prototorch_models/examples/cbc_iris.py

115 lines
3.2 KiB
Python
Raw Normal View History

2021-04-22 14:01:44 +00:00
"""CBC example using the Iris dataset."""
import numpy as np
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
2021-04-23 15:27:47 +00:00
from torch.utils.data import DataLoader
2021-04-22 14:01:44 +00:00
2021-04-23 15:27:47 +00:00
from prototorch.datasets.abstract import NumpyDataset
from prototorch.models.cbc import CBC
2021-04-22 14:01:44 +00:00
class VisualizationCallback(pl.Callback):
def __init__(self,
x_train,
y_train,
title="Prototype Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module):
# protos = pl_module.prototypes
protos = pl_module.components
# plabels = pl_module.prototype_labels
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
# c=plabels,
c="k",
cmap=self.cmap,
edgecolor="k",
marker="D",
2021-04-23 15:27:47 +00:00
s=50,
)
2021-04-22 14:01:44 +00:00
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)
if __name__ == "__main__":
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
# Hyperparameters
2021-04-23 15:27:47 +00:00
hparams = dict(
input_dim=x_train.shape[1],
nclasses=3,
prototypes_per_class=3,
prototype_initializer="stratified_mean",
lr=0.01,
)
2021-04-22 14:01:44 +00:00
# Initialize the model
model = CBC(hparams, data=[x_train, y_train])
# Fix the component locations
# model.proto_layer.requires_grad_(False)
# Pure-positive reasonings
ncomps = 3
nclasses = 3
rmat = torch.stack(
[0.9 * torch.eye(ncomps),
torch.zeros(ncomps, nclasses)], dim=0)
# model.reasoning_layer.load_state_dict({"reasoning_probabilities": rmat},
# strict=True)
print(model.reasoning_layer.reasoning_probabilities)
# import sys
# sys.exit()
# Model summary
print(model)
# Callbacks
vis = VisualizationCallback(x_train, y_train)
# Setup trainer
trainer = pl.Trainer(
max_epochs=100,
callbacks=[
vis,
],
)
# Training loop
trainer.fit(model, train_loader)