50 Commits

Author SHA1 Message Date
Jensun Ravichandran
6ffd14e85c Bump version: 0.5.0 → 0.5.1 2021-06-18 15:49:20 +02:00
Jensun Ravichandran
40c1021c20 Remove examples 2021-06-18 13:41:03 +02:00
Jensun Ravichandran
acf3272fd7 Remove .swp files 2021-06-18 13:39:43 +02:00
danielstaps
c73f8e7a28 Added PCA initializer and component for OmegaMatrix or LinearMappings (#6)
* Added PCA initializer and component for OmegaMatrix or LinearMappings

* [QA] Add default configuration for pre commit hooks

* [QA] Add more pre commit checks

* [QA] Add more pre commit checks

* test(githooks): Add gitlint to check commit messages on commit

* docs(githooks): Add usage guide for pre-commit  to readme

* fix(githooks): mypy only checks source now

reverts changes on docs conf.py

* docs(githooks): Fix typo

Co-authored-by: staps@hs-mittweida.de <staps@hs-mittweida.de>
Co-authored-by: Alexander Engelsberger <alexanderengelsberger@gmail.com>
2021-06-18 13:28:25 +02:00
Alexander Engelsberger
bf23d5f7f8 docs(githooks): Fix typo 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
bcde3f6ac8 fix(githooks): mypy only checks source now
reverts changes on docs conf.py
2021-06-16 15:23:23 +02:00
Alexander Engelsberger
d5229b1750 docs(githooks): Add usage guide for pre-commit to readme 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
fc4b143fbb test(githooks): Add gitlint to check commit messages on commit 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
11cfa79746 [QA] Add more pre commit checks 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
d0ae94f2af [QA] Add more pre commit checks 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
2c908a8361 [QA] Add default configuration for pre commit hooks 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
e4257ec1f1 Merge branch 'dev' of github.com:si-cim/prototorch into dev 2021-06-11 16:10:04 +02:00
Alexander Engelsberger
aaad2b8626 [BUGFIX] Fix labeled components if initialized 2021-06-11 16:09:51 +02:00
Jensun Ravichandran
c0c0044a42 [REFACTOR] Remove CustomLabelsInitializer 2021-06-11 14:52:09 +02:00
Alexander Engelsberger
47d7f5831f [Refactor] Add Modules for prior distrbutions 2021-06-08 08:36:55 +02:00
Jensun Ravichandran
4f1c879528 [BUGFIX] Update unit tests 2021-06-04 22:29:30 +02:00
Jensun Ravichandran
2272c55092 [BUGFIX] Fix typo 2021-06-04 22:24:42 +02:00
Jensun Ravichandran
b03c9b1d3c Add competition and pooling modules 2021-06-04 22:18:46 +02:00
Jensun Ravichandran
0c28eda706 [FEATURE] Remove utility modules and add wrappers instead 2021-06-04 22:16:55 +02:00
Jensun Ravichandran
7bc0bfa3ab Rename loss functions 2021-06-04 22:15:57 +02:00
Jensun Ravichandran
827958a28a [FEATURE] Optional transforms in DataAwareInitializers 2021-06-04 22:14:45 +02:00
Jensun Ravichandran
8200e1d3d8 [FEATURE] Allow initialized_components to be a dataset 2021-06-04 22:13:36 +02:00
Jensun Ravichandran
729b20e9ab [FEATURE] Add scale to random initializer 2021-06-03 16:35:44 +02:00
Alexander Engelsberger
ca8ac7a43b [REFACTOR] Probabilistic losses 2021-06-03 14:01:13 +02:00
Alexander Engelsberger
b724a28a6f [BUGFIX] Stratified functions work on GPU now 2021-06-03 13:19:26 +02:00
Jensun Ravichandran
1e0a8392a2 [QA] Fix for "redefined-builtin" (W0622) 2021-06-02 00:07:44 +02:00
Jensun Ravichandran
2eb7b05653 [FEATURE] Add wrappers for more sklearn datasets 2021-06-01 23:33:51 +02:00
Jensun Ravichandran
d8a0b2dfcc Minor tweaks 2021-06-01 23:28:01 +02:00
Jensun Ravichandran
2a7394b593 [QA] Remove commented-out torch.jit.script decorators 2021-06-01 19:46:21 +02:00
Jensun Ravichandran
b1e64c8b8b [QA] Remove utils.py 2021-06-01 19:41:48 +02:00
Jensun Ravichandran
70cf17607e [BUGFIX] Fix broken _precheck_initializer 2021-06-01 19:41:21 +02:00
Jensun Ravichandran
b1568a550a [QA] Fix for "no-self-use" (R0201) 2021-06-01 19:26:05 +02:00
Jensun Ravichandran
e8e803e8ef [QA] Fix for "dangerous-default-value" (W0102) 2021-06-01 19:24:00 +02:00
Jensun Ravichandran
2c453265fe [QA] Remove duplicate headings 2021-06-01 19:18:37 +02:00
Jensun Ravichandran
7336d35fee [QA] Fix "dangerous-default-value" (W0102) 2021-06-01 19:15:06 +02:00
Jensun Ravichandran
bc18952c05 [QA] Fix "dangerous-default-value" (W0102) 2021-06-01 19:10:53 +02:00
Jensun Ravichandran
8e8d0b9c2c [QA] Fix "list-item-bullet-indent" 2021-06-01 19:08:37 +02:00
Jensun Ravichandran
5a7da2b40b [QA] Fix for "no-value-for-parameter" (E1120) 2021-06-01 19:03:57 +02:00
Jensun Ravichandran
b6d38f442b [QA] Remove trailing whitespace 2021-06-01 19:01:20 +02:00
Jensun Ravichandran
8e8851d962 Dynamically remove components 2021-06-01 18:45:47 +02:00
Jensun Ravichandran
27b43b06a7 Rename functions/transform.py -> functions/transforms.py 2021-06-01 17:43:23 +02:00
Jensun Ravichandran
ff69eb1256 Tecator.data is a Tensor and Tecator.targets is a LongTensor 2021-06-01 17:28:37 +02:00
Alexander Engelsberger
4ca581909a [FEATURE] Change NumpyDataset.data to torch.Tensor 2021-06-01 17:17:42 +02:00
Alexander Engelsberger
2722d976f5 [WIP] Add Growing Neural Gas Energy 2021-06-01 17:16:26 +02:00
Jensun Ravichandran
946cda00d2 Add more competition functions 2021-06-01 12:37:21 +02:00
Jensun Ravichandran
8227525c82 Add LambdaLayer 2021-05-31 16:47:20 +02:00
Jensun Ravichandran
e61ae73749 Make components dynamic 2021-05-31 00:31:40 +02:00
Alexander Engelsberger
040d1ee9e8 Add probabilistic losses
Based on Soft LVQ paper by Seo and Obermayer
2021-05-28 20:38:50 +02:00
Alexander Engelsberger
7f0da894fa Add transformation from distances into gaussian distribution 2021-05-28 16:50:04 +02:00
Alexander Engelsberger
62726df278 Add stratified sum as competition
For example used in RSLVQ
2021-05-28 16:49:39 +02:00
38 changed files with 843 additions and 1005 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.5.0
current_version = 0.5.1
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@@ -23,9 +23,9 @@ A clear and concise description of what you expected to happen.
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. Ubuntu 20.10]
- Prototorch Version: [e.g. v0.4.0]
- Python Version: [e.g. 3.9.5]
- OS: [e.g. Ubuntu 20.10]
- Prototorch Version: [e.g. v0.4.0]
- Python Version: [e.g. 3.9.5]
**Additional context**
Add any other context about the problem here.
Add any other context about the problem here.

2
.gitignore vendored
View File

@@ -155,4 +155,4 @@ scratch*
.vscode/
reports
artifacts
artifacts

54
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,54 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.0.1
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-ast
- id: check-case-conflict
- repo: https://github.com/myint/autoflake
rev: v1.4
hooks:
- id: autoflake
- repo: http://github.com/PyCQA/isort
rev: 5.8.0
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-mypy
rev: 'v0.902'
hooks:
- id: mypy
files: prototorch
additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf
rev: 'v0.31.0' # Use the sha / tag you want to point at
hooks:
- id: yapf
- repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.9.0 # Use the ref you want to point at
hooks:
- id: python-use-type-annotations
- id: python-no-log-warn
- id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade
rev: v2.19.4
hooks:
- id: pyupgrade
- repo: https://github.com/jorisroovers/gitlint
rev: "v0.15.1"
hooks:
- id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename]

View File

@@ -48,6 +48,17 @@ pip install -e .[all]
The documentation is available at <https://www.prototorch.ml/en/latest/>. Should
that link not work try <https://prototorch.readthedocs.io/en/latest/>.
## Contribution
This repository contains definition for [git hooks](https://githooks.com).
[Pre-commit](https://pre-commit.com) gets installed as development dependency with prototorch.
Please install the hooks by running
```bash
pre-commit install
pre-commit install --hook-type commit-msg
```
before creating the first commit.
## Bibtex
If you would like to cite the package, please use this:

View File

@@ -2,17 +2,15 @@
## Release 0.5.0
- Breaking: Removed deprecated `prototorch.modules.Prototypes1D`
- Use `prototorch.components.LabeledComponents` instead
- Breaking: Removed deprecated `prototorch.modules.Prototypes1D`.
- Use `prototorch.components.LabeledComponents` instead.
## Release 0.2.0
### Includes
- Fixes in example scripts.
## Release 0.1.1-dev0
### Includes
- Minor bugfixes.
- 100% line coverage.

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.5.0"
release = "0.5.1"
# -- General configuration ---------------------------------------------------

View File

@@ -1,120 +0,0 @@
"""ProtoTorch GLVQ example using 2D Iris data."""
import numpy as np
import torch
from matplotlib import pyplot as plt
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import euclidean_distance
from prototorch.modules.losses import GLVQLoss
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torchinfo import summary
# Prepare and preprocess the data
scaler = StandardScaler()
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
scaler.fit(x_train)
x_train = scaler.transform(x_train)
# Define the GLVQ model
class Model(torch.nn.Module):
def __init__(self):
"""GLVQ model for training on 2D Iris data."""
super().__init__()
prototype_initializer = StratifiedMeanInitializer([x_train, y_train])
prototype_distribution = {"num_classes": 3, "prototypes_per_class": 3}
self.proto_layer = LabeledComponents(
prototype_distribution,
prototype_initializer,
)
def forward(self, x):
prototypes, prototype_labels = self.proto_layer()
distances = euclidean_distance(x, prototypes)
return distances, prototype_labels
# Build the GLVQ model
model = Model()
# Print summary using torchinfo (might be buggy/incorrect)
print(summary(model))
# Optimize using SGD optimizer from `torch.optim`
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
x_in = torch.Tensor(x_train)
y_in = torch.Tensor(y_train)
# Training loop
TITLE = "Prototype Visualization"
fig = plt.figure(TITLE)
for epoch in range(70):
# Compute loss
distances, prototype_labels = model(x_in)
loss = criterion([distances, prototype_labels], y_in)
# Compute Accuracy
with torch.no_grad():
predictions = wtac(distances, prototype_labels)
correct = predictions.eq(y_in.view_as(predictions)).sum().item()
acc = 100.0 * correct / len(x_train)
print(
f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} Acc: {acc:05.02f}%"
)
# Optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Get the prototypes form the model
prototypes = model.proto_layer.components.numpy()
if np.isnan(np.sum(prototypes)):
print("Stopping training because of `nan` in prototypes.")
break
# Visualize the data and the prototypes
ax = fig.gca()
ax.cla()
ax.set_title(TITLE)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
cmap = "viridis"
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
prototypes[:, 0],
prototypes[:, 1],
c=prototype_labels,
cmap=cmap,
edgecolor="k",
marker="D",
s=50,
)
# Paint decision regions
x = np.vstack((x_train, prototypes))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
torch_input = torch.Tensor(mesh_input)
d = model(torch_input)[0]
w_indices = torch.argmin(d, dim=1)
y_pred = torch.index_select(prototype_labels, 0, w_indices)
y_pred = y_pred.reshape(xx.shape)
# Plot voronoi regions
ax.contourf(xx, yy, y_pred, cmap=cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)

View File

@@ -1,103 +0,0 @@
"""ProtoTorch "siamese" GMLVQ example using Tecator."""
import matplotlib.pyplot as plt
import torch
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.datasets.tecator import Tecator
from prototorch.functions.distances import sed
from prototorch.modules.losses import GLVQLoss
from prototorch.utils.colors import get_legend_handles
from torch.utils.data import DataLoader
# Prepare the dataset and dataloader
train_data = Tecator(root="./artifacts", train=True)
train_loader = DataLoader(train_data, batch_size=128, shuffle=True)
class Model(torch.nn.Module):
def __init__(self, **kwargs):
"""GMLVQ model as a siamese network."""
super().__init__()
prototype_initializer = StratifiedMeanInitializer(train_loader)
prototype_distribution = {"num_classes": 2, "prototypes_per_class": 2}
self.proto_layer = LabeledComponents(
prototype_distribution,
prototype_initializer,
)
self.omega = torch.nn.Linear(in_features=100,
out_features=100,
bias=False)
torch.nn.init.eye_(self.omega.weight)
def forward(self, x):
protos = self.proto_layer.components
plabels = self.proto_layer.component_labels
# Process `x` and `protos` through `omega`
x_map = self.omega(x)
protos_map = self.omega(protos)
# Compute distances and output
dis = sed(x_map, protos_map)
return dis, plabels
# Build the GLVQ model
model = Model()
# Print a summary of the model
print(model)
# Optimize using Adam optimizer from `torch.optim`
optimizer = torch.optim.Adam(model.parameters(), lr=0.001_0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=75, gamma=0.1)
criterion = GLVQLoss(squashing="identity", beta=10)
# Training loop
for epoch in range(150):
epoch_loss = 0.0 # zero-out epoch loss
optimizer.zero_grad() # zero-out gradients
for xb, yb in train_loader:
# Compute loss
distances, plabels = model(xb)
loss = criterion([distances, plabels], yb)
epoch_loss += loss.item()
# Backprop
loss.backward()
# Take a gradient descent step
optimizer.step()
scheduler.step()
lr = optimizer.param_groups[0]["lr"]
print(f"Epoch: {epoch + 1:03d} Loss: {epoch_loss:06.02f} lr: {lr:07.06f}")
# Get the omega matrix form the model
omega = model.omega.weight.data.numpy().T
# Visualize the lambda matrix
title = "Lambda Matrix Visualization"
fig = plt.figure(title)
ax = fig.gca()
ax.set_title(title)
im = ax.imshow(omega.dot(omega.T), cmap="viridis")
plt.show()
# Get the prototypes form the model
protos = model.proto_layer.components.numpy()
plabels = model.proto_layer.component_labels.numpy()
# Visualize the prototypes
title = "Tecator Prototypes"
fig = plt.figure(title)
ax = fig.gca()
ax.set_title(title)
ax.set_xlabel("Spectral frequencies")
ax.set_ylabel("Absorption")
clabels = ["Class 0 - Low fat", "Class 1 - High fat"]
handles, colors = get_legend_handles(clabels, marker="line", zero_indexed=True)
for x, y in zip(protos, plabels):
ax.plot(x, c=colors[int(y)])
ax.legend(handles, clabels)
plt.show()

View File

@@ -1,183 +0,0 @@
"""
ProtoTorch GTLVQ example using MNIST data.
The GTLVQ is placed as an classification model on
top of a CNN, considered as featurer extractor.
Initialization of subpsace and prototypes in
Siamnese fashion
For more info about GTLVQ see:
DOI:10.1109/IJCNN.2016.7727534
"""
import numpy as np
import torch
import torch.nn as nn
import torchvision
from prototorch.functions.helper import calculate_prototype_accuracy
from prototorch.modules.losses import GLVQLoss
from prototorch.modules.models import GTLVQ
from torchvision import transforms
# Parameters and options
num_epochs = 50
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.1
momentum = 0.5
log_interval = 10
cuda = "cuda:0"
random_seed = 1
device = torch.device(cuda if torch.cuda.is_available() else "cpu")
# Configures reproducability
torch.manual_seed(random_seed)
np.random.seed(random_seed)
# Prepare and preprocess the data
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(
"./files/",
train=True,
download=True,
transform=torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]),
),
batch_size=batch_size_train,
shuffle=True,
)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(
"./files/",
train=False,
download=True,
transform=torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]),
),
batch_size=batch_size_test,
shuffle=True,
)
# Define the GLVQ model plus appropriate feature extractor
class CNNGTLVQ(torch.nn.Module):
def __init__(
self,
num_classes,
subspace_data,
prototype_data,
tangent_projection_type="local",
prototypes_per_class=2,
bottleneck_dim=128,
):
super(CNNGTLVQ, self).__init__()
# Feature Extractor - Simple CNN
self.fe = nn.Sequential(
nn.Conv2d(1, 32, 3, 1),
nn.ReLU(),
nn.Conv2d(32, 64, 3, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Dropout(0.25),
nn.Flatten(),
nn.Linear(9216, bottleneck_dim),
nn.Dropout(0.5),
nn.LeakyReLU(),
nn.LayerNorm(bottleneck_dim),
)
# Forward pass of subspace and prototype initialization data through feature extractor
subspace_data = self.fe(subspace_data)
prototype_data[0] = self.fe(prototype_data[0])
# Initialization of GTLVQ
self.gtlvq = GTLVQ(
num_classes,
subspace_data,
prototype_data,
tangent_projection_type=tangent_projection_type,
feature_dim=bottleneck_dim,
prototypes_per_class=prototypes_per_class,
)
def forward(self, x):
# Feature Extraction
x = self.fe(x)
# GTLVQ Forward pass
dis = self.gtlvq(x)
return dis
# Get init data
subspace_data = torch.cat(
[next(iter(train_loader))[0],
next(iter(test_loader))[0]])
prototype_data = next(iter(train_loader))
# Build the CNN GTLVQ model
model = CNNGTLVQ(
10,
subspace_data,
prototype_data,
tangent_projection_type="local",
bottleneck_dim=128,
).to(device)
# Optimize using SGD optimizer from `torch.optim`
optimizer = torch.optim.Adam(
[{
"params": model.fe.parameters()
}, {
"params": model.gtlvq.parameters()
}],
lr=learning_rate,
)
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
# Training loop
for epoch in range(num_epochs):
for batch_idx, (x_train, y_train) in enumerate(train_loader):
model.train()
x_train, y_train = x_train.to(device), y_train.to(device)
optimizer.zero_grad()
distances = model(x_train)
plabels = model.gtlvq.cls.component_labels.to(device)
# Compute loss.
loss = criterion([distances, plabels], y_train)
loss.backward()
optimizer.step()
# GTLVQ uses projected SGD, which means to orthogonalize the subspaces after every gradient update.
model.gtlvq.orthogonalize_subspace()
if batch_idx % log_interval == 0:
acc = calculate_prototype_accuracy(distances, y_train, plabels)
print(
f"Epoch: {epoch + 1:02d}/{num_epochs:02d} Epoch Progress: {100. * batch_idx / len(train_loader):02.02f} % Loss: {loss.item():02.02f} \
Train Acc: {acc.item():02.02f}")
# Test
with torch.no_grad():
model.eval()
correct = 0
total = 0
for x_test, y_test in test_loader:
x_test, y_test = x_test.to(device), y_test.to(device)
test_distances = model(torch.tensor(x_test))
test_plabels = model.gtlvq.cls.prototype_labels.to(device)
i = torch.argmin(test_distances, 1)
correct += torch.sum(y_test == test_plabels[i])
total += y_test.size(0)
print("Accuracy of the network on the test images: %d %%" %
(torch.true_divide(correct, total) * 100))
# Save the model
PATH = "./glvq_mnist_model.pth"
torch.save(model.state_dict(), PATH)

View File

@@ -1,108 +0,0 @@
"""ProtoTorch LGMLVQ example using 2D Iris data."""
import numpy as np
import torch
from matplotlib import pyplot as plt
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.functions.competitions import stratified_min
from prototorch.functions.distances import lomega_distance
from prototorch.modules.losses import GLVQLoss
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
# Prepare training data
x_train, y_train = load_iris(True)
x_train = x_train[:, [0, 2]]
# Define the model
class Model(torch.nn.Module):
def __init__(self):
"""Local-GMLVQ model."""
super().__init__()
prototype_initializer = StratifiedMeanInitializer([x_train, y_train])
prototype_distribution = [1, 2, 2]
self.proto_layer = LabeledComponents(
prototype_distribution,
prototype_initializer,
)
omegas = torch.eye(2, 2).repeat(5, 1, 1)
self.omegas = torch.nn.Parameter(omegas)
def forward(self, x):
protos, plabels = self.proto_layer()
omegas = self.omegas
dis = lomega_distance(x, protos, omegas)
return dis, plabels
# Build the model
model = Model()
# Optimize using Adam optimizer from `torch.optim`
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
x_in = torch.Tensor(x_train)
y_in = torch.Tensor(y_train)
# Training loop
title = "Prototype Visualization"
fig = plt.figure(title)
for epoch in range(100):
# Compute loss
dis, plabels = model(x_in)
loss = criterion([dis, plabels], y_in)
y_pred = np.argmin(stratified_min(dis, plabels).detach().numpy(), axis=1)
acc = accuracy_score(y_train, y_pred)
log_string = f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} "
log_string += f"Acc: {acc * 100:05.02f}%"
print(log_string)
# Take a gradient descent step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Get the prototypes form the model
protos = model.proto_layer.components.numpy()
# Visualize the data and the prototypes
ax = fig.gca()
ax.cla()
ax.set_title(title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
cmap = "viridis"
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=plabels,
cmap=cmap,
edgecolor="k",
marker="D",
s=50,
)
# Paint decision regions
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
d, plabels = model(torch.Tensor(mesh_input))
y_pred = np.argmin(stratified_min(d, plabels).detach().numpy(), axis=1)
y_pred = y_pred.reshape(xx.shape)
# Plot voronoi regions
ax.contourf(xx, yy, y_pred, cmap=cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)

View File

@@ -1,6 +1,7 @@
"""ProtoTorch package."""
import pkgutil
from typing import List
import pkg_resources
@@ -8,7 +9,7 @@ from . import components, datasets, functions, modules, utils
from .datasets import *
# Core Setup
__version__ = "0.5.0"
__version__ = "0.5.1"
__all_core__ = [
"datasets",
@@ -19,7 +20,7 @@ __all_core__ = [
]
# Plugin Loader
__path__ = pkgutil.extend_path(__path__, __name__)
__path__: List[str] = pkgutil.extend_path(__path__, __name__)
def discover_plugins():

View File

@@ -3,13 +3,84 @@
import warnings
import torch
from torch.nn.parameter import Parameter
from prototorch.components.initializers import (ClassAwareInitializer,
ComponentsInitializer,
CustomLabelsInitializer,
EqualLabelsInitializer,
UnequalLabelsInitializer,
ZeroReasoningsInitializer)
from torch.nn.parameter import Parameter
from .initializers import parse_data_arg
def get_labels_object(distribution):
if isinstance(distribution, dict):
if "num_classes" in distribution.keys():
labels = EqualLabelsInitializer(
distribution["num_classes"],
distribution["prototypes_per_class"])
else:
clabels = list(distribution.keys())
dist = list(distribution.values())
labels = UnequalLabelsInitializer(dist, clabels)
elif isinstance(distribution, tuple):
num_classes, prototypes_per_class = distribution
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
elif isinstance(distribution, list):
labels = UnequalLabelsInitializer(distribution)
else:
msg = f"`distribution` not understood." \
f"You have provided: {distribution=}."
raise ValueError(msg)
return labels
def _precheck_initializer(initializer):
if not isinstance(initializer, ComponentsInitializer):
emsg = f"`initializer` has to be some subtype of " \
f"{ComponentsInitializer}. " \
f"You have provided: {initializer=} instead."
raise TypeError(emsg)
class LinearMapping(torch.nn.Module):
"""LinearMapping is a learnable Mapping Matrix."""
def __init__(self,
mapping_shape=None,
initializer=None,
*,
initialized_linearmapping=None):
super().__init__()
# Ignore all initialization settings if initialized_components is given.
if initialized_linearmapping is not None:
self._register_mapping(initialized_linearmapping)
if num_components is not None or initializer is not None:
wmsg = "Arguments ignored while initializing Components"
warnings.warn(wmsg)
else:
self._initialize_mapping(mapping_shape, initializer)
@property
def mapping_shape(self):
return self._omega.shape
def _register_mapping(self, components):
self.register_parameter("_omega", Parameter(components))
def _initialize_mapping(self, mapping_shape, initializer):
_precheck_initializer(initializer)
_mapping = initializer.generate(mapping_shape)
self._register_mapping(_mapping)
@property
def mapping(self):
"""Tensor containing the component tensors."""
return self._omega.detach()
def forward(self):
return self._omega
class Components(torch.nn.Module):
@@ -21,29 +92,46 @@ class Components(torch.nn.Module):
initialized_components=None):
super().__init__()
self.num_components = num_components
# Ignore all initialization settings if initialized_components is given.
if initialized_components is not None:
self.register_parameter("_components",
Parameter(initialized_components))
self._register_components(initialized_components)
if num_components is not None or initializer is not None:
wmsg = "Arguments ignored while initializing Components"
warnings.warn(wmsg)
else:
self._initialize_components(initializer)
self._initialize_components(num_components, initializer)
def _precheck_initializer(self, initializer):
if not isinstance(initializer, ComponentsInitializer):
emsg = f"`initializer` has to be some subtype of " \
f"{ComponentsInitializer}. " \
f"You have provided: {initializer=} instead."
raise TypeError(emsg)
@property
def num_components(self):
return len(self._components)
def _initialize_components(self, initializer):
self._precheck_initializer(initializer)
_components = initializer.generate(self.num_components)
self.register_parameter("_components", Parameter(_components))
def _register_components(self, components):
self.register_parameter("_components", Parameter(components))
def _initialize_components(self, num_components, initializer):
_precheck_initializer(initializer)
_components = initializer.generate(num_components)
self._register_components(_components)
def add_components(self,
num=1,
initializer=None,
*,
initialized_components=None):
if initialized_components is not None:
_components = torch.cat([self._components, initialized_components])
else:
_precheck_initializer(initializer)
_new = initializer.generate(num)
_components = torch.cat([self._components, _new])
self._register_components(_components)
def remove_components(self, indices=None):
mask = torch.ones(self.num_components, dtype=torch.bool)
mask[indices] = False
_components = self._components[mask]
self._register_components(_components)
return mask
@property
def components(self):
@@ -54,7 +142,7 @@ class Components(torch.nn.Module):
return self._components
def extra_repr(self):
return f"components.shape: {tuple(self._components.shape)}"
return f"(components): (shape: {tuple(self._components.shape)})"
class LabeledComponents(Components):
@@ -68,39 +156,60 @@ class LabeledComponents(Components):
*,
initialized_components=None):
if initialized_components is not None:
components, component_labels = initialized_components
components, component_labels = parse_data_arg(
initialized_components)
super().__init__(initialized_components=components)
self._labels = component_labels
self._register_labels(component_labels)
else:
_labels = self._initialize_labels(distribution)
labels = get_labels_object(distribution)
self.initial_distribution = labels.distribution
_labels = labels.generate()
super().__init__(len(_labels), initializer=initializer)
self.register_buffer("_labels", _labels)
self._register_labels(_labels)
def _initialize_components(self, initializer):
def _register_labels(self, labels):
self.register_buffer("_labels", labels)
@property
def distribution(self):
clabels, counts = torch.unique(self._labels,
sorted=True,
return_counts=True)
return dict(zip(clabels.tolist(), counts.tolist()))
def _initialize_components(self, num_components, initializer):
if isinstance(initializer, ClassAwareInitializer):
self._precheck_initializer(initializer)
_components = initializer.generate(self.num_components,
self.distribution)
self.register_parameter("_components", Parameter(_components))
_precheck_initializer(initializer)
_components = initializer.generate(num_components,
self.initial_distribution)
self._register_components(_components)
else:
super()._initialize_components(initializer)
super()._initialize_components(num_components, initializer)
def _initialize_labels(self, distribution):
if type(distribution) == dict:
if "num_classes" in distribution.keys():
labels = EqualLabelsInitializer(
distribution["num_classes"],
distribution["prototypes_per_class"])
else:
labels = CustomLabelsInitializer(distribution)
elif type(distribution) == tuple:
num_classes, prototypes_per_class = distribution
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
elif type(distribution) == list:
labels = UnequalLabelsInitializer(distribution)
def add_components(self, distribution, initializer):
_precheck_initializer(initializer)
self.distribution = labels.distribution
return labels.generate()
# Labels
labels = get_labels_object(distribution)
new_labels = labels.generate()
_labels = torch.cat([self._labels, new_labels])
self._register_labels(_labels)
# Components
if isinstance(initializer, ClassAwareInitializer):
_new = initializer.generate(len(new_labels), distribution)
else:
_new = initializer.generate(len(new_labels))
_components = torch.cat([self._components, _new])
self._register_components(_components)
def remove_components(self, indices=None):
# Components
mask = super().remove_components(indices)
# Labels
_labels = self._labels[mask]
self._register_labels(_labels)
@property
def component_labels(self):
@@ -112,7 +221,7 @@ class LabeledComponents(Components):
class ReasoningComponents(Components):
"""ReasoningComponents generate a set of components and a set of reasoning matrices.
r"""ReasoningComponents generate a set of components and a set of reasoning matrices.
Every Component has a reasoning matrix assigned.
@@ -141,7 +250,7 @@ class ReasoningComponents(Components):
super().__init__(len(self._reasonings), initializer=initializer)
def _initialize_reasonings(self, reasonings):
if type(reasonings) == tuple:
if isinstance(reasonings, tuple):
num_classes, num_components = reasonings
reasonings = ZeroReasoningsInitializer(num_classes, num_components)

View File

@@ -13,21 +13,30 @@ def parse_data_arg(data_arg):
if isinstance(data_arg, DataLoader):
data = torch.tensor([])
labels = torch.tensor([])
targets = torch.tensor([])
for x, y in data_arg:
data = torch.cat([data, x])
labels = torch.cat([labels, y])
targets = torch.cat([targets, y])
else:
data, labels = data_arg
data, targets = data_arg
if not isinstance(data, torch.Tensor):
wmsg = f"Converting data to {torch.Tensor}."
warnings.warn(wmsg)
data = torch.Tensor(data)
if not isinstance(labels, torch.Tensor):
wmsg = f"Converting labels to {torch.Tensor}."
if not isinstance(targets, torch.Tensor):
wmsg = f"Converting targets to {torch.Tensor}."
warnings.warn(wmsg)
labels = torch.Tensor(labels)
return data, labels
targets = torch.Tensor(targets)
return data, targets
def get_subinitializers(data, targets, clabels, subinit_type):
initializers = dict()
for clabel in clabels:
class_data = data[targets == clabel]
class_initializer = subinit_type(class_data)
initializers[clabel] = (class_initializer)
return initializers
# Components
@@ -37,18 +46,22 @@ class ComponentsInitializer(object):
class DimensionAwareInitializer(ComponentsInitializer):
def __init__(self, c_dims):
def __init__(self, dims):
super().__init__()
if isinstance(c_dims, Iterable):
self.components_dims = tuple(c_dims)
if isinstance(dims, Iterable):
self.components_dims = tuple(dims)
else:
self.components_dims = (c_dims, )
self.components_dims = (dims, )
class OnesInitializer(DimensionAwareInitializer):
def __init__(self, dims, scale=1.0):
super().__init__(dims)
self.scale = scale
def generate(self, length):
gen_dims = (length, ) + self.components_dims
return torch.ones(gen_dims)
return torch.ones(gen_dims) * self.scale
class ZerosInitializer(DimensionAwareInitializer):
@@ -58,78 +71,73 @@ class ZerosInitializer(DimensionAwareInitializer):
class UniformInitializer(DimensionAwareInitializer):
def __init__(self, c_dims, min=0.0, max=1.0):
super().__init__(c_dims)
self.min = min
self.max = max
def __init__(self, dims, minimum=0.0, maximum=1.0, scale=1.0):
super().__init__(dims)
self.minimum = minimum
self.maximum = maximum
self.scale = scale
def generate(self, length):
gen_dims = (length, ) + self.components_dims
return torch.ones(gen_dims).uniform_(self.min, self.max)
return torch.ones(gen_dims).uniform_(self.minimum,
self.maximum) * self.scale
class DataAwareInitializer(ComponentsInitializer):
def __init__(self, data):
def __init__(self, data, transform=torch.nn.Identity()):
super().__init__()
self.data = data
self.transform = transform
def __del__(self):
del self.data
class SelectionInitializer(DataAwareInitializer):
def generate(self, length):
indices = torch.LongTensor(length).random_(0, len(self.data))
return self.data[indices]
return self.transform(self.data[indices])
class MeanInitializer(DataAwareInitializer):
def generate(self, length):
mean = torch.mean(self.data, dim=0)
repeat_dim = [length] + [1] * len(mean.shape)
return mean.repeat(repeat_dim)
return self.transform(mean.repeat(repeat_dim))
class ClassAwareInitializer(ComponentsInitializer):
class ClassAwareInitializer(DataAwareInitializer):
def __init__(self, data, transform=torch.nn.Identity()):
super().__init__()
data, labels = parse_data_arg(data)
self.data = data
self.labels = labels
self.transform = transform
self.clabels = torch.unique(self.labels)
data, targets = parse_data_arg(data)
super().__init__(data, transform)
self.targets = targets
self.clabels = torch.unique(self.targets).int().tolist()
self.num_classes = len(self.clabels)
def _get_samples_from_initializer(self, length, dist):
if not dist:
per_class = length // self.num_classes
dist = self.num_classes * [per_class]
if type(dist) == dict:
dist = dist.values()
samples_list = [
init.generate(n) for init, n in zip(self.initializers, dist)
]
out = torch.vstack(samples_list)
dist = dict(zip(self.clabels, self.num_classes * [per_class]))
if isinstance(dist, list):
dist = dict(zip(self.clabels, dist))
samples = [self.initializers[k].generate(n) for k, n in dist.items()]
out = torch.vstack(samples)
with torch.no_grad():
out = self.transform(out)
return out
def __del__(self):
del self.data
del self.labels
del self.targets
class StratifiedMeanInitializer(ClassAwareInitializer):
def __init__(self, data, **kwargs):
super().__init__(data, **kwargs)
self.initializers = get_subinitializers(self.data, self.targets,
self.clabels, MeanInitializer)
self.initializers = []
for clabel in self.clabels:
class_data = self.data[self.labels == clabel]
class_initializer = MeanInitializer(class_data)
self.initializers.append(class_initializer)
def generate(self, length, dist=[]):
def generate(self, length, dist):
samples = self._get_samples_from_initializer(length, dist)
return samples
@@ -138,12 +146,9 @@ class StratifiedSelectionInitializer(ClassAwareInitializer):
def __init__(self, data, noise=None, **kwargs):
super().__init__(data, **kwargs)
self.noise = noise
self.initializers = []
for clabel in self.clabels:
class_data = self.data[self.labels == clabel]
class_initializer = SelectionInitializer(class_data)
self.initializers.append(class_initializer)
self.initializers = get_subinitializers(self.data, self.targets,
self.clabels,
SelectionInitializer)
def add_noise_v1(self, x):
return x + self.noise
@@ -155,13 +160,21 @@ class StratifiedSelectionInitializer(ClassAwareInitializer):
mask = torch.bernoulli(n1) - torch.bernoulli(n2)
return x + (self.noise * mask)
def generate(self, length, dist=[]):
def generate(self, length, dist):
samples = self._get_samples_from_initializer(length, dist)
if self.noise is not None:
samples = self.add_noise_v1(samples)
return samples
# Omega matrix
class PcaInitializer(DataAwareInitializer):
def generate(self, shape):
(input_dim, latent_dim) = shape
(_, eigVal, eigVec) = torch.pca_lowrank(self.data, q=latent_dim)
return eigVec
# Labels
class LabelsInitializer:
def generate(self):
@@ -169,20 +182,18 @@ class LabelsInitializer:
class UnequalLabelsInitializer(LabelsInitializer):
def __init__(self, dist):
def __init__(self, dist, clabels=None):
self.dist = dist
self.clabels = clabels or range(len(self.dist))
@property
def distribution(self):
return self.dist
def generate(self, clabels=None, dist=None):
if not clabels:
clabels = range(len(self.dist))
if not dist:
dist = self.dist
labels = list(chain(*[[i] * n for i, n in zip(clabels, dist)]))
return torch.LongTensor(labels)
def generate(self):
targets = list(
chain(*[[i] * n for i, n in zip(self.clabels, self.dist)]))
return torch.LongTensor(targets)
class EqualLabelsInitializer(LabelsInitializer):
@@ -198,13 +209,6 @@ class EqualLabelsInitializer(LabelsInitializer):
return torch.arange(self.classes).repeat(self.per_class, 1).T.flatten()
class CustomLabelsInitializer(UnequalLabelsInitializer):
def generate(self):
clabels = list(self.dist.keys())
dist = list(self.dist.values())
return super().generate(clabels, dist)
# Reasonings
class ReasoningsInitializer:
def generate(self, length):
@@ -226,3 +230,4 @@ SMI = StratifiedMeanInitializer
Random = RandomInitializer = UniformInitializer
Zeros = ZerosInitializer
Ones = OnesInitializer
PCA = PcaInitializer

View File

@@ -1,8 +1,6 @@
"""ProtoTorch datasets."""
from .abstract import NumpyDataset
from .iris import Iris
from .sklearn import Blobs, Circles, Iris, Moons, Random
from .spiral import Spiral
from .tecator import Tecator
__all__ = ['Iris', 'Spiral', 'Tecator']

View File

@@ -15,9 +15,9 @@ import torch
class NumpyDataset(torch.utils.data.TensorDataset):
"""Create a PyTorch TensorDataset from NumPy arrays."""
def __init__(self, data, targets):
self.data = data
self.targets = targets
tensors = [torch.Tensor(data), torch.Tensor(targets)]
self.data = torch.Tensor(data)
self.targets = torch.LongTensor(targets)
tensors = [self.data, self.targets]
super().__init__(*tensors)

View File

@@ -1,40 +0,0 @@
"""Thin wrapper for the Iris classification dataset from sklearn.
URL:
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
"""
from typing import Sequence
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
class Iris(NumpyDataset):
"""
Iris Dataset by Ronald Fisher introduced in 1936.
The dataset contains four measurements from flowers of three species of iris.
.. list-table:: Iris
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 4
- 3
- 150
- 0
- 0
:param dims: select a subset of dimensions
"""
def __init__(self, dims: Sequence[int] = None):
x, y = load_iris(return_X_y=True)
if dims:
x = x[:, dims]
super().__init__(x, y)

View File

@@ -0,0 +1,137 @@
"""Thin wrappers for a few scikit-learn datasets.
URL:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
"""
import warnings
from typing import Sequence, Union
from sklearn.datasets import (load_iris, make_blobs, make_circles,
make_classification, make_moons)
from prototorch.datasets.abstract import NumpyDataset
class Iris(NumpyDataset):
"""Iris Dataset by Ronald Fisher introduced in 1936.
The dataset contains four measurements from flowers of three species of iris.
.. list-table:: Iris
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 4
- 3
- 150
- 0
- 0
:param dims: select a subset of dimensions
"""
def __init__(self, dims: Sequence[int] = None):
x, y = load_iris(return_X_y=True)
if dims:
x = x[:, dims]
super().__init__(x, y)
class Blobs(NumpyDataset):
"""Generate isotropic Gaussian blobs for clustering.
Read more at
https://scikit-learn.org/stable/datasets/sample_generators.html#sample-generators.
"""
def __init__(self,
num_samples: int = 300,
num_features: int = 2,
seed: Union[None, int] = 0):
x, y = make_blobs(num_samples,
num_features,
centers=None,
random_state=seed,
shuffle=False)
super().__init__(x, y)
class Random(NumpyDataset):
"""Generate a random n-class classification problem.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.
Note: n_classes * n_clusters_per_class <= 2**n_informative must satisfy.
"""
def __init__(self,
num_samples: int = 300,
num_features: int = 2,
num_classes: int = 2,
num_clusters: int = 2,
num_informative: Union[None, int] = None,
separation: float = 1.0,
seed: Union[None, int] = 0):
if not num_informative:
import math
num_informative = math.ceil(math.log2(num_classes * num_clusters))
if num_features < num_informative:
warnings.warn("Generating more features than requested.")
num_features = num_informative
x, y = make_classification(num_samples,
num_features,
n_informative=num_informative,
n_redundant=0,
n_classes=num_classes,
n_clusters_per_class=num_clusters,
class_sep=separation,
random_state=seed,
shuffle=False)
super().__init__(x, y)
class Circles(NumpyDataset):
"""Make a large circle containing a smaller circle in 2D.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
"""
def __init__(self,
num_samples: int = 300,
noise: float = 0.3,
factor: float = 0.8,
seed: Union[None, int] = 0):
x, y = make_circles(num_samples,
noise=noise,
factor=factor,
random_state=seed,
shuffle=False)
super().__init__(x, y)
class Moons(NumpyDataset):
"""Make two interleaving half circles.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
"""
def __init__(self,
num_samples: int = 300,
noise: float = 0.3,
seed: Union[None, int] = 0):
x, y = make_moons(num_samples,
noise=noise,
random_state=seed,
shuffle=False)
super().__init__(x, y)

View File

@@ -6,7 +6,7 @@ import torch
def make_spiral(num_samples=500, noise=0.3):
"""Generates the Spiral Dataset.
For use in Prototorch use `prototorch.datasets.Spiral` instead.
"""
def get_samples(n, delta_t):

View File

@@ -40,9 +40,10 @@ import os
import numpy as np
import torch
from prototorch.datasets.abstract import ProtoDataset
from torchvision.datasets.utils import download_file_from_google_drive
from prototorch.datasets.abstract import ProtoDataset
class Tecator(ProtoDataset):
"""
@@ -101,12 +102,12 @@ class Tecator(ProtoDataset):
x_train, y_train = f["x_train"], f["y_train"]
x_test, y_test = f["x_test"], f["y_test"]
training_set = [
torch.tensor(x_train, dtype=torch.float32),
torch.tensor(y_train),
torch.Tensor(x_train),
torch.LongTensor(y_train),
]
test_set = [
torch.tensor(x_test, dtype=torch.float32),
torch.tensor(y_test),
torch.Tensor(x_test),
torch.LongTensor(y_test),
]
with open(os.path.join(self.processed_folder, self.training_file),

View File

@@ -2,11 +2,4 @@
from .activations import identity, sigmoid_beta, swish_beta
from .competitions import knnc, wtac
__all__ = [
"identity",
"sigmoid_beta",
"swish_beta",
"knnc",
"wtac",
]
from .pooling import *

View File

@@ -5,17 +5,14 @@ import torch
ACTIVATIONS = dict()
# def register_activation(scriptf):
# ACTIVATIONS[scriptf.name] = scriptf
# return scriptf
def register_activation(function):
def register_activation(fn):
"""Add the activation function to the registry."""
ACTIVATIONS[function.__name__] = function
return function
name = fn.__name__
ACTIVATIONS[name] = fn
return fn
@register_activation
# @torch.jit.script
def identity(x, beta=0.0):
"""Identity activation function.
@@ -29,7 +26,6 @@ def identity(x, beta=0.0):
@register_activation
# @torch.jit.script
def sigmoid_beta(x, beta=10.0):
r"""Sigmoid activation function with scaling.
@@ -44,7 +40,6 @@ def sigmoid_beta(x, beta=10.0):
@register_activation
# @torch.jit.script
def swish_beta(x, beta=10.0):
r"""Swish activation function with scaling.

View File

@@ -3,42 +3,26 @@
import torch
def stratified_min(distances, labels):
clabels = torch.unique(labels, dim=0)
num_classes = clabels.size()[0]
if distances.size()[1] == num_classes:
# skip if only one prototype per class
return distances
batch_size = distances.size()[0]
winning_distances = torch.zeros(num_classes, batch_size)
inf = torch.full_like(distances.T, fill_value=float("inf"))
# distances_to_wpluses = torch.where(matcher, distances, inf)
for i, cl in enumerate(clabels):
# cdists = distances.T[labels == cl]
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
if labels.ndim == 2:
# if the labels are one-hot vectors
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
cdists = torch.where(matcher, distances.T, inf).T
winning_distances[i] = torch.min(cdists, dim=1,
keepdim=True).values.squeeze()
if labels.ndim == 2:
# Transpose to return with `batch_size` first and
# reverse the columns to fix the ordering of the classes
return torch.flip(winning_distances.T, dims=(1, ))
def wtac(distances: torch.Tensor,
labels: torch.LongTensor) -> (torch.LongTensor):
"""Winner-Takes-All-Competition.
return winning_distances.T # return with `batch_size` first
Returns the labels corresponding to the winners.
def wtac(distances, labels):
"""
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
def knnc(distances, labels, k=1):
def knnc(distances: torch.Tensor,
labels: torch.LongTensor,
k: int = 1) -> (torch.LongTensor):
"""K-Nearest-Neighbors-Competition.
Returns the labels corresponding to the winners.
"""
winning_indices = torch.topk(-distances, k=k, dim=1).indices
# winning_labels = torch.mode(labels[winning_indices].squeeze(),
# dim=1).values
winning_labels = torch.mode(labels[winning_indices], dim=1).values
return winning_labels

View File

@@ -2,6 +2,7 @@
import numpy as np
import torch
from prototorch.functions.helper import (_check_shapes, _int_and_mixed_shape,
equal_int_shape, get_flat)

View File

@@ -89,6 +89,6 @@ def _check_shapes(signal_int_shape, proto_int_shape):
def _int_and_mixed_shape(tensor):
shape = mixed_shape(tensor)
int_shape = tuple([i if isinstance(i, int) else None for i in shape])
int_shape = tuple(i if isinstance(i, int) else None for i in shape)
return shape, int_shape

View File

@@ -57,3 +57,38 @@ def lvq21_loss(distances, target_labels, prototype_labels):
mu = dp - dm
return mu
# Probabilistic
def _get_class_probabilities(probabilities, targets, prototype_labels):
# Create Label Mapping
uniques = prototype_labels.unique(sorted=True).tolist()
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
target_indices = torch.LongTensor(list(map(key_val.get, targets.tolist())))
whole = probabilities.sum(dim=1)
correct = probabilities[torch.arange(len(probabilities)), target_indices]
wrong = whole - correct
return whole, correct, wrong
def nllr_loss(probabilities, targets, prototype_labels):
"""Compute the Negative Log-Likelihood Ratio loss."""
_, correct, wrong = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / wrong
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood
def rslvq_loss(probabilities, targets, prototype_labels):
"""Compute the Robust Soft Learning Vector Quantization (RSLVQ) loss."""
whole, correct, _ = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / whole
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood

View File

@@ -0,0 +1,80 @@
"""ProtoTorch pooling functions."""
from typing import Callable
import torch
def stratify_with(values: torch.Tensor,
labels: torch.LongTensor,
fn: Callable,
fill_value: float = 0.0) -> (torch.Tensor):
"""Apply an arbitrary stratification strategy on the columns on `values`.
The outputs correspond to sorted labels.
"""
clabels = torch.unique(labels, dim=0, sorted=True)
num_classes = clabels.size()[0]
if values.size()[1] == num_classes:
# skip if stratification is trivial
return values
batch_size = values.size()[0]
winning_values = torch.zeros(num_classes, batch_size, device=labels.device)
filler = torch.full_like(values.T, fill_value=fill_value)
for i, cl in enumerate(clabels):
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
if labels.ndim == 2:
# if the labels are one-hot vectors
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
cdists = torch.where(matcher, values.T, filler).T
winning_values[i] = fn(cdists)
if labels.ndim == 2:
# Transpose to return with `batch_size` first and
# reverse the columns to fix the ordering of the classes
return torch.flip(winning_values.T, dims=(1, ))
return winning_values.T # return with `batch_size` first
def stratified_sum_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise sum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.sum(x, dim=1, keepdim=True).squeeze(),
fill_value=0.0)
return winning_values
def stratified_min_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise minimum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.min(x, dim=1, keepdim=True).values.squeeze(),
fill_value=float("inf"))
return winning_values
def stratified_max_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.max(x, dim=1, keepdim=True).values.squeeze(),
fill_value=-1.0 * float("inf"))
return winning_values
def stratified_prod_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.prod(x, dim=1, keepdim=True).squeeze(),
fill_value=1.0)
return winning_values

View File

@@ -0,0 +1,32 @@
import torch
# Functions
def gaussian(distances, variance):
return torch.exp(-(distances * distances) / (2 * variance))
def rank_scaled_gaussian(distances, lambd):
order = torch.argsort(distances, dim=1)
ranks = torch.argsort(order, dim=1)
return torch.exp(-torch.exp(-ranks / lambd) * distances)
# Modules
class GaussianPrior(torch.nn.Module):
def __init__(self, variance):
super().__init__()
self.variance = variance
def forward(self, distances):
return gaussian(distances, self.variance)
class RankScaledGaussianPrior(torch.nn.Module):
def __init__(self, lambd):
super().__init__()
self.lambd = lambd
def forward(self, distances):
return rank_scaled_gaussian(distances, self.lambd)

View File

@@ -1 +1,5 @@
"""ProtoTorch modules."""
"""ProtoTorch modules."""
from .competitions import *
from .pooling import *
from .wrappers import LambdaLayer, LossLayer

View File

@@ -0,0 +1,42 @@
"""ProtoTorch Competition Modules."""
import torch
from prototorch.functions.competitions import knnc, wtac
class WTAC(torch.nn.Module):
"""Winner-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, distances, labels):
return wtac(distances, labels)
class LTAC(torch.nn.Module):
"""Loser-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, probs, labels):
return wtac(-1.0 * probs, labels)
class KNNC(torch.nn.Module):
"""K-Nearest-Neighbors-Competition.
Thin wrapper over the `knnc` function.
"""
def __init__(self, k=1, **kwargs):
super().__init__(**kwargs)
self.k = k
def forward(self, distances, labels):
return knnc(distances, labels, k=self.k)
def extra_repr(self):
return f"k: {self.k}"

View File

@@ -21,8 +21,8 @@ class GLVQLoss(torch.nn.Module):
class NeuralGasEnergy(torch.nn.Module):
def __init__(self, lm):
super().__init__()
def __init__(self, lm, **kwargs):
super().__init__(**kwargs)
self.lm = lm
def forward(self, d):
@@ -38,3 +38,22 @@ class NeuralGasEnergy(torch.nn.Module):
@staticmethod
def _nghood_fn(rankings, lm):
return torch.exp(-rankings / lm)
class GrowingNeuralGasEnergy(NeuralGasEnergy):
def __init__(self, topology_layer, **kwargs):
super().__init__(**kwargs)
self.topology_layer = topology_layer
@staticmethod
def _nghood_fn(rankings, topology):
winner = rankings[:, 0]
weights = torch.zeros_like(rankings, dtype=torch.float)
weights[torch.arange(rankings.shape[0]), winner] = 1.0
neighbours = topology.get_neighbours(winner)
weights[neighbours] = 0.1
return weights

View File

@@ -1,8 +1,9 @@
import torch
from torch import nn
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
from prototorch.functions.distances import euclidean_distance_matrix
from prototorch.functions.normalization import orthogonalization
from torch import nn
class GTLVQ(nn.Module):

View File

@@ -0,0 +1,32 @@
"""ProtoTorch Pooling Modules."""
import torch
from prototorch.functions.pooling import (stratified_max_pooling,
stratified_min_pooling,
stratified_prod_pooling,
stratified_sum_pooling)
class StratifiedSumPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_sum_pooling` function."""
def forward(self, values, labels):
return stratified_sum_pooling(values, labels)
class StratifiedProdPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_prod_pooling` function."""
def forward(self, values, labels):
return stratified_prod_pooling(values, labels)
class StratifiedMinPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_min_pooling` function."""
def forward(self, values, labels):
return stratified_min_pooling(values, labels)
class StratifiedMaxPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_max_pooling` function."""
def forward(self, values, labels):
return stratified_max_pooling(values, labels)

View File

@@ -0,0 +1,36 @@
"""ProtoTorch Wrappers."""
import torch
class LambdaLayer(torch.nn.Module):
def __init__(self, fn, name=None):
super().__init__()
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name
class LossLayer(torch.nn.modules.loss._Loss):
def __init__(self,
fn,
name=None,
size_average=None,
reduce=None,
reduction: str = "mean") -> None:
super().__init__(size_average=size_average,
reduce=reduce,
reduction=reduction)
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name

View File

@@ -1,243 +0,0 @@
"""Utilities that provide various small functionalities."""
import os
import pickle
import sys
from time import time
import matplotlib.pyplot as plt
import numpy as np
def progressbar(title, value, end, bar_width=20):
percent = float(value) / end
arrow = "=" * int(round(percent * bar_width) - 1) + ">"
spaces = "." * (bar_width - len(arrow))
sys.stdout.write("\r{}: [{}] {}%".format(title, arrow + spaces,
int(round(percent * 100))))
sys.stdout.flush()
if percent == 1.0:
print()
def prettify_string(inputs, start="", sep=" ", end="\n"):
outputs = start + " ".join(inputs.split()) + end
return outputs
def pretty_print(inputs):
print(prettify_string(inputs))
def writelog(self, *logs, logdir="./logs", logfile="run.txt"):
f = os.path.join(logdir, logfile)
with open(f, "a+") as fh:
for log in logs:
fh.write(log)
fh.write("\n")
def start_tensorboard(self, logdir="./logs"):
cmd = f"tensorboard --logdir={logdir} --port=6006"
os.system(cmd)
def make_directory(save_dir):
if not os.path.exists(save_dir):
print(f"Making directory {save_dir}.")
os.mkdir(save_dir)
def make_gif(filenames, duration, output_file=None):
try:
import imageio
except ModuleNotFoundError as e:
print("Please install Protoflow with [other] extra requirements.")
raise (e)
images = list()
for filename in filenames:
images.append(imageio.imread(filename))
if not output_file:
output_file = f"makegif.gif"
if images:
imageio.mimwrite(output_file, images, duration=duration)
def gif_from_dir(directory,
duration,
prefix="",
output_file=None,
verbose=True):
images = os.listdir(directory)
if verbose:
print(f"Making gif from {len(images)} images under {directory}.")
filenames = list()
# Sort images
images = sorted(
images,
key=lambda img: int(os.path.splitext(img)[0].replace(prefix, "")))
for image in images:
fname = os.path.join(directory, image)
filenames.append(fname)
if not output_file:
output_file = os.path.join(directory, "makegif.gif")
make_gif(filenames=filenames, duration=duration, output_file=output_file)
def accuracy_score(y_true, y_pred):
accuracy = np.sum(y_true == y_pred)
normalized_acc = accuracy / float(len(y_true))
return normalized_acc
def predict_and_score(clf,
x_test,
y_test,
verbose=False,
title="Test accuracy"):
y_pred = clf.predict(x_test)
accuracy = np.sum(y_test == y_pred)
normalized_acc = accuracy / float(len(y_test))
if verbose:
print(f"{title}: {normalized_acc * 100:06.04f}%")
return normalized_acc
def remove_nan_rows(arr):
"""Remove all rows with `nan` values in `arr`."""
mask = np.isnan(arr).any(axis=1)
return arr[~mask]
def remove_nan_cols(arr):
"""Remove all columns with `nan` values in `arr`."""
mask = np.isnan(arr).any(axis=0)
return arr[~mask]
def replace_in(arr, replacement_dict, inplace=False):
"""Replace the keys found in `arr` with the values from
the `replacement_dict`.
"""
if inplace:
new_arr = arr
else:
import copy
new_arr = copy.deepcopy(arr)
for k, v in replacement_dict.items():
new_arr[arr == k] = v
return new_arr
def train_test_split(data, train=0.7, val=0.15, shuffle=None, return_xy=False):
"""Split a classification dataset in such a way so as to
preserve the class distribution in subsamples of the dataset.
"""
if train + val > 1.0:
raise ValueError("Invalid split values for train and val.")
Y = data[:, -1]
labels = set(Y)
hist = dict()
for l in labels:
data_l = data[Y == l]
nl = len(data_l)
nl_train = int(nl * train)
nl_val = int(nl * val)
nl_test = nl - (nl_train + nl_val)
hist[l] = (nl_train, nl_val, nl_test)
train_data = list()
val_data = list()
test_data = list()
for l, (nl_train, nl_val, nl_test) in hist.items():
data_l = data[Y == l]
if shuffle:
np.random.shuffle(data_l)
train_l = data_l[:nl_train]
val_l = data_l[nl_train:nl_train + nl_val]
test_l = data_l[nl_train + nl_val:nl_train + nl_val + nl_test]
train_data.append(train_l)
val_data.append(val_l)
test_data.append(test_l)
def _squash(data_list):
data = np.array(data_list[0])
for item in data_list[1:]:
data = np.vstack((data, np.array(item)))
return data
train_data = _squash(train_data)
if val_data:
val_data = _squash(val_data)
if test_data:
test_data = _squash(test_data)
if return_xy:
x_train = train_data[:, :-1]
y_train = train_data[:, -1]
x_val = val_data[:, :-1]
y_val = val_data[:, -1]
x_test = test_data[:, :-1]
y_test = test_data[:, -1]
return (x_train, y_train), (x_val, y_val), (x_test, y_test)
return train_data, val_data, test_data
def class_histogram(data, title="Untitled"):
plt.figure(title)
plt.clf()
plt.title(title)
dist, counts = np.unique(data[:, -1], return_counts=True)
plt.bar(dist, counts)
plt.xticks(dist)
print("Call matplotlib.pyplot.show() to see the plot.")
def ntimer(n=10):
"""Wraps a function which wraps another function to time it."""
if n < 1:
raise (Exception(f"Invalid n = {n} given."))
def timer(func):
"""Wraps `func` with a timer and returns the wrapped `func`."""
def wrapper(*args, **kwargs):
rv = None
before = time()
for _ in range(n):
rv = func(*args, **kwargs)
after = time()
elapsed = after - before
print(f"Elapsed: {elapsed*1e3:02.02f} ms")
return rv
return wrapper
return timer
def memoize(verbose=True):
"""Wraps a function which wraps another function that memoizes."""
def memoizer(func):
"""Memoize (cache) return values of `func`.
Wraps `func` and returns the wrapped `func` so that `func`
is executed when the results are not available in the cache.
"""
cache = {}
def wrapper(*args, **kwargs):
t = (pickle.dumps(args), pickle.dumps(kwargs))
if t not in cache:
if verbose:
print(f"Adding NEW rv {func.__name__}{args}{kwargs} "
"to cache.")
cache[t] = func(*args, **kwargs)
else:
if verbose:
print(f"Using OLD rv {func.__name__}{args}{kwargs} "
"from cache.")
return cache[t]
return wrapper
return memoizer

View File

@@ -1,10 +1,12 @@
"""
_____ _ _______ _
| __ \ | | |__ __| | |
| |__) | __ ___ | |_ ___ | | ___ _ __ ___| |__
| ___/ '__/ _ \| __/ _ \| |/ _ \| '__/ __| '_ \
| | | | | (_) | || (_) | | (_) | | | (__| | | |
|_| |_| \___/ \__\___/|_|\___/|_| \___|_| |_|
######
# # ##### #### ##### #### ##### #### ##### #### # #
# # # # # # # # # # # # # # # # # #
###### # # # # # # # # # # # # # ######
# ##### # # # # # # # # ##### # # #
# # # # # # # # # # # # # # # # #
# # # #### # #### # #### # # #### # #
ProtoTorch Core Package
"""
@@ -18,7 +20,7 @@ with open("README.md", "r") as fh:
INSTALL_REQUIRES = [
"torch>=1.3.1",
"torchvision>=0.5.0",
"torchvision>=0.5.1",
"numpy>=1.9.1",
"sklearn",
]
@@ -26,7 +28,10 @@ DATASETS = [
"requests",
"tqdm",
]
DEV = ["bumpversion"]
DEV = [
"bumpversion",
"pre-commit",
]
DOCS = [
"recommonmark",
"sphinx",
@@ -43,7 +48,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup(
name="prototorch",
version="0.5.0",
version="0.5.1",
description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.",

View File

@@ -1,8 +1,9 @@
"""ProtoTorch components test suite."""
import prototorch as pt
import torch
import prototorch as pt
def test_labcomps_zeros_init():
protos = torch.zeros(3, 2)

View File

@@ -4,8 +4,9 @@ import unittest
import numpy as np
import torch
from prototorch.functions import (activations, competitions, distances,
initializers, losses)
initializers, losses, pooling)
class TestActivations(unittest.TestCase):
@@ -104,10 +105,28 @@ class TestCompetitions(unittest.TestCase):
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
class TestPooling(unittest.TestCase):
def setUp(self):
pass
def test_stratified_min(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
actual = competitions.stratified_min(d, labels)
actual = pooling.stratified_min_pooling(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
@@ -118,28 +137,70 @@ class TestCompetitions(unittest.TestCase):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
actual = competitions.stratified_min(d, labels)
actual = pooling.stratified_min_pooling(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_simple(self):
def test_stratified_min_trivial(self):
d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]])
labels = torch.tensor([0, 1, 2])
actual = competitions.stratified_min(d, labels)
actual = pooling.stratified_min_pooling(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0])
def test_stratified_max(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
actual = pooling.stratified_max_pooling(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_max_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 2, 1, 0])
labels = torch.nn.functional.one_hot(labels, num_classes=3)
actual = pooling.stratified_max_pooling(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.LongTensor([0, 0, 1, 2])
actual = pooling.stratified_sum_pooling(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
actual = pooling.stratified_sum_pooling(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_prod(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
actual = pooling.stratified_prod_pooling(d, labels)
desired = torch.tensor([[0.0, 3.0, 2.0], [504.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)