Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
088429a16a | ||
|
b6145223c8 | ||
|
09256956f3 | ||
|
0ca90fdcee | ||
|
be21412f8a | ||
|
ae6bc47f87 |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.2
|
||||
current_version = 0.4.4
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.4.2"
|
||||
release = "0.4.4"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
"""ProtoTorch package."""
|
||||
|
||||
# Core Setup
|
||||
__version__ = "0.4.2"
|
||||
__version__ = "0.4.4"
|
||||
|
||||
__all_core__ = [
|
||||
"datasets",
|
||||
|
@@ -67,8 +67,9 @@ class LabeledComponents(Components):
|
||||
*,
|
||||
initialized_components=None):
|
||||
if initialized_components is not None:
|
||||
super().__init__(initialized_components=initialized_components[0])
|
||||
self._labels = initialized_components[1]
|
||||
components, component_labels = initialized_components
|
||||
super().__init__(initialized_components=components)
|
||||
self._labels = component_labels
|
||||
else:
|
||||
self._initialize_labels(distribution)
|
||||
super().__init__(number_of_components=len(self._labels),
|
||||
|
@@ -1,11 +1,6 @@
|
||||
"""ProtoTorch datasets."""
|
||||
|
||||
from .abstract import NumpyDataset
|
||||
from .iris import Iris
|
||||
from .spiral import Spiral
|
||||
from .tecator import Tecator
|
||||
|
||||
__all__ = [
|
||||
"NumpyDataset",
|
||||
"Spiral",
|
||||
"Tecator",
|
||||
]
|
||||
|
15
prototorch/datasets/iris.py
Normal file
15
prototorch/datasets/iris.py
Normal file
@@ -0,0 +1,15 @@
|
||||
"""Thin wrapper for the Iris classification dataset from sklearn.
|
||||
|
||||
URL:
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
|
||||
|
||||
"""
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
|
||||
class Iris(NumpyDataset):
|
||||
def __init__(self):
|
||||
x, y = load_iris(return_X_y=True)
|
||||
super().__init__(x, y)
|
@@ -3,7 +3,6 @@
|
||||
import torch
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def stratified_min(distances, labels):
|
||||
clabels = torch.unique(labels, dim=0)
|
||||
nclasses = clabels.size()[0]
|
||||
@@ -31,15 +30,15 @@ def stratified_min(distances, labels):
|
||||
return winning_distances.T # return with `batch_size` first
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def wtac(distances, labels):
|
||||
winning_indices = torch.min(distances, dim=1).indices
|
||||
winning_labels = labels[winning_indices].squeeze()
|
||||
return winning_labels
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def knnc(distances, labels, k):
|
||||
winning_indices = torch.topk(-distances, k=k.item(), dim=1).indices
|
||||
winning_labels = labels[winning_indices].squeeze()
|
||||
def knnc(distances, labels, k=1):
|
||||
winning_indices = torch.topk(-distances, k=k, dim=1).indices
|
||||
# winning_labels = torch.mode(labels[winning_indices].squeeze(),
|
||||
# dim=1).values
|
||||
winning_labels = torch.mode(labels[winning_indices], dim=1).values
|
||||
return winning_labels
|
||||
|
3
setup.py
3
setup.py
@@ -23,6 +23,7 @@ INSTALL_REQUIRES = [
|
||||
]
|
||||
DATASETS = [
|
||||
"requests",
|
||||
"sklearn",
|
||||
"tqdm",
|
||||
]
|
||||
DEV = ["bumpversion"]
|
||||
@@ -42,7 +43,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name="prototorch",
|
||||
version="0.4.2",
|
||||
version="0.4.4",
|
||||
description="Highly extensible, GPU-supported "
|
||||
"Learning Vector Quantization (LVQ) toolbox "
|
||||
"built using PyTorch and its nn API.",
|
||||
|
@@ -4,7 +4,6 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from prototorch.functions import (activations, competitions, distances,
|
||||
initializers, losses)
|
||||
|
||||
@@ -139,7 +138,7 @@ class TestCompetitions(unittest.TestCase):
|
||||
def test_knnc_k1(self):
|
||||
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
|
||||
labels = torch.tensor([0, 1, 2, 3])
|
||||
actual = competitions.knnc(d, labels, k=torch.tensor([1]))
|
||||
actual = competitions.knnc(d, labels, k=1)
|
||||
desired = torch.tensor([2, 0])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
|
Reference in New Issue
Block a user