8 Commits

Author SHA1 Message Date
Alexander Engelsberger
09c80e2d54 Merge branch 'master' into kernel_distances 2021-05-11 16:10:56 +02:00
Alexander Engelsberger
bc20acd63b Bump version: 0.4.1 → 0.4.2 2021-05-11 16:08:37 +02:00
Jensun Ravichandran
7bb93f027a Support for unequal prototype distributions 2021-05-11 16:11:11 +02:00
Alexander Engelsberger
65e0637b17 Fix RBF Kernel Dimensions. 2021-04-27 17:58:05 +02:00
Alexander Engelsberger
209f9e641b Fix kernel dimensions. 2021-04-27 16:56:56 +02:00
Alexander Engelsberger
ba537fe1d5 Automatic formatting. 2021-04-27 15:43:10 +02:00
Alexander Engelsberger
b0cd2de18e Batch Kernel. [Ineficient] 2021-04-27 15:38:34 +02:00
Alexander Engelsberger
7d353f5b5a Kernel Distances. 2021-04-27 12:06:15 +02:00
11 changed files with 285 additions and 29 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.1
current_version = 0.4.2
commit = True
tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)

View File

@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags
#
release = "0.4.1"
release = "0.4.2"
# -- General configuration ---------------------------------------------------

View File

@@ -1,7 +1,7 @@
"""ProtoTorch package."""
# Core Setup
__version__ = "0.4.1"
__version__ = "0.4.2"
__all_core__ = [
"datasets",

View File

@@ -4,8 +4,10 @@ import warnings
from typing import Tuple
import torch
from prototorch.components.initializers import (ComponentsInitializer,
EqualLabelInitializer,
from prototorch.components.initializers import (ClassAwareInitializer,
ComponentsInitializer,
EqualLabelsInitializer,
UnequalLabelsInitializer,
ZeroReasoningsInitializer)
from prototorch.functions.initializers import get_initializer
from torch.nn.parameter import Parameter
@@ -30,12 +32,15 @@ class Components(torch.nn.Module):
else:
self._initialize_components(number_of_components, initializer)
def _initialize_components(self, number_of_components, initializer):
def _precheck_initializer(self, initializer):
if not isinstance(initializer, ComponentsInitializer):
emsg = f"`initializer` has to be some subtype of " \
f"{ComponentsInitializer}. " \
f"You have provided: {initializer=} instead."
raise TypeError(emsg)
def _initialize_components(self, number_of_components, initializer):
self._precheck_initializer(initializer)
self._components = Parameter(
initializer.generate(number_of_components))
@@ -57,7 +62,7 @@ class LabeledComponents(Components):
Every Component has a label assigned.
"""
def __init__(self,
labels=None,
distribution=None,
initializer=None,
*,
initialized_components=None):
@@ -65,15 +70,27 @@ class LabeledComponents(Components):
super().__init__(initialized_components=initialized_components[0])
self._labels = initialized_components[1]
else:
self._initialize_labels(labels)
self._initialize_labels(distribution)
super().__init__(number_of_components=len(self._labels),
initializer=initializer)
def _initialize_labels(self, labels):
if type(labels) == tuple:
num_classes, prototypes_per_class = labels
labels = EqualLabelInitializer(num_classes, prototypes_per_class)
def _initialize_components(self, number_of_components, initializer):
if isinstance(initializer, ClassAwareInitializer):
self._precheck_initializer(initializer)
self._components = Parameter(
initializer.generate(number_of_components, self.distribution))
else:
super()._initialize_components(self, number_of_components,
initializer)
def _initialize_labels(self, distribution):
if type(distribution) == tuple:
num_classes, prototypes_per_class = distribution
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
elif type(distribution) == list:
labels = UnequalLabelsInitializer(distribution)
self.distribution = labels.distribution
self._labels = labels.generate()
@property

View File

@@ -1,6 +1,7 @@
"""ProtoTroch Initializers."""
import warnings
from collections.abc import Iterable
from itertools import chain
import torch
from torch.utils.data import DataLoader, Dataset
@@ -91,6 +92,15 @@ class ClassAwareInitializer(ComponentsInitializer):
self.clabels = torch.unique(self.labels)
self.num_classes = len(self.clabels)
def _get_samples_from_initializer(self, length, dist):
if not dist:
per_class = length // self.num_classes
dist = self.num_classes * [per_class]
samples_list = [
init.generate(n) for init, n in zip(self.initializers, dist)
]
return torch.vstack(samples_list)
class StratifiedMeanInitializer(ClassAwareInitializer):
def __init__(self, arg):
@@ -102,10 +112,9 @@ class StratifiedMeanInitializer(ClassAwareInitializer):
class_initializer = MeanInitializer(class_data)
self.initializers.append(class_initializer)
def generate(self, length):
per_class = length // self.num_classes
samples_list = [init.generate(per_class) for init in self.initializers]
return torch.vstack(samples_list)
def generate(self, length, dist=[]):
samples = self._get_samples_from_initializer(length, dist)
return samples
class StratifiedSelectionInitializer(ClassAwareInitializer):
@@ -126,10 +135,8 @@ class StratifiedSelectionInitializer(ClassAwareInitializer):
mask = torch.bernoulli(n1) - torch.bernoulli(n2)
return x + (self.noise * mask)
def generate(self, length):
per_class = length // self.num_classes
samples_list = [init.generate(per_class) for init in self.initializers]
samples = torch.vstack(samples_list)
def generate(self, length, dist=[]):
samples = self._get_samples_from_initializer(length, dist)
if self.noise is not None:
# samples = self.add_noise(samples)
samples = samples + self.noise
@@ -142,11 +149,29 @@ class LabelsInitializer:
raise NotImplementedError("Subclasses should implement this!")
class EqualLabelInitializer(LabelsInitializer):
class UnequalLabelsInitializer(LabelsInitializer):
def __init__(self, dist):
self.dist = dist
@property
def distribution(self):
return self.dist
def generate(self):
clabels = range(len(self.dist))
labels = list(chain(*[[i] * n for i, n in zip(clabels, self.dist)]))
return torch.tensor(labels)
class EqualLabelsInitializer(LabelsInitializer):
def __init__(self, classes, per_class):
self.classes = classes
self.per_class = per_class
@property
def distribution(self):
return self.classes * [self.per_class]
def generate(self):
return torch.arange(self.classes).repeat(self.per_class, 1).T.flatten()

View File

@@ -3,8 +3,11 @@
import numpy as np
import torch
from prototorch.functions.helper import (_check_shapes, _int_and_mixed_shape,
equal_int_shape)
from prototorch.functions.helper import (
_check_shapes,
_int_and_mixed_shape,
equal_int_shape,
)
def squared_euclidean_distance(x, y):
@@ -261,5 +264,86 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
return diss.permute([1, 0, 2]).squeeze(-1)
class KernelDistance:
r"""Kernel Distance
Distance based on a kernel function.
"""
def __init__(self, kernel_fn):
self.kernel_fn = kernel_fn
def __call__(self, x_batch: torch.Tensor, y_batch: torch.Tensor):
return self._single_call(x_batch, y_batch)
def _single_call(self, x, y):
remove_dims = []
if len(x.shape) == 1:
x = x.unsqueeze(0)
remove_dims.append(0)
if len(y.shape) == 1:
y = y.unsqueeze(0)
remove_dims.append(-1)
output = self.kernel_fn(x, x).diag().unsqueeze(1) - 2 * self.kernel_fn(
x, y) + self.kernel_fn(y, y).diag()
for dim in remove_dims:
output.squeeze_(dim)
return torch.sqrt(output)
class BatchKernelDistance:
r"""Kernel Distance
Distance based on a kernel function.
"""
def __init__(self, kernel_fn):
self.kernel_fn = kernel_fn
def __call__(self, x_batch: torch.Tensor, y_batch: torch.Tensor):
remove_dims = 0
# Extend Single inputs
if len(x_batch.shape) == 1:
x_batch = x_batch.unsqueeze(0)
remove_dims += 1
if len(y_batch.shape) == 1:
y_batch = y_batch.unsqueeze(0)
remove_dims += 1
# Loop over batches
output = torch.FloatTensor(len(x_batch), len(y_batch))
for i, x in enumerate(x_batch):
for j, y in enumerate(y_batch):
output[i][j] = self._single_call(x, y)
for _ in range(remove_dims):
output.squeeze_(0)
return output
def _single_call(self, x, y):
kappa_xx = self.kernel_fn(x, x)
kappa_xy = self.kernel_fn(x, y)
kappa_yy = self.kernel_fn(y, y)
squared_distance = kappa_xx - 2 * kappa_xy + kappa_yy
return torch.sqrt(squared_distance)
class SquaredKernelDistance(KernelDistance):
r"""Squared Kernel Distance
Kernel distance without final squareroot.
"""
def single_call(self, x, y):
kappa_xx = self.kernel_fn(x, x)
kappa_xy = self.kernel_fn(x, y)
kappa_yy = self.kernel_fn(y, y)
return kappa_xx - 2 * kappa_xy + kappa_yy
# Aliases
sed = squared_euclidean_distance

View File

@@ -0,0 +1,28 @@
"""
Experimental Kernels
"""
import torch
class ExplicitKernel:
def __init__(self, projection=torch.nn.Identity()):
self.projection = projection
def __call__(self, x, y):
return self.projection(x) @ self.projection(y).T
class RadialBasisFunctionKernel:
def __init__(self, sigma) -> None:
self.s2 = sigma * sigma
def __call__(self, x, y):
remove_dim = False
if len(x.shape) > 1:
x = x.unsqueeze(1)
remove_dim = True
output = torch.exp(-torch.sum((x - y)**2, dim=-1) / (2 * self.s2))
if remove_dim:
output = output.squeeze(1)
return output

View File

@@ -1,8 +1,7 @@
import torch
from torch import nn
from prototorch.functions.distances import (euclidean_distance_matrix,
tangent_distance)
from prototorch.functions.distances import euclidean_distance_matrix, tangent_distance
from prototorch.functions.helper import _check_shapes, _int_and_mixed_shape
from prototorch.functions.normalization import orthogonalization
from prototorch.modules.prototypes import Prototypes1D

View File

@@ -42,7 +42,7 @@ ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup(
name="prototorch",
version="0.4.1",
version="0.4.2",
description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.",

View File

@@ -5,8 +5,13 @@ import unittest
import numpy as np
import torch
from prototorch.functions import (activations, competitions, distances,
initializers, losses)
from prototorch.functions import (
activations,
competitions,
distances,
initializers,
losses,
)
class TestActivations(unittest.TestCase):

98
tests/test_kernels.py Normal file
View File

@@ -0,0 +1,98 @@
"""ProtoTorch kernels test suite."""
import unittest
import numpy as np
import torch
from prototorch.functions.distances import KernelDistance
from prototorch.functions.kernels import ExplicitKernel, RadialBasisFunctionKernel
class TestExplicitKernel(unittest.TestCase):
def setUp(self):
self.single_x = torch.randn(1024)
self.single_y = torch.randn(1024)
self.batch_x = torch.randn(32, 1024)
self.batch_y = torch.randn(32, 1024)
def test_single_values(self):
kernel = ExplicitKernel()
self.assertEqual(
kernel(self.single_x, self.single_y).shape, torch.Size([]))
def test_single_batch(self):
kernel = ExplicitKernel()
self.assertEqual(
kernel(self.single_x, self.batch_y).shape, torch.Size([32]))
def test_batch_single(self):
kernel = ExplicitKernel()
self.assertEqual(
kernel(self.batch_x, self.single_y).shape, torch.Size([32]))
def test_batch_values(self):
kernel = ExplicitKernel()
self.assertEqual(
kernel(self.batch_x, self.batch_y).shape, torch.Size([32, 32]))
class TestRadialBasisFunctionKernel(unittest.TestCase):
def setUp(self):
self.single_x = torch.randn(1024)
self.single_y = torch.randn(1024)
self.batch_x = torch.randn(32, 1024)
self.batch_y = torch.randn(32, 1024)
def test_single_values(self):
kernel = RadialBasisFunctionKernel(1)
self.assertEqual(
kernel(self.single_x, self.single_y).shape, torch.Size([]))
def test_single_batch(self):
kernel = RadialBasisFunctionKernel(1)
self.assertEqual(
kernel(self.single_x, self.batch_y).shape, torch.Size([32]))
def test_batch_single(self):
kernel = RadialBasisFunctionKernel(1)
self.assertEqual(
kernel(self.batch_x, self.single_y).shape, torch.Size([32]))
def test_batch_values(self):
kernel = RadialBasisFunctionKernel(1)
self.assertEqual(
kernel(self.batch_x, self.batch_y).shape, torch.Size([32, 32]))
class TestKernelDistance(unittest.TestCase):
def setUp(self):
self.single_x = torch.randn(1024)
self.single_y = torch.randn(1024)
self.batch_x = torch.randn(32, 1024)
self.batch_y = torch.randn(32, 1024)
self.kernel = ExplicitKernel()
def test_single_values(self):
distance = KernelDistance(self.kernel)
self.assertEqual(
distance(self.single_x, self.single_y).shape, torch.Size([]))
def test_single_batch(self):
distance = KernelDistance(self.kernel)
self.assertEqual(
distance(self.single_x, self.batch_y).shape, torch.Size([32]))
def test_batch_single(self):
distance = KernelDistance(self.kernel)
self.assertEqual(
distance(self.batch_x, self.single_y).shape, torch.Size([32]))
def test_batch_values(self):
distance = KernelDistance(self.kernel)
self.assertEqual(
distance(self.batch_x, self.batch_y).shape, torch.Size([32, 32]))