"""GMLVQ example using all four dimensions of the Iris dataset.""" import argparse import pytorch_lightning as pl import torch from sklearn.datasets import load_iris import prototorch as pt if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset x_train, y_train = load_iris(return_X_y=True) train_ds = pt.datasets.NumpyDataset(x_train, y_train) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) # Hyperparameters num_classes = 3 prototypes_per_class = 1 hparams = dict( distribution=(num_classes, prototypes_per_class), input_dim=x_train.shape[1], latent_dim=x_train.shape[1], proto_lr=0.01, bb_lr=0.01, ) # Initialize the model model = pt.models.GMLVQ(hparams, prototype_initializer=pt.components.SMI(train_ds)) # Setup trainer trainer = pl.Trainer.from_argparse_args(args, ) # Training loop trainer.fit(model, train_loader) # Display the Lambda matrix model.show_lambda()