prototorch_models/examples/cbc_iris.py

54 lines
1.3 KiB
Python
Raw Normal View History

2021-04-22 14:01:44 +00:00
"""CBC example using the Iris dataset."""
2021-05-21 15:55:55 +00:00
import argparse
2021-04-22 14:01:44 +00:00
import pytorch_lightning as pl
import torch
2021-05-30 22:52:16 +00:00
import prototorch as pt
2021-04-22 14:01:44 +00:00
if __name__ == "__main__":
2021-05-21 15:55:55 +00:00
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
2021-04-22 14:01:44 +00:00
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
2021-04-22 14:01:44 +00:00
2021-05-07 13:46:09 +00:00
# Reproducibility
pl.utilities.seed.seed_everything(seed=3)
2021-05-07 13:46:09 +00:00
2021-04-22 14:01:44 +00:00
# Dataloaders
2021-05-07 13:25:04 +00:00
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
2021-04-22 14:01:44 +00:00
# Hyperparameters
2021-04-23 15:27:47 +00:00
hparams = dict(
distribution=[3, 2, 2],
proto_lr=0.01,
bb_lr=0.01,
2021-04-23 15:27:47 +00:00
)
2021-04-22 14:01:44 +00:00
# Initialize the model
model = pt.models.CBC(
hparams,
prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
)
2021-04-22 14:01:44 +00:00
# Callbacks
2021-05-21 15:55:55 +00:00
vis = pt.models.VisCBC2D(data=train_ds,
title="CBC Iris Example",
resolution=300,
axis_off=True)
2021-04-22 14:01:44 +00:00
# Setup trainer
2021-05-21 15:55:55 +00:00
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
2021-04-22 14:01:44 +00:00
)
# Training loop
2021-05-07 13:25:04 +00:00
trainer.fit(model, train_loader)