Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
09256956f3 | ||
|
0ca90fdcee | ||
|
be21412f8a | ||
|
ae6bc47f87 | ||
|
7bb93f027a | ||
|
bc20acd63b |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.1
|
||||
current_version = 0.4.3
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.4.1"
|
||||
release = "0.4.3"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
"""ProtoTorch package."""
|
||||
|
||||
# Core Setup
|
||||
__version__ = "0.4.1"
|
||||
__version__ = "0.4.3"
|
||||
|
||||
__all_core__ = [
|
||||
"datasets",
|
||||
|
@@ -4,8 +4,10 @@ import warnings
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from prototorch.components.initializers import (ComponentsInitializer,
|
||||
EqualLabelInitializer,
|
||||
from prototorch.components.initializers import (ClassAwareInitializer,
|
||||
ComponentsInitializer,
|
||||
EqualLabelsInitializer,
|
||||
UnequalLabelsInitializer,
|
||||
ZeroReasoningsInitializer)
|
||||
from prototorch.functions.initializers import get_initializer
|
||||
from torch.nn.parameter import Parameter
|
||||
@@ -30,12 +32,15 @@ class Components(torch.nn.Module):
|
||||
else:
|
||||
self._initialize_components(number_of_components, initializer)
|
||||
|
||||
def _initialize_components(self, number_of_components, initializer):
|
||||
def _precheck_initializer(self, initializer):
|
||||
if not isinstance(initializer, ComponentsInitializer):
|
||||
emsg = f"`initializer` has to be some subtype of " \
|
||||
f"{ComponentsInitializer}. " \
|
||||
f"You have provided: {initializer=} instead."
|
||||
raise TypeError(emsg)
|
||||
|
||||
def _initialize_components(self, number_of_components, initializer):
|
||||
self._precheck_initializer(initializer)
|
||||
self._components = Parameter(
|
||||
initializer.generate(number_of_components))
|
||||
|
||||
@@ -57,23 +62,36 @@ class LabeledComponents(Components):
|
||||
Every Component has a label assigned.
|
||||
"""
|
||||
def __init__(self,
|
||||
labels=None,
|
||||
distribution=None,
|
||||
initializer=None,
|
||||
*,
|
||||
initialized_components=None):
|
||||
if initialized_components is not None:
|
||||
super().__init__(initialized_components=initialized_components[0])
|
||||
self._labels = initialized_components[1]
|
||||
components, component_labels = initialized_components
|
||||
super().__init__(initialized_components=components)
|
||||
self._labels = component_labels
|
||||
else:
|
||||
self._initialize_labels(labels)
|
||||
self._initialize_labels(distribution)
|
||||
super().__init__(number_of_components=len(self._labels),
|
||||
initializer=initializer)
|
||||
|
||||
def _initialize_labels(self, labels):
|
||||
if type(labels) == tuple:
|
||||
num_classes, prototypes_per_class = labels
|
||||
labels = EqualLabelInitializer(num_classes, prototypes_per_class)
|
||||
def _initialize_components(self, number_of_components, initializer):
|
||||
if isinstance(initializer, ClassAwareInitializer):
|
||||
self._precheck_initializer(initializer)
|
||||
self._components = Parameter(
|
||||
initializer.generate(number_of_components, self.distribution))
|
||||
else:
|
||||
super()._initialize_components(self, number_of_components,
|
||||
initializer)
|
||||
|
||||
def _initialize_labels(self, distribution):
|
||||
if type(distribution) == tuple:
|
||||
num_classes, prototypes_per_class = distribution
|
||||
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
|
||||
elif type(distribution) == list:
|
||||
labels = UnequalLabelsInitializer(distribution)
|
||||
|
||||
self.distribution = labels.distribution
|
||||
self._labels = labels.generate()
|
||||
|
||||
@property
|
||||
|
@@ -1,6 +1,7 @@
|
||||
"""ProtoTroch Initializers."""
|
||||
import warnings
|
||||
from collections.abc import Iterable
|
||||
from itertools import chain
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
@@ -91,6 +92,15 @@ class ClassAwareInitializer(ComponentsInitializer):
|
||||
self.clabels = torch.unique(self.labels)
|
||||
self.num_classes = len(self.clabels)
|
||||
|
||||
def _get_samples_from_initializer(self, length, dist):
|
||||
if not dist:
|
||||
per_class = length // self.num_classes
|
||||
dist = self.num_classes * [per_class]
|
||||
samples_list = [
|
||||
init.generate(n) for init, n in zip(self.initializers, dist)
|
||||
]
|
||||
return torch.vstack(samples_list)
|
||||
|
||||
|
||||
class StratifiedMeanInitializer(ClassAwareInitializer):
|
||||
def __init__(self, arg):
|
||||
@@ -102,10 +112,9 @@ class StratifiedMeanInitializer(ClassAwareInitializer):
|
||||
class_initializer = MeanInitializer(class_data)
|
||||
self.initializers.append(class_initializer)
|
||||
|
||||
def generate(self, length):
|
||||
per_class = length // self.num_classes
|
||||
samples_list = [init.generate(per_class) for init in self.initializers]
|
||||
return torch.vstack(samples_list)
|
||||
def generate(self, length, dist=[]):
|
||||
samples = self._get_samples_from_initializer(length, dist)
|
||||
return samples
|
||||
|
||||
|
||||
class StratifiedSelectionInitializer(ClassAwareInitializer):
|
||||
@@ -126,10 +135,8 @@ class StratifiedSelectionInitializer(ClassAwareInitializer):
|
||||
mask = torch.bernoulli(n1) - torch.bernoulli(n2)
|
||||
return x + (self.noise * mask)
|
||||
|
||||
def generate(self, length):
|
||||
per_class = length // self.num_classes
|
||||
samples_list = [init.generate(per_class) for init in self.initializers]
|
||||
samples = torch.vstack(samples_list)
|
||||
def generate(self, length, dist=[]):
|
||||
samples = self._get_samples_from_initializer(length, dist)
|
||||
if self.noise is not None:
|
||||
# samples = self.add_noise(samples)
|
||||
samples = samples + self.noise
|
||||
@@ -142,11 +149,29 @@ class LabelsInitializer:
|
||||
raise NotImplementedError("Subclasses should implement this!")
|
||||
|
||||
|
||||
class EqualLabelInitializer(LabelsInitializer):
|
||||
class UnequalLabelsInitializer(LabelsInitializer):
|
||||
def __init__(self, dist):
|
||||
self.dist = dist
|
||||
|
||||
@property
|
||||
def distribution(self):
|
||||
return self.dist
|
||||
|
||||
def generate(self):
|
||||
clabels = range(len(self.dist))
|
||||
labels = list(chain(*[[i] * n for i, n in zip(clabels, self.dist)]))
|
||||
return torch.tensor(labels)
|
||||
|
||||
|
||||
class EqualLabelsInitializer(LabelsInitializer):
|
||||
def __init__(self, classes, per_class):
|
||||
self.classes = classes
|
||||
self.per_class = per_class
|
||||
|
||||
@property
|
||||
def distribution(self):
|
||||
return self.classes * [self.per_class]
|
||||
|
||||
def generate(self):
|
||||
return torch.arange(self.classes).repeat(self.per_class, 1).T.flatten()
|
||||
|
||||
|
@@ -1,11 +1,6 @@
|
||||
"""ProtoTorch datasets."""
|
||||
|
||||
from .abstract import NumpyDataset
|
||||
from .iris import Iris
|
||||
from .spiral import Spiral
|
||||
from .tecator import Tecator
|
||||
|
||||
__all__ = [
|
||||
"NumpyDataset",
|
||||
"Spiral",
|
||||
"Tecator",
|
||||
]
|
||||
|
@@ -3,7 +3,6 @@
|
||||
import torch
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def stratified_min(distances, labels):
|
||||
clabels = torch.unique(labels, dim=0)
|
||||
nclasses = clabels.size()[0]
|
||||
@@ -31,15 +30,14 @@ def stratified_min(distances, labels):
|
||||
return winning_distances.T # return with `batch_size` first
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def wtac(distances, labels):
|
||||
winning_indices = torch.min(distances, dim=1).indices
|
||||
winning_labels = labels[winning_indices].squeeze()
|
||||
return winning_labels
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def knnc(distances, labels, k):
|
||||
winning_indices = torch.topk(-distances, k=k.item(), dim=1).indices
|
||||
winning_labels = labels[winning_indices].squeeze()
|
||||
def knnc(distances, labels, k=1):
|
||||
winning_indices = torch.topk(-distances, k=k, dim=1).indices
|
||||
winning_labels = torch.mode(labels[winning_indices].squeeze(),
|
||||
dim=1).values
|
||||
return winning_labels
|
||||
|
3
setup.py
3
setup.py
@@ -23,6 +23,7 @@ INSTALL_REQUIRES = [
|
||||
]
|
||||
DATASETS = [
|
||||
"requests",
|
||||
"sklearn",
|
||||
"tqdm",
|
||||
]
|
||||
DEV = ["bumpversion"]
|
||||
@@ -42,7 +43,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name="prototorch",
|
||||
version="0.4.1",
|
||||
version="0.4.3",
|
||||
description="Highly extensible, GPU-supported "
|
||||
"Learning Vector Quantization (LVQ) toolbox "
|
||||
"built using PyTorch and its nn API.",
|
||||
|
Reference in New Issue
Block a user