVQ):
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = argparse.ArgumentParser(parents=[parent_parser],
|
||||
add_help=False)
|
||||
parser.add_argument("--epochs", type=int, default=1)
|
||||
parser.add_argument("--lr", type=float, default=1e-1)
|
||||
parser.add_argument("--batch_size", type=int, default=150)
|
||||
parser.add_argument("--input_dim", type=int, default=2)
|
||||
parser.add_argument("--nclasses", type=int, default=3)
|
||||
parser.add_argument("--prototypes_per_class", type=int, default=3)
|
||||
parser.add_argument("--prototype_initializer",
|
||||
type=str,
|
||||
default="stratified_mean")
|
||||
return parser
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# For best-practices when using `argparse` with `pytorch_lightning`, see
|
||||
# https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
@ -89,43 +19,23 @@ if __name__ == "__main__":
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Add model specific args
|
||||
parser = GLVQIris.add_model_specific_args(parser)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
|
||||
# Automatically add trainer-specific-args like `--gpus`, `--num_nodes` etc.
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
parser,
|
||||
max_epochs=10,
|
||||
callbacks=[
|
||||
vis,
|
||||
], # comment this line out to disable the visualization
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=cinit.StratifiedMeanInitializer(
|
||||
torch.Tensor(x_train), torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
)
|
||||
# trainer.tune(model)
|
||||
|
||||
# Initialize the model
|
||||
args = parser.parse_args()
|
||||
model = GLVQIris(args, data=[x_train, y_train])
|
||||
model = GLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=50,
|
||||
callbacks=[VisGLVQ2D(x_train, y_train)],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate)
|
||||
ckpt = "glvq_iris.ckpt"
|
||||
trainer.save_checkpoint(ckpt)
|
||||
|
||||
# Load the checkpoint
|
||||
new_model = GLVQIris.load_from_checkpoint(checkpoint_path=ckpt)
|
||||
|
||||
print(new_model)
|
||||
|
||||
# Continue training
|
||||
trainer.fit(new_model, train_loader) # TODO See why this fails!
|
||||
|
@ -1,40 +0,0 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=cinit.StratifiedMeanInitializer(
|
||||
torch.Tensor(x_train), torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(hparams)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=50,
|
||||
callbacks=[VisGLVQ2D(x_train, y_train)],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -7,6 +7,7 @@ import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torchvision
|
||||
from prototorch.components import initializers as cinit
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
@ -92,12 +93,12 @@ if __name__ == "__main__":
|
||||
input_dim=28 * 28,
|
||||
nclasses=10,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="stratified_mean",
|
||||
prototype_initializer=cinit.StratifiedMeanInitializer(x, y),
|
||||
lr=args.lr,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = ImageGLVQ(hparams, data=[x, y])
|
||||
model = ImageGLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
@ -5,9 +5,10 @@ import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.datasets.spiral import make_spiral
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class StopOnNaN(pl.Callback):
|
||||
|
@ -4,11 +4,12 @@ import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import GMLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import GMLVQ
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
|
@ -1,12 +1,12 @@
|
||||
"""GMLVQ example using the Tecator dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.tecator import Tecator
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import GMLVQ
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
|
@ -1,15 +1,14 @@
|
||||
"""Neural Gas example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisNG2D
|
||||
from prototorch.models.neural_gas import NeuralGas
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.models.callbacks.visualization import VisNG2D
|
||||
from prototorch.models.neural_gas import NeuralGas
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
|
@ -2,14 +2,16 @@
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import (StratifiedMeanInitializer,
|
||||
StratifiedSelectionInitializer)
|
||||
from prototorch.components import (
|
||||
StratifiedMeanInitializer
|
||||
)
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import SiameseGLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import SiameseGLVQ
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
|
@ -1,10 +1,9 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
from prototorch.components.components import Components
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.similarities import cosine_similarity
|
||||
from prototorch.modules.prototypes import Prototypes1D
|
||||
|
||||
|
||||
def rescaled_cosine_similarity(x, y):
|
||||
@ -93,12 +92,8 @@ class CBC(pl.LightningModule):
|
||||
super().__init__()
|
||||
self.save_hyperparameters(hparams)
|
||||
self.margin = margin
|
||||
self.proto_layer = Prototypes1D(
|
||||
input_dim=self.hparams.input_dim,
|
||||
nclasses=self.hparams.nclasses,
|
||||
prototypes_per_class=self.hparams.prototypes_per_class,
|
||||
prototype_initializer=self.hparams.prototype_initializer,
|
||||
**kwargs)
|
||||
self.component_layer = Components(self.hparams.num_components,
|
||||
self.hparams.component_initializer)
|
||||
# self.similarity = CosineSimilarity()
|
||||
self.similarity = similarity
|
||||
self.backbone = backbone_class()
|
||||
@ -110,7 +105,7 @@ class CBC(pl.LightningModule):
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
return self.proto_layer.prototypes.detach().cpu()
|
||||
return self.component_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
@ -126,7 +121,7 @@ class CBC(pl.LightningModule):
|
||||
|
||||
def forward(self, x):
|
||||
self.sync_backbones()
|
||||
protos, _ = self.proto_layer()
|
||||
protos = self.component_layer()
|
||||
|
||||
latent_x = self.backbone(x)
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
@ -167,4 +162,4 @@ class ImageCBC(CBC):
|
||||
"""
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
# super().on_train_batch_end(outputs, batch, batch_idx, dataloader_idx)
|
||||
self.proto_layer.prototypes.data.clamp_(0.0, 1.0)
|
||||
self.component_layer.prototypes.data.clamp_(0.0, 1.0)
|
||||
|
@ -1,4 +1,3 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.components import LabeledComponents
|
||||
@ -7,7 +6,6 @@ from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (euclidean_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.losses import glvq_loss
|
||||
from prototorch.modules.prototypes import Prototypes1D
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
||||
@ -55,7 +53,6 @@ class GLVQ(AbstractPrototypeModel):
|
||||
with torch.no_grad():
|
||||
preds = wtac(dis, plabels)
|
||||
# `.int()` because FloatTensors are assumed to be class probabilities
|
||||
self.train_acc(preds.int(), y.int())
|
||||
|
||||
# Logging
|
||||
self.log("train_loss", loss)
|
||||
|
@ -1,9 +1,7 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules import Prototypes1D
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
Loading…
Reference in New Issue
Block a user