6 Commits

Author SHA1 Message Date
Alexander Engelsberger
088429a16a Bump version: 0.4.3 → 0.4.4 2021-05-11 17:17:49 +02:00
Jensun Ravichandran
b6145223c8 [HOTFIX] Add missing iris.py and fix knnc bug 2021-05-11 17:20:48 +02:00
Alexander Engelsberger
09256956f3 Bump version: 0.4.2 → 0.4.3 2021-05-11 17:04:08 +02:00
Jensun Ravichandran
0ca90fdcee Merge branch 'dev' of github.com:si-cim/prototorch into dev 2021-05-11 17:07:04 +02:00
Jensun Ravichandran
be21412f8a Add thin wrapper for the Iris dataset 2021-05-11 17:06:41 +02:00
Jensun Ravichandran
ae6bc47f87 [BUGFIX] Fix knnc 2021-05-11 17:06:27 +02:00
9 changed files with 30 additions and 20 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.2
current_version = 0.4.4
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.4.2"
release = "0.4.4"
# -- General configuration ---------------------------------------------------

View File

@@ -1,7 +1,7 @@
"""ProtoTorch package."""
# Core Setup
__version__ = "0.4.2"
__version__ = "0.4.4"
__all_core__ = [
"datasets",

View File

@@ -67,8 +67,9 @@ class LabeledComponents(Components):
*,
initialized_components=None):
if initialized_components is not None:
super().__init__(initialized_components=initialized_components[0])
self._labels = initialized_components[1]
components, component_labels = initialized_components
super().__init__(initialized_components=components)
self._labels = component_labels
else:
self._initialize_labels(distribution)
super().__init__(number_of_components=len(self._labels),

View File

@@ -1,11 +1,6 @@
"""ProtoTorch datasets."""
from .abstract import NumpyDataset
from .iris import Iris
from .spiral import Spiral
from .tecator import Tecator
__all__ = [
"NumpyDataset",
"Spiral",
"Tecator",
]

View File

@@ -0,0 +1,15 @@
"""Thin wrapper for the Iris classification dataset from sklearn.
URL:
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
"""
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
class Iris(NumpyDataset):
def __init__(self):
x, y = load_iris(return_X_y=True)
super().__init__(x, y)

View File

@@ -3,7 +3,6 @@
import torch
# @torch.jit.script
def stratified_min(distances, labels):
clabels = torch.unique(labels, dim=0)
nclasses = clabels.size()[0]
@@ -31,15 +30,15 @@ def stratified_min(distances, labels):
return winning_distances.T # return with `batch_size` first
# @torch.jit.script
def wtac(distances, labels):
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
# @torch.jit.script
def knnc(distances, labels, k):
winning_indices = torch.topk(-distances, k=k.item(), dim=1).indices
winning_labels = labels[winning_indices].squeeze()
def knnc(distances, labels, k=1):
winning_indices = torch.topk(-distances, k=k, dim=1).indices
# winning_labels = torch.mode(labels[winning_indices].squeeze(),
# dim=1).values
winning_labels = torch.mode(labels[winning_indices], dim=1).values
return winning_labels

View File

@@ -23,6 +23,7 @@ INSTALL_REQUIRES = [
]
DATASETS = [
"requests",
"sklearn",
"tqdm",
]
DEV = ["bumpversion"]
@@ -42,7 +43,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup(
name="prototorch",
version="0.4.2",
version="0.4.4",
description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.",

View File

@@ -4,7 +4,6 @@ import unittest
import numpy as np
import torch
from prototorch.functions import (activations, competitions, distances,
initializers, losses)
@@ -139,7 +138,7 @@ class TestCompetitions(unittest.TestCase):
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=torch.tensor([1]))
actual = competitions.knnc(d, labels, k=1)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,