2021-04-22 14:01:44 +00:00
|
|
|
"""CBC example using the Iris dataset."""
|
|
|
|
|
2021-05-07 13:25:04 +00:00
|
|
|
import prototorch as pt
|
2021-04-22 14:01:44 +00:00
|
|
|
import pytorch_lightning as pl
|
|
|
|
import torch
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Dataset
|
2021-05-07 13:25:04 +00:00
|
|
|
from sklearn.datasets import load_iris
|
2021-04-22 14:01:44 +00:00
|
|
|
x_train, y_train = load_iris(return_X_y=True)
|
|
|
|
x_train = x_train[:, [0, 2]]
|
2021-05-07 13:25:04 +00:00
|
|
|
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
2021-04-22 14:01:44 +00:00
|
|
|
|
2021-05-07 13:46:09 +00:00
|
|
|
# Reproducibility
|
|
|
|
pl.utilities.seed.seed_everything(seed=2)
|
|
|
|
|
2021-04-22 14:01:44 +00:00
|
|
|
# Dataloaders
|
2021-05-07 13:25:04 +00:00
|
|
|
train_loader = torch.utils.data.DataLoader(train_ds,
|
|
|
|
num_workers=0,
|
|
|
|
batch_size=150)
|
2021-04-22 14:01:44 +00:00
|
|
|
|
|
|
|
# Hyperparameters
|
2021-04-23 15:27:47 +00:00
|
|
|
hparams = dict(
|
|
|
|
input_dim=x_train.shape[1],
|
2021-05-07 13:25:04 +00:00
|
|
|
nclasses=3,
|
2021-05-07 13:46:09 +00:00
|
|
|
num_components=5,
|
|
|
|
component_initializer=pt.components.SSI(train_ds, noise=0.01),
|
2021-04-23 15:27:47 +00:00
|
|
|
lr=0.01,
|
|
|
|
)
|
2021-04-22 14:01:44 +00:00
|
|
|
|
|
|
|
# Initialize the model
|
2021-05-07 13:25:04 +00:00
|
|
|
model = pt.models.CBC(hparams)
|
2021-04-22 14:01:44 +00:00
|
|
|
|
|
|
|
# Callbacks
|
2021-05-07 13:25:04 +00:00
|
|
|
dvis = pt.models.VisCBC2D(data=(x_train, y_train),
|
2021-05-17 17:37:42 +00:00
|
|
|
title="CBC Iris Example",
|
|
|
|
resolution=300,
|
|
|
|
axis_off=True)
|
2021-04-22 14:01:44 +00:00
|
|
|
|
|
|
|
# Setup trainer
|
|
|
|
trainer = pl.Trainer(
|
2021-05-15 10:43:00 +00:00
|
|
|
gpus=0,
|
2021-05-07 13:46:09 +00:00
|
|
|
max_epochs=200,
|
2021-04-22 14:01:44 +00:00
|
|
|
callbacks=[
|
2021-05-06 12:10:09 +00:00
|
|
|
dvis,
|
2021-04-22 14:01:44 +00:00
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
# Training loop
|
2021-05-07 13:25:04 +00:00
|
|
|
trainer.fit(model, train_loader)
|