Compare commits
8 Commits
v0.4.1
...
kernel_dis
Author | SHA1 | Date | |
---|---|---|---|
|
09c80e2d54 | ||
|
bc20acd63b | ||
|
7bb93f027a | ||
|
65e0637b17 | ||
|
209f9e641b | ||
|
ba537fe1d5 | ||
|
b0cd2de18e | ||
|
7d353f5b5a |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.1
|
||||
current_version = 0.4.2
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.4.1"
|
||||
release = "0.4.2"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
"""ProtoTorch package."""
|
||||
|
||||
# Core Setup
|
||||
__version__ = "0.4.1"
|
||||
__version__ = "0.4.2"
|
||||
|
||||
__all_core__ = [
|
||||
"datasets",
|
||||
|
@@ -4,8 +4,10 @@ import warnings
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from prototorch.components.initializers import (ComponentsInitializer,
|
||||
EqualLabelInitializer,
|
||||
from prototorch.components.initializers import (ClassAwareInitializer,
|
||||
ComponentsInitializer,
|
||||
EqualLabelsInitializer,
|
||||
UnequalLabelsInitializer,
|
||||
ZeroReasoningsInitializer)
|
||||
from prototorch.functions.initializers import get_initializer
|
||||
from torch.nn.parameter import Parameter
|
||||
@@ -30,12 +32,15 @@ class Components(torch.nn.Module):
|
||||
else:
|
||||
self._initialize_components(number_of_components, initializer)
|
||||
|
||||
def _initialize_components(self, number_of_components, initializer):
|
||||
def _precheck_initializer(self, initializer):
|
||||
if not isinstance(initializer, ComponentsInitializer):
|
||||
emsg = f"`initializer` has to be some subtype of " \
|
||||
f"{ComponentsInitializer}. " \
|
||||
f"You have provided: {initializer=} instead."
|
||||
raise TypeError(emsg)
|
||||
|
||||
def _initialize_components(self, number_of_components, initializer):
|
||||
self._precheck_initializer(initializer)
|
||||
self._components = Parameter(
|
||||
initializer.generate(number_of_components))
|
||||
|
||||
@@ -57,7 +62,7 @@ class LabeledComponents(Components):
|
||||
Every Component has a label assigned.
|
||||
"""
|
||||
def __init__(self,
|
||||
labels=None,
|
||||
distribution=None,
|
||||
initializer=None,
|
||||
*,
|
||||
initialized_components=None):
|
||||
@@ -65,15 +70,27 @@ class LabeledComponents(Components):
|
||||
super().__init__(initialized_components=initialized_components[0])
|
||||
self._labels = initialized_components[1]
|
||||
else:
|
||||
self._initialize_labels(labels)
|
||||
self._initialize_labels(distribution)
|
||||
super().__init__(number_of_components=len(self._labels),
|
||||
initializer=initializer)
|
||||
|
||||
def _initialize_labels(self, labels):
|
||||
if type(labels) == tuple:
|
||||
num_classes, prototypes_per_class = labels
|
||||
labels = EqualLabelInitializer(num_classes, prototypes_per_class)
|
||||
def _initialize_components(self, number_of_components, initializer):
|
||||
if isinstance(initializer, ClassAwareInitializer):
|
||||
self._precheck_initializer(initializer)
|
||||
self._components = Parameter(
|
||||
initializer.generate(number_of_components, self.distribution))
|
||||
else:
|
||||
super()._initialize_components(self, number_of_components,
|
||||
initializer)
|
||||
|
||||
def _initialize_labels(self, distribution):
|
||||
if type(distribution) == tuple:
|
||||
num_classes, prototypes_per_class = distribution
|
||||
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
|
||||
elif type(distribution) == list:
|
||||
labels = UnequalLabelsInitializer(distribution)
|
||||
|
||||
self.distribution = labels.distribution
|
||||
self._labels = labels.generate()
|
||||
|
||||
@property
|
||||
|
@@ -1,6 +1,7 @@
|
||||
"""ProtoTroch Initializers."""
|
||||
import warnings
|
||||
from collections.abc import Iterable
|
||||
from itertools import chain
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
@@ -91,6 +92,15 @@ class ClassAwareInitializer(ComponentsInitializer):
|
||||
self.clabels = torch.unique(self.labels)
|
||||
self.num_classes = len(self.clabels)
|
||||
|
||||
def _get_samples_from_initializer(self, length, dist):
|
||||
if not dist:
|
||||
per_class = length // self.num_classes
|
||||
dist = self.num_classes * [per_class]
|
||||
samples_list = [
|
||||
init.generate(n) for init, n in zip(self.initializers, dist)
|
||||
]
|
||||
return torch.vstack(samples_list)
|
||||
|
||||
|
||||
class StratifiedMeanInitializer(ClassAwareInitializer):
|
||||
def __init__(self, arg):
|
||||
@@ -102,10 +112,9 @@ class StratifiedMeanInitializer(ClassAwareInitializer):
|
||||
class_initializer = MeanInitializer(class_data)
|
||||
self.initializers.append(class_initializer)
|
||||
|
||||
def generate(self, length):
|
||||
per_class = length // self.num_classes
|
||||
samples_list = [init.generate(per_class) for init in self.initializers]
|
||||
return torch.vstack(samples_list)
|
||||
def generate(self, length, dist=[]):
|
||||
samples = self._get_samples_from_initializer(length, dist)
|
||||
return samples
|
||||
|
||||
|
||||
class StratifiedSelectionInitializer(ClassAwareInitializer):
|
||||
@@ -126,10 +135,8 @@ class StratifiedSelectionInitializer(ClassAwareInitializer):
|
||||
mask = torch.bernoulli(n1) - torch.bernoulli(n2)
|
||||
return x + (self.noise * mask)
|
||||
|
||||
def generate(self, length):
|
||||
per_class = length // self.num_classes
|
||||
samples_list = [init.generate(per_class) for init in self.initializers]
|
||||
samples = torch.vstack(samples_list)
|
||||
def generate(self, length, dist=[]):
|
||||
samples = self._get_samples_from_initializer(length, dist)
|
||||
if self.noise is not None:
|
||||
# samples = self.add_noise(samples)
|
||||
samples = samples + self.noise
|
||||
@@ -142,11 +149,29 @@ class LabelsInitializer:
|
||||
raise NotImplementedError("Subclasses should implement this!")
|
||||
|
||||
|
||||
class EqualLabelInitializer(LabelsInitializer):
|
||||
class UnequalLabelsInitializer(LabelsInitializer):
|
||||
def __init__(self, dist):
|
||||
self.dist = dist
|
||||
|
||||
@property
|
||||
def distribution(self):
|
||||
return self.dist
|
||||
|
||||
def generate(self):
|
||||
clabels = range(len(self.dist))
|
||||
labels = list(chain(*[[i] * n for i, n in zip(clabels, self.dist)]))
|
||||
return torch.tensor(labels)
|
||||
|
||||
|
||||
class EqualLabelsInitializer(LabelsInitializer):
|
||||
def __init__(self, classes, per_class):
|
||||
self.classes = classes
|
||||
self.per_class = per_class
|
||||
|
||||
@property
|
||||
def distribution(self):
|
||||
return self.classes * [self.per_class]
|
||||
|
||||
def generate(self):
|
||||
return torch.arange(self.classes).repeat(self.per_class, 1).T.flatten()
|
||||
|
||||
|
@@ -3,8 +3,11 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from prototorch.functions.helper import (_check_shapes, _int_and_mixed_shape,
|
||||
equal_int_shape)
|
||||
from prototorch.functions.helper import (
|
||||
_check_shapes,
|
||||
_int_and_mixed_shape,
|
||||
equal_int_shape,
|
||||
)
|
||||
|
||||
|
||||
def squared_euclidean_distance(x, y):
|
||||
@@ -261,5 +264,86 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
return diss.permute([1, 0, 2]).squeeze(-1)
|
||||
|
||||
|
||||
class KernelDistance:
|
||||
r"""Kernel Distance
|
||||
|
||||
Distance based on a kernel function.
|
||||
"""
|
||||
def __init__(self, kernel_fn):
|
||||
self.kernel_fn = kernel_fn
|
||||
|
||||
def __call__(self, x_batch: torch.Tensor, y_batch: torch.Tensor):
|
||||
return self._single_call(x_batch, y_batch)
|
||||
|
||||
def _single_call(self, x, y):
|
||||
remove_dims = []
|
||||
if len(x.shape) == 1:
|
||||
x = x.unsqueeze(0)
|
||||
remove_dims.append(0)
|
||||
if len(y.shape) == 1:
|
||||
y = y.unsqueeze(0)
|
||||
remove_dims.append(-1)
|
||||
|
||||
output = self.kernel_fn(x, x).diag().unsqueeze(1) - 2 * self.kernel_fn(
|
||||
x, y) + self.kernel_fn(y, y).diag()
|
||||
|
||||
for dim in remove_dims:
|
||||
output.squeeze_(dim)
|
||||
|
||||
return torch.sqrt(output)
|
||||
|
||||
|
||||
class BatchKernelDistance:
|
||||
r"""Kernel Distance
|
||||
|
||||
Distance based on a kernel function.
|
||||
"""
|
||||
def __init__(self, kernel_fn):
|
||||
self.kernel_fn = kernel_fn
|
||||
|
||||
def __call__(self, x_batch: torch.Tensor, y_batch: torch.Tensor):
|
||||
remove_dims = 0
|
||||
# Extend Single inputs
|
||||
if len(x_batch.shape) == 1:
|
||||
x_batch = x_batch.unsqueeze(0)
|
||||
remove_dims += 1
|
||||
if len(y_batch.shape) == 1:
|
||||
y_batch = y_batch.unsqueeze(0)
|
||||
remove_dims += 1
|
||||
|
||||
# Loop over batches
|
||||
output = torch.FloatTensor(len(x_batch), len(y_batch))
|
||||
for i, x in enumerate(x_batch):
|
||||
for j, y in enumerate(y_batch):
|
||||
output[i][j] = self._single_call(x, y)
|
||||
|
||||
for _ in range(remove_dims):
|
||||
output.squeeze_(0)
|
||||
|
||||
return output
|
||||
|
||||
def _single_call(self, x, y):
|
||||
kappa_xx = self.kernel_fn(x, x)
|
||||
kappa_xy = self.kernel_fn(x, y)
|
||||
kappa_yy = self.kernel_fn(y, y)
|
||||
|
||||
squared_distance = kappa_xx - 2 * kappa_xy + kappa_yy
|
||||
|
||||
return torch.sqrt(squared_distance)
|
||||
|
||||
|
||||
class SquaredKernelDistance(KernelDistance):
|
||||
r"""Squared Kernel Distance
|
||||
|
||||
Kernel distance without final squareroot.
|
||||
"""
|
||||
def single_call(self, x, y):
|
||||
kappa_xx = self.kernel_fn(x, x)
|
||||
kappa_xy = self.kernel_fn(x, y)
|
||||
kappa_yy = self.kernel_fn(y, y)
|
||||
|
||||
return kappa_xx - 2 * kappa_xy + kappa_yy
|
||||
|
||||
|
||||
# Aliases
|
||||
sed = squared_euclidean_distance
|
||||
sed = squared_euclidean_distance
|
28
prototorch/functions/kernels.py
Normal file
28
prototorch/functions/kernels.py
Normal file
@@ -0,0 +1,28 @@
|
||||
"""
|
||||
Experimental Kernels
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class ExplicitKernel:
|
||||
def __init__(self, projection=torch.nn.Identity()):
|
||||
self.projection = projection
|
||||
|
||||
def __call__(self, x, y):
|
||||
return self.projection(x) @ self.projection(y).T
|
||||
|
||||
|
||||
class RadialBasisFunctionKernel:
|
||||
def __init__(self, sigma) -> None:
|
||||
self.s2 = sigma * sigma
|
||||
|
||||
def __call__(self, x, y):
|
||||
remove_dim = False
|
||||
if len(x.shape) > 1:
|
||||
x = x.unsqueeze(1)
|
||||
remove_dim = True
|
||||
output = torch.exp(-torch.sum((x - y)**2, dim=-1) / (2 * self.s2))
|
||||
if remove_dim:
|
||||
output = output.squeeze(1)
|
||||
return output
|
@@ -1,8 +1,7 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from prototorch.functions.distances import (euclidean_distance_matrix,
|
||||
tangent_distance)
|
||||
from prototorch.functions.distances import euclidean_distance_matrix, tangent_distance
|
||||
from prototorch.functions.helper import _check_shapes, _int_and_mixed_shape
|
||||
from prototorch.functions.normalization import orthogonalization
|
||||
from prototorch.modules.prototypes import Prototypes1D
|
||||
|
2
setup.py
2
setup.py
@@ -42,7 +42,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name="prototorch",
|
||||
version="0.4.1",
|
||||
version="0.4.2",
|
||||
description="Highly extensible, GPU-supported "
|
||||
"Learning Vector Quantization (LVQ) toolbox "
|
||||
"built using PyTorch and its nn API.",
|
||||
|
@@ -5,8 +5,13 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from prototorch.functions import (activations, competitions, distances,
|
||||
initializers, losses)
|
||||
from prototorch.functions import (
|
||||
activations,
|
||||
competitions,
|
||||
distances,
|
||||
initializers,
|
||||
losses,
|
||||
)
|
||||
|
||||
|
||||
class TestActivations(unittest.TestCase):
|
||||
|
98
tests/test_kernels.py
Normal file
98
tests/test_kernels.py
Normal file
@@ -0,0 +1,98 @@
|
||||
"""ProtoTorch kernels test suite."""
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from prototorch.functions.distances import KernelDistance
|
||||
from prototorch.functions.kernels import ExplicitKernel, RadialBasisFunctionKernel
|
||||
|
||||
|
||||
class TestExplicitKernel(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.single_x = torch.randn(1024)
|
||||
self.single_y = torch.randn(1024)
|
||||
|
||||
self.batch_x = torch.randn(32, 1024)
|
||||
self.batch_y = torch.randn(32, 1024)
|
||||
|
||||
def test_single_values(self):
|
||||
kernel = ExplicitKernel()
|
||||
self.assertEqual(
|
||||
kernel(self.single_x, self.single_y).shape, torch.Size([]))
|
||||
|
||||
def test_single_batch(self):
|
||||
kernel = ExplicitKernel()
|
||||
self.assertEqual(
|
||||
kernel(self.single_x, self.batch_y).shape, torch.Size([32]))
|
||||
|
||||
def test_batch_single(self):
|
||||
kernel = ExplicitKernel()
|
||||
self.assertEqual(
|
||||
kernel(self.batch_x, self.single_y).shape, torch.Size([32]))
|
||||
|
||||
def test_batch_values(self):
|
||||
kernel = ExplicitKernel()
|
||||
self.assertEqual(
|
||||
kernel(self.batch_x, self.batch_y).shape, torch.Size([32, 32]))
|
||||
|
||||
|
||||
class TestRadialBasisFunctionKernel(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.single_x = torch.randn(1024)
|
||||
self.single_y = torch.randn(1024)
|
||||
|
||||
self.batch_x = torch.randn(32, 1024)
|
||||
self.batch_y = torch.randn(32, 1024)
|
||||
|
||||
def test_single_values(self):
|
||||
kernel = RadialBasisFunctionKernel(1)
|
||||
self.assertEqual(
|
||||
kernel(self.single_x, self.single_y).shape, torch.Size([]))
|
||||
|
||||
def test_single_batch(self):
|
||||
kernel = RadialBasisFunctionKernel(1)
|
||||
self.assertEqual(
|
||||
kernel(self.single_x, self.batch_y).shape, torch.Size([32]))
|
||||
|
||||
def test_batch_single(self):
|
||||
kernel = RadialBasisFunctionKernel(1)
|
||||
self.assertEqual(
|
||||
kernel(self.batch_x, self.single_y).shape, torch.Size([32]))
|
||||
|
||||
def test_batch_values(self):
|
||||
kernel = RadialBasisFunctionKernel(1)
|
||||
self.assertEqual(
|
||||
kernel(self.batch_x, self.batch_y).shape, torch.Size([32, 32]))
|
||||
|
||||
|
||||
class TestKernelDistance(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.single_x = torch.randn(1024)
|
||||
self.single_y = torch.randn(1024)
|
||||
|
||||
self.batch_x = torch.randn(32, 1024)
|
||||
self.batch_y = torch.randn(32, 1024)
|
||||
|
||||
self.kernel = ExplicitKernel()
|
||||
|
||||
def test_single_values(self):
|
||||
distance = KernelDistance(self.kernel)
|
||||
self.assertEqual(
|
||||
distance(self.single_x, self.single_y).shape, torch.Size([]))
|
||||
|
||||
def test_single_batch(self):
|
||||
distance = KernelDistance(self.kernel)
|
||||
self.assertEqual(
|
||||
distance(self.single_x, self.batch_y).shape, torch.Size([32]))
|
||||
|
||||
def test_batch_single(self):
|
||||
distance = KernelDistance(self.kernel)
|
||||
self.assertEqual(
|
||||
distance(self.batch_x, self.single_y).shape, torch.Size([32]))
|
||||
|
||||
def test_batch_values(self):
|
||||
distance = KernelDistance(self.kernel)
|
||||
self.assertEqual(
|
||||
distance(self.batch_x, self.batch_y).shape, torch.Size([32, 32]))
|
Reference in New Issue
Block a user