2 Commits

Author SHA1 Message Date
Alexander Engelsberger
088429a16a Bump version: 0.4.3 → 0.4.4 2021-05-11 17:17:49 +02:00
Jensun Ravichandran
b6145223c8 [HOTFIX] Add missing iris.py and fix knnc bug 2021-05-11 17:20:48 +02:00
7 changed files with 23 additions and 8 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.3 current_version = 0.4.4
commit = True commit = True
tag = True tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+) parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags # The full version, including alpha/beta/rc tags
# #
release = "0.4.3" release = "0.4.4"
# -- General configuration --------------------------------------------------- # -- General configuration ---------------------------------------------------

View File

@@ -1,7 +1,7 @@
"""ProtoTorch package.""" """ProtoTorch package."""
# Core Setup # Core Setup
__version__ = "0.4.3" __version__ = "0.4.4"
__all_core__ = [ __all_core__ = [
"datasets", "datasets",

View File

@@ -0,0 +1,15 @@
"""Thin wrapper for the Iris classification dataset from sklearn.
URL:
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
"""
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
class Iris(NumpyDataset):
def __init__(self):
x, y = load_iris(return_X_y=True)
super().__init__(x, y)

View File

@@ -38,6 +38,7 @@ def wtac(distances, labels):
def knnc(distances, labels, k=1): def knnc(distances, labels, k=1):
winning_indices = torch.topk(-distances, k=k, dim=1).indices winning_indices = torch.topk(-distances, k=k, dim=1).indices
winning_labels = torch.mode(labels[winning_indices].squeeze(), # winning_labels = torch.mode(labels[winning_indices].squeeze(),
dim=1).values # dim=1).values
winning_labels = torch.mode(labels[winning_indices], dim=1).values
return winning_labels return winning_labels

View File

@@ -43,7 +43,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup( setup(
name="prototorch", name="prototorch",
version="0.4.3", version="0.4.4",
description="Highly extensible, GPU-supported " description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox " "Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.", "built using PyTorch and its nn API.",

View File

@@ -4,7 +4,6 @@ import unittest
import numpy as np import numpy as np
import torch import torch
from prototorch.functions import (activations, competitions, distances, from prototorch.functions import (activations, competitions, distances,
initializers, losses) initializers, losses)
@@ -139,7 +138,7 @@ class TestCompetitions(unittest.TestCase):
def test_knnc_k1(self): def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]]) d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3]) labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=torch.tensor([1])) actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0]) desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual, mismatch = np.testing.assert_array_almost_equal(actual,
desired, desired,