prototorch_models/examples/gmlvq_iris.py

47 lines
1.2 KiB
Python
Raw Normal View History

2021-05-04 13:11:16 +00:00
"""GMLVQ example using all four dimensions of the Iris dataset."""
2021-05-21 15:55:55 +00:00
import argparse
2021-05-04 13:11:16 +00:00
import pytorch_lightning as pl
import torch
2021-05-21 15:55:55 +00:00
from sklearn.datasets import load_iris
2021-05-30 22:52:16 +00:00
import prototorch as pt
2021-05-04 13:11:16 +00:00
if __name__ == "__main__":
2021-05-21 15:55:55 +00:00
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
2021-05-04 13:11:16 +00:00
# Dataset
x_train, y_train = load_iris(return_X_y=True)
2021-05-07 13:25:04 +00:00
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
2021-05-04 13:11:16 +00:00
# Dataloaders
2021-05-30 22:52:16 +00:00
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
2021-05-04 13:11:16 +00:00
# Hyperparameters
2021-05-25 13:41:10 +00:00
num_classes = 3
2021-05-11 14:15:08 +00:00
prototypes_per_class = 1
2021-05-04 13:11:16 +00:00
hparams = dict(
2021-05-25 13:41:10 +00:00
distribution=(num_classes, prototypes_per_class),
2021-05-04 13:11:16 +00:00
input_dim=x_train.shape[1],
2021-05-07 13:25:04 +00:00
latent_dim=x_train.shape[1],
2021-05-17 15:03:37 +00:00
proto_lr=0.01,
bb_lr=0.01,
2021-05-04 13:11:16 +00:00
)
# Initialize the model
model = pt.models.GMLVQ(hparams,
prototype_initializer=pt.components.SMI(train_ds))
2021-05-04 13:11:16 +00:00
# Setup trainer
2021-05-21 15:55:55 +00:00
trainer = pl.Trainer.from_argparse_args(args, )
2021-05-04 13:11:16 +00:00
# Training loop
trainer.fit(model, train_loader)
2021-05-07 13:25:04 +00:00
# Display the Lambda matrix
model.show_lambda()