Compare commits
67 Commits
v0.3.0-dev
...
v0.4.5
Author | SHA1 | Date | |
---|---|---|---|
|
94fe4435a8 | ||
|
c204bc8e1f | ||
|
00615ae837 | ||
|
9f5f0d12dd | ||
|
8a291f7bfb | ||
|
21e3e3b82d | ||
|
a6bd6e130a | ||
|
fcdfa52892 | ||
|
73e6fe384e | ||
|
aff7a385a3 | ||
|
1e23ba05fa | ||
|
ee30d4da5b | ||
|
14508f0600 | ||
|
e3f8828da4 | ||
|
30adbf705c | ||
|
ee42fd68b1 | ||
|
736d9a6349 | ||
|
0055e15bc1 | ||
|
b2e1df7308 | ||
|
b935e9caf3 | ||
|
503ef0e05f | ||
|
dc6248413c | ||
|
e73b70ceb7 | ||
|
639198e774 | ||
|
768d969f89 | ||
|
aec422c277 | ||
|
6c14170de6 | ||
|
36a330aa66 | ||
|
acd4ac6a86 | ||
|
abe64cfe8f | ||
|
caae95d01d | ||
|
088429a16a | ||
|
b6145223c8 | ||
|
09256956f3 | ||
|
0ca90fdcee | ||
|
be21412f8a | ||
|
ae6bc47f87 | ||
|
7bb93f027a | ||
|
bc20acd63b | ||
|
a864cf5d4d | ||
|
2175f524e8 | ||
|
c1c21e92df | ||
|
2b676ee06e | ||
|
dda2f1d779 | ||
|
3a8388e24f | ||
|
a9eef8ae6d | ||
|
ac3091d8da | ||
|
ce3991de94 | ||
|
47b4b9bcb1 | ||
|
19475d7e2b | ||
|
269eb8ba25 | ||
|
b06ded683d | ||
|
466e9bde6b | ||
|
fc7d64aaea | ||
|
9a7d3192c0 | ||
|
e686adbea1 | ||
|
b7d53aa5f1 | ||
|
9b663477fd | ||
|
a70166280a | ||
|
a083c4b276 | ||
|
40751aa50a | ||
|
7c30ffe2c7 | ||
|
e1d56595c1 | ||
|
4540c8848e | ||
|
c88f288d12 | ||
|
e2918dffed | ||
|
7d9dfc27ee |
@@ -1,20 +1,11 @@
|
||||
[bumpversion]
|
||||
current_version = 0.3.0-dev0
|
||||
current_version = 0.4.5
|
||||
commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)(\-(?P<release>[a-z]+)(?P<build>\d+))?
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
serialize =
|
||||
{major}.{minor}.{patch}-{release}{build}
|
||||
{major}.{minor}.{patch}
|
||||
|
||||
[bumpversion:part:release]
|
||||
optional_value = prod
|
||||
first_value = dev
|
||||
values =
|
||||
dev
|
||||
rc
|
||||
prod
|
||||
|
||||
[bumpversion:file:setup.py]
|
||||
|
||||
[bumpversion:file:./prototorch/__init__.py]
|
||||
|
31
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
31
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**To Reproduce**
|
||||
Steps to reproduce the behavior:
|
||||
1. Install Prototorch by running '...'
|
||||
2. Run script '...'
|
||||
3. See errors
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**Desktop (please complete the following information):**
|
||||
- OS: [e.g. Ubuntu 20.10]
|
||||
- Prototorch Version: [e.g. v0.4.0]
|
||||
- Python Version: [e.g. 3.9.5]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
5
.github/workflows/pythonapp.yml
vendored
5
.github/workflows/pythonapp.yml
vendored
@@ -23,10 +23,7 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install .
|
||||
- name: Install extras
|
||||
run: |
|
||||
pip install -r requirements.txt
|
||||
pip install .[all]
|
||||
- name: Lint with flake8
|
||||
run: |
|
||||
pip install flake8
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@@ -154,4 +154,5 @@ scratch*
|
||||
# End of https://www.gitignore.io/api/visualstudiocode
|
||||
.vscode/
|
||||
|
||||
reports
|
||||
reports
|
||||
artifacts
|
10
.travis.yml
10
.travis.yml
@@ -4,11 +4,11 @@ language: python
|
||||
python: 3.8
|
||||
cache:
|
||||
directories:
|
||||
- "$HOME/.cache/pip"
|
||||
- "./tests/artifacts"
|
||||
# - "$HOME/.prototorch/datasets"
|
||||
- "$HOME/datasets"
|
||||
install:
|
||||
- pip install . --progress-bar off
|
||||
- pip install -r requirements.txt
|
||||
- pip install .[all] --progress-bar off
|
||||
|
||||
# Generate code coverage report
|
||||
script:
|
||||
@@ -25,8 +25,8 @@ deploy:
|
||||
password:
|
||||
secure: rVQNCxKIuiEtMz4zLSsjdt6spG7cf3miKN5eqjxZfcELALHxAV4w/+CideQObOn3u9emmxb87R9XWKcogqK2MXqnuIcY4mWg7HUqaip1bhz/4YiVXjFILcG6itjX9IUF1DrtjKKRk6xryucSZcEB7yTcXz1hQTb768KWlLlKOVTRNwr7j07eyeafexz/L2ANQCqfOZgS4b0k2AMeDBRPykPULtyeneEFlb6MJZ2MxeqtTNVK4b/6VsQSZwQ9jGJNGWonn5Y287gHmzvEcymSJogTe2taxGBWawPnOsibws9v88DEAHdsEvYdnqEE3hFl0R5La2Lkjd8CjNUYegxioQ57i3WNS3iksq10ZLMCbH29lb9YPG7r6Y8z9H85735kV2gKLdf+o7SPS03TRgjSZKN6pn4pLG0VWkxC6l8VfLuJnRNTHX4g6oLQwOWIBbxybn9Zw/yLjAXAJNgBHt5v86H6Jfi1Va4AhEV6itkoH9IM3/uDhrE/mmorqyVled/CPNtBWNTyoDevLNxMUDnbuhH0JzLki+VOjKnTxEfq12JB8X9faFG5BjvU9oGjPPewrp5DGGzg6KDra7dikciWUxE1eTFFDhMyG1CFGcjKlDvlAGHyI6Kih35egGUeq+N/pitr2330ftM9Dm4rWpOTxPyCI89bXKssx/MgmLG7kSM=
|
||||
on:
|
||||
tags: true
|
||||
skip_existing: true
|
||||
tags: true
|
||||
skip_existing: true
|
||||
|
||||
# The password is encrypted with:
|
||||
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
|
||||
|
@@ -31,15 +31,15 @@ To also install the extras, use
|
||||
pip install -U prototorch[all]
|
||||
```
|
||||
|
||||
*Note: If you're using [ZSH](https://www.zsh.org/), the square brackets `[ ]`
|
||||
have to be escaped like so: `\[\]`, making the install command `pip install -U
|
||||
prototorch\[all\]`.*
|
||||
*Note: If you're using [ZSH](https://www.zsh.org/) (which is also the default
|
||||
shell on MacOS now), the square brackets `[ ]` have to be escaped like so:
|
||||
`\[\]`, making the install command `pip install -U prototorch\[all\]`.*
|
||||
|
||||
To install the bleeding-edge features and improvements:
|
||||
```bash
|
||||
git clone https://github.com/si-cim/prototorch.git
|
||||
git checkout dev
|
||||
cd prototorch
|
||||
git checkout dev
|
||||
pip install -e .[all]
|
||||
```
|
||||
|
||||
|
@@ -1,13 +1,24 @@
|
||||
.. ProtoFlow API Reference
|
||||
.. ProtoTorch API Reference
|
||||
|
||||
ProtoFlow API Reference
|
||||
ProtoTorch API Reference
|
||||
======================================
|
||||
|
||||
Datasets
|
||||
--------------------------------------
|
||||
|
||||
Common Datasets
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
.. automodule:: prototorch.datasets
|
||||
:members:
|
||||
:undoc-members:
|
||||
|
||||
|
||||
Abstract Datasets
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Abstract Datasets are used to build your own datasets.
|
||||
|
||||
.. autoclass:: prototorch.datasets.abstract.NumpyDataset
|
||||
:members:
|
||||
|
||||
Functions
|
||||
--------------------------------------
|
||||
|
@@ -12,9 +12,8 @@
|
||||
#
|
||||
import os
|
||||
import sys
|
||||
sys.path.insert(0, os.path.abspath("../../"))
|
||||
|
||||
import sphinx_rtd_theme
|
||||
sys.path.insert(0, os.path.abspath("../../"))
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
@@ -24,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.3.0-dev0"
|
||||
release = "0.4.5"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
@@ -47,6 +46,7 @@ extensions = [
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib.katex",
|
||||
'sphinx_autodoc_typehints',
|
||||
]
|
||||
|
||||
# katex_prerender = True
|
||||
@@ -128,15 +128,12 @@ latex_elements = {
|
||||
# The paper size ("letterpaper" or "a4paper").
|
||||
#
|
||||
# "papersize": "letterpaper",
|
||||
|
||||
# The font size ("10pt", "11pt" or "12pt").
|
||||
#
|
||||
# "pointsize": "10pt",
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#
|
||||
# "preamble": "",
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#
|
||||
# "figure_align": "htbp",
|
||||
@@ -146,15 +143,21 @@ latex_elements = {
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, "prototorch.tex", "ProtoTorch Documentation",
|
||||
"Jensun Ravichandran", "manual"),
|
||||
(
|
||||
master_doc,
|
||||
"prototorch.tex",
|
||||
"ProtoTorch Documentation",
|
||||
"Jensun Ravichandran",
|
||||
"manual",
|
||||
),
|
||||
]
|
||||
|
||||
# -- Options for manual page output ---------------------------------------
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [(master_doc, "ProtoTorch", "ProtoTorch Documentation", [author], 1)]
|
||||
man_pages = [(master_doc, "ProtoTorch", "ProtoTorch Documentation", [author],
|
||||
1)]
|
||||
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
|
||||
@@ -162,15 +165,24 @@ man_pages = [(master_doc, "ProtoTorch", "ProtoTorch Documentation", [author], 1)
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
(master_doc, "prototorch", "ProtoTorch Documentation", author, "prototorch",
|
||||
"Prototype-based machine learning in PyTorch.",
|
||||
"Miscellaneous"),
|
||||
(
|
||||
master_doc,
|
||||
"prototorch",
|
||||
"ProtoTorch Documentation",
|
||||
author,
|
||||
"prototorch",
|
||||
"Prototype-based machine learning in PyTorch.",
|
||||
"Miscellaneous",
|
||||
),
|
||||
]
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {
|
||||
"python": ("https://docs.python.org/", None),
|
||||
"numpy": ("https://docs.scipy.org/doc/numpy/", None),
|
||||
"torch": ('https://pytorch.org/docs/stable/', None),
|
||||
"pytorch_lightning":
|
||||
("https://pytorch-lightning.readthedocs.io/en/stable/", None),
|
||||
}
|
||||
|
||||
# -- Options for Epub output ----------------------------------------------
|
||||
|
@@ -27,9 +27,10 @@ class Model(torch.nn.Module):
|
||||
self.proto_layer = Prototypes1D(
|
||||
input_dim=2,
|
||||
prototypes_per_class=3,
|
||||
nclasses=3,
|
||||
num_classes=3,
|
||||
prototype_initializer="stratified_random",
|
||||
data=[x_train, y_train])
|
||||
data=[x_train, y_train],
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
protos = self.proto_layer.prototypes
|
||||
@@ -61,8 +62,10 @@ for epoch in range(70):
|
||||
with torch.no_grad():
|
||||
pred = wtac(dis, plabels)
|
||||
correct = pred.eq(y_in.view_as(pred)).sum().item()
|
||||
acc = 100. * correct / len(x_train)
|
||||
print(f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} Acc: {acc:05.02f}%")
|
||||
acc = 100.0 * correct / len(x_train)
|
||||
print(
|
||||
f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} Acc: {acc:05.02f}%"
|
||||
)
|
||||
|
||||
# Take a gradient descent step
|
||||
optimizer.zero_grad()
|
||||
@@ -83,13 +86,15 @@ for epoch in range(70):
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
cmap = "viridis"
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50)
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
|
||||
# Paint decision regions
|
||||
x = np.vstack((x_train, protos))
|
||||
|
@@ -2,13 +2,12 @@
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.tecator import Tecator
|
||||
from prototorch.functions.distances import sed
|
||||
from prototorch.modules import Prototypes1D
|
||||
from prototorch.modules.losses import GLVQLoss
|
||||
from prototorch.utils.colors import get_legend_handles
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# Prepare the dataset and dataloader
|
||||
train_data = Tecator(root="./artifacts", train=True)
|
||||
@@ -20,11 +19,13 @@ class Model(torch.nn.Module):
|
||||
"""GMLVQ model as a siamese network."""
|
||||
super().__init__()
|
||||
x, y = train_data.data, train_data.targets
|
||||
self.p1 = Prototypes1D(input_dim=100,
|
||||
prototypes_per_class=2,
|
||||
nclasses=2,
|
||||
prototype_initializer="stratified_random",
|
||||
data=[x, y])
|
||||
self.p1 = Prototypes1D(
|
||||
input_dim=100,
|
||||
prototypes_per_class=2,
|
||||
num_classes=2,
|
||||
prototype_initializer="stratified_random",
|
||||
data=[x, y],
|
||||
)
|
||||
self.omega = torch.nn.Linear(in_features=100,
|
||||
out_features=100,
|
||||
bias=False)
|
||||
|
@@ -12,13 +12,13 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision
|
||||
from torchvision import transforms
|
||||
from prototorch.modules.losses import GLVQLoss
|
||||
from prototorch.functions.helper import calculate_prototype_accuracy
|
||||
from prototorch.modules.losses import GLVQLoss
|
||||
from prototorch.modules.models import GTLVQ
|
||||
from torchvision import transforms
|
||||
|
||||
# Parameters and options
|
||||
n_epochs = 50
|
||||
num_epochs = 50
|
||||
batch_size_train = 64
|
||||
batch_size_test = 1000
|
||||
learning_rate = 0.1
|
||||
@@ -26,32 +26,40 @@ momentum = 0.5
|
||||
log_interval = 10
|
||||
cuda = "cuda:1"
|
||||
random_seed = 1
|
||||
device = torch.device(cuda if torch.cuda.is_available() else 'cpu')
|
||||
device = torch.device(cuda if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Configures reproducability
|
||||
torch.manual_seed(random_seed)
|
||||
np.random.seed(random_seed)
|
||||
|
||||
# Prepare and preprocess the data
|
||||
train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST(
|
||||
'./files/',
|
||||
train=True,
|
||||
download=True,
|
||||
transform=torchvision.transforms.Compose(
|
||||
[transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))])),
|
||||
batch_size=batch_size_train,
|
||||
shuffle=True)
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.MNIST(
|
||||
"./files/",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=torchvision.transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||
]),
|
||||
),
|
||||
batch_size=batch_size_train,
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST(
|
||||
'./files/',
|
||||
train=False,
|
||||
download=True,
|
||||
transform=torchvision.transforms.Compose(
|
||||
[transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))])),
|
||||
batch_size=batch_size_test,
|
||||
shuffle=True)
|
||||
test_loader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.MNIST(
|
||||
"./files/",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=torchvision.transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||
]),
|
||||
),
|
||||
batch_size=batch_size_test,
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
|
||||
# Define the GLVQ model plus appropriate feature extractor
|
||||
@@ -67,25 +75,34 @@ class CNNGTLVQ(torch.nn.Module):
|
||||
):
|
||||
super(CNNGTLVQ, self).__init__()
|
||||
|
||||
#Feature Extractor - Simple CNN
|
||||
self.fe = nn.Sequential(nn.Conv2d(1, 32, 3, 1), nn.ReLU(),
|
||||
nn.Conv2d(32, 64, 3, 1), nn.ReLU(),
|
||||
nn.MaxPool2d(2), nn.Dropout(0.25),
|
||||
nn.Flatten(), nn.Linear(9216, bottleneck_dim),
|
||||
nn.Dropout(0.5), nn.LeakyReLU(),
|
||||
nn.LayerNorm(bottleneck_dim))
|
||||
# Feature Extractor - Simple CNN
|
||||
self.fe = nn.Sequential(
|
||||
nn.Conv2d(1, 32, 3, 1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(32, 64, 3, 1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(2),
|
||||
nn.Dropout(0.25),
|
||||
nn.Flatten(),
|
||||
nn.Linear(9216, bottleneck_dim),
|
||||
nn.Dropout(0.5),
|
||||
nn.LeakyReLU(),
|
||||
nn.LayerNorm(bottleneck_dim),
|
||||
)
|
||||
|
||||
# Forward pass of subspace and prototype initialization data through feature extractor
|
||||
subspace_data = self.fe(subspace_data)
|
||||
prototype_data[0] = self.fe(prototype_data[0])
|
||||
|
||||
# Initialization of GTLVQ
|
||||
self.gtlvq = GTLVQ(num_classes,
|
||||
subspace_data,
|
||||
prototype_data,
|
||||
tangent_projection_type=tangent_projection_type,
|
||||
feature_dim=bottleneck_dim,
|
||||
prototypes_per_class=prototypes_per_class)
|
||||
self.gtlvq = GTLVQ(
|
||||
num_classes,
|
||||
subspace_data,
|
||||
prototype_data,
|
||||
tangent_projection_type=tangent_projection_type,
|
||||
feature_dim=bottleneck_dim,
|
||||
prototypes_per_class=prototypes_per_class,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# Feature Extraction
|
||||
@@ -103,23 +120,27 @@ subspace_data = torch.cat(
|
||||
prototype_data = next(iter(train_loader))
|
||||
|
||||
# Build the CNN GTLVQ model
|
||||
model = CNNGTLVQ(10,
|
||||
subspace_data,
|
||||
prototype_data,
|
||||
tangent_projection_type="local",
|
||||
bottleneck_dim=128).to(device)
|
||||
model = CNNGTLVQ(
|
||||
10,
|
||||
subspace_data,
|
||||
prototype_data,
|
||||
tangent_projection_type="local",
|
||||
bottleneck_dim=128,
|
||||
).to(device)
|
||||
|
||||
# Optimize using SGD optimizer from `torch.optim`
|
||||
optimizer = torch.optim.Adam([{
|
||||
'params': model.fe.parameters()
|
||||
}, {
|
||||
'params': model.gtlvq.parameters()
|
||||
}],
|
||||
lr=learning_rate)
|
||||
criterion = GLVQLoss(squashing='sigmoid_beta', beta=10)
|
||||
optimizer = torch.optim.Adam(
|
||||
[{
|
||||
"params": model.fe.parameters()
|
||||
}, {
|
||||
"params": model.gtlvq.parameters()
|
||||
}],
|
||||
lr=learning_rate,
|
||||
)
|
||||
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
|
||||
|
||||
# Training loop
|
||||
for epoch in range(n_epochs):
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (x_train, y_train) in enumerate(train_loader):
|
||||
model.train()
|
||||
x_train, y_train = x_train.to(device), y_train.to(device)
|
||||
@@ -139,8 +160,8 @@ for epoch in range(n_epochs):
|
||||
if batch_idx % log_interval == 0:
|
||||
acc = calculate_prototype_accuracy(distances, y_train, plabels)
|
||||
print(
|
||||
f'Epoch: {epoch + 1:02d}/{n_epochs:02d} Epoch Progress: {100. * batch_idx / len(train_loader):02.02f} % Loss: {loss.item():02.02f} \
|
||||
Train Acc: {acc.item():02.02f}')
|
||||
f"Epoch: {epoch + 1:02d}/{num_epochs:02d} Epoch Progress: {100. * batch_idx / len(train_loader):02.02f} % Loss: {loss.item():02.02f} \
|
||||
Train Acc: {acc.item():02.02f}")
|
||||
|
||||
# Test
|
||||
with torch.no_grad():
|
||||
@@ -154,9 +175,9 @@ for epoch in range(n_epochs):
|
||||
i = torch.argmin(test_distances, 1)
|
||||
correct += torch.sum(y_test == test_plabels[i])
|
||||
total += y_test.size(0)
|
||||
print('Accuracy of the network on the test images: %d %%' %
|
||||
print("Accuracy of the network on the test images: %d %%" %
|
||||
(torch.true_divide(correct, total) * 100))
|
||||
|
||||
# Save the model
|
||||
PATH = './glvq_mnist_model.pth'
|
||||
PATH = "./glvq_mnist_model.pth"
|
||||
torch.save(model.state_dict(), PATH)
|
||||
|
@@ -22,10 +22,12 @@ class Model(torch.nn.Module):
|
||||
def __init__(self):
|
||||
"""Local-GMLVQ model."""
|
||||
super().__init__()
|
||||
self.p1 = Prototypes1D(input_dim=2,
|
||||
prototype_distribution=[1, 2, 2],
|
||||
prototype_initializer="stratified_random",
|
||||
data=[x_train, y_train])
|
||||
self.p1 = Prototypes1D(
|
||||
input_dim=2,
|
||||
prototype_distribution=[1, 2, 2],
|
||||
prototype_initializer="stratified_random",
|
||||
data=[x_train, y_train],
|
||||
)
|
||||
omegas = torch.zeros(5, 2, 2)
|
||||
self.omegas = torch.nn.Parameter(omegas)
|
||||
eye_(self.omegas)
|
||||
@@ -76,14 +78,16 @@ for epoch in range(100):
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
cmap = "viridis"
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor='k')
|
||||
ax.scatter(protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=cmap,
|
||||
edgecolor='k',
|
||||
marker='D',
|
||||
s=50)
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
|
||||
# Paint decision regions
|
||||
x = np.vstack((x_train, protos))
|
||||
|
65
examples/new_components.py
Normal file
65
examples/new_components.py
Normal file
@@ -0,0 +1,65 @@
|
||||
"""This example script shows the usage of the new components architecture.
|
||||
|
||||
Serialization/deserialization also works as expected.
|
||||
"""
|
||||
|
||||
# DATASET
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
scaler = StandardScaler()
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
|
||||
x_train = torch.Tensor(x_train)
|
||||
y_train = torch.Tensor(y_train)
|
||||
num_classes = len(torch.unique(y_train))
|
||||
|
||||
# CREATE NEW COMPONENTS
|
||||
from prototorch.components import *
|
||||
from prototorch.components.initializers import *
|
||||
|
||||
unsupervised = Components(6, SelectionInitializer(x_train))
|
||||
print(unsupervised())
|
||||
|
||||
prototypes = LabeledComponents(
|
||||
(3, 2), StratifiedSelectionInitializer(x_train, y_train))
|
||||
print(prototypes())
|
||||
|
||||
components = ReasoningComponents(
|
||||
(3, 6), StratifiedSelectionInitializer(x_train, y_train))
|
||||
print(components())
|
||||
|
||||
# TEST SERIALIZATION
|
||||
import io
|
||||
|
||||
save = io.BytesIO()
|
||||
torch.save(unsupervised, save)
|
||||
save.seek(0)
|
||||
serialized_unsupervised = torch.load(save)
|
||||
|
||||
assert torch.all(unsupervised.components == serialized_unsupervised.components
|
||||
), "Serialization of Components failed."
|
||||
|
||||
save = io.BytesIO()
|
||||
torch.save(prototypes, save)
|
||||
save.seek(0)
|
||||
serialized_prototypes = torch.load(save)
|
||||
|
||||
assert torch.all(prototypes.components == serialized_prototypes.components
|
||||
), "Serialization of Components failed."
|
||||
assert torch.all(prototypes.component_labels == serialized_prototypes.
|
||||
component_labels), "Serialization of Components failed."
|
||||
|
||||
save = io.BytesIO()
|
||||
torch.save(components, save)
|
||||
save.seek(0)
|
||||
serialized_components = torch.load(save)
|
||||
|
||||
assert torch.all(components.components == serialized_components.components
|
||||
), "Serialization of Components failed."
|
||||
assert torch.all(components.reasonings == serialized_components.reasonings
|
||||
), "Serialization of Components failed."
|
@@ -1,31 +1,32 @@
|
||||
"""ProtoTorch package."""
|
||||
|
||||
# #############################################
|
||||
# Core Setup
|
||||
# #############################################
|
||||
__version__ = "0.3.0-dev0"
|
||||
import pkgutil
|
||||
|
||||
from prototorch import datasets, functions, modules
|
||||
import pkg_resources
|
||||
|
||||
from . import components, datasets, functions, modules, utils
|
||||
from .datasets import *
|
||||
|
||||
# Core Setup
|
||||
__version__ = "0.4.5"
|
||||
|
||||
__all_core__ = [
|
||||
"datasets",
|
||||
"functions",
|
||||
"modules",
|
||||
"components",
|
||||
"utils",
|
||||
]
|
||||
|
||||
# #############################################
|
||||
# Plugin Loader
|
||||
# #############################################
|
||||
import pkgutil
|
||||
import pkg_resources
|
||||
|
||||
__path__ = pkgutil.extend_path(__path__, __name__)
|
||||
|
||||
|
||||
def discover_plugins():
|
||||
return {
|
||||
entry_point.name: entry_point.load()
|
||||
for entry_point in pkg_resources.iter_entry_points("prototorch.plugins")
|
||||
for entry_point in pkg_resources.iter_entry_points(
|
||||
"prototorch.plugins")
|
||||
}
|
||||
|
||||
|
||||
@@ -33,14 +34,12 @@ discovered_plugins = discover_plugins()
|
||||
locals().update(discovered_plugins)
|
||||
|
||||
# Generate combines __version__ and __all__
|
||||
version_plugins = "\n".join(
|
||||
[
|
||||
"- " + name + ": v" + plugin.__version__
|
||||
for name, plugin in discovered_plugins.items()
|
||||
]
|
||||
)
|
||||
version_plugins = "\n".join([
|
||||
"- " + name + ": v" + plugin.__version__
|
||||
for name, plugin in discovered_plugins.items()
|
||||
])
|
||||
if version_plugins != "":
|
||||
version_plugins = "\nPlugins: \n" + version_plugins
|
||||
|
||||
version = "core: v" + __version__ + version_plugins
|
||||
__all__ = __all_core__ + list(discovered_plugins.keys())
|
||||
__all__ = __all_core__ + list(discovered_plugins.keys())
|
||||
|
2
prototorch/components/__init__.py
Normal file
2
prototorch/components/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from prototorch.components.components import *
|
||||
from prototorch.components.initializers import *
|
161
prototorch/components/components.py
Normal file
161
prototorch/components/components.py
Normal file
@@ -0,0 +1,161 @@
|
||||
"""ProtoTorch components modules."""
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from prototorch.components.initializers import (ClassAwareInitializer,
|
||||
ComponentsInitializer,
|
||||
CustomLabelsInitializer,
|
||||
EqualLabelsInitializer,
|
||||
UnequalLabelsInitializer,
|
||||
ZeroReasoningsInitializer)
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class Components(torch.nn.Module):
|
||||
"""Components is a set of learnable Tensors."""
|
||||
def __init__(self,
|
||||
num_components=None,
|
||||
initializer=None,
|
||||
*,
|
||||
initialized_components=None):
|
||||
super().__init__()
|
||||
|
||||
self.num_components = num_components
|
||||
|
||||
# Ignore all initialization settings if initialized_components is given.
|
||||
if initialized_components is not None:
|
||||
self.register_parameter("_components",
|
||||
Parameter(initialized_components))
|
||||
if num_components is not None or initializer is not None:
|
||||
wmsg = "Arguments ignored while initializing Components"
|
||||
warnings.warn(wmsg)
|
||||
else:
|
||||
self._initialize_components(initializer)
|
||||
|
||||
def _precheck_initializer(self, initializer):
|
||||
if not isinstance(initializer, ComponentsInitializer):
|
||||
emsg = f"`initializer` has to be some subtype of " \
|
||||
f"{ComponentsInitializer}. " \
|
||||
f"You have provided: {initializer=} instead."
|
||||
raise TypeError(emsg)
|
||||
|
||||
def _initialize_components(self, initializer):
|
||||
self._precheck_initializer(initializer)
|
||||
_components = initializer.generate(self.num_components)
|
||||
self.register_parameter("_components", Parameter(_components))
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
"""Tensor containing the component tensors."""
|
||||
return self._components.detach()
|
||||
|
||||
def forward(self):
|
||||
return self._components
|
||||
|
||||
def extra_repr(self):
|
||||
return f"components.shape: {tuple(self._components.shape)}"
|
||||
|
||||
|
||||
class LabeledComponents(Components):
|
||||
"""LabeledComponents generate a set of components and a set of labels.
|
||||
|
||||
Every Component has a label assigned.
|
||||
"""
|
||||
def __init__(self,
|
||||
distribution=None,
|
||||
initializer=None,
|
||||
*,
|
||||
initialized_components=None):
|
||||
if initialized_components is not None:
|
||||
components, component_labels = initialized_components
|
||||
super().__init__(initialized_components=components)
|
||||
self._labels = component_labels
|
||||
else:
|
||||
_labels = self._initialize_labels(distribution)
|
||||
super().__init__(len(_labels), initializer=initializer)
|
||||
self.register_buffer("_labels", _labels)
|
||||
|
||||
def _initialize_components(self, initializer):
|
||||
if isinstance(initializer, ClassAwareInitializer):
|
||||
self._precheck_initializer(initializer)
|
||||
_components = initializer.generate(self.num_components,
|
||||
self.distribution)
|
||||
self.register_parameter("_components", Parameter(_components))
|
||||
else:
|
||||
super()._initialize_components(initializer)
|
||||
|
||||
def _initialize_labels(self, distribution):
|
||||
if type(distribution) == dict:
|
||||
if "num_classes" in distribution.keys():
|
||||
labels = EqualLabelsInitializer(
|
||||
distribution["num_classes"],
|
||||
distribution["prototypes_per_class"])
|
||||
else:
|
||||
labels = CustomLabelsInitializer(distribution)
|
||||
elif type(distribution) == tuple:
|
||||
num_classes, prototypes_per_class = distribution
|
||||
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
|
||||
elif type(distribution) == list:
|
||||
labels = UnequalLabelsInitializer(distribution)
|
||||
|
||||
self.distribution = labels.distribution
|
||||
return labels.generate()
|
||||
|
||||
@property
|
||||
def component_labels(self):
|
||||
"""Tensor containing the component tensors."""
|
||||
return self._labels.detach()
|
||||
|
||||
def forward(self):
|
||||
return super().forward(), self._labels
|
||||
|
||||
|
||||
class ReasoningComponents(Components):
|
||||
"""ReasoningComponents generate a set of components and a set of reasoning matrices.
|
||||
|
||||
Every Component has a reasoning matrix assigned.
|
||||
|
||||
A reasoning matrix is a Nx2 matrix, where N is the number of Classes. The
|
||||
first element is called positive reasoning :math:`p`, the second negative
|
||||
reasoning :math:`n`. A components can reason in favour (positive) of a
|
||||
class, against (negative) a class or not at all (neutral).
|
||||
|
||||
It holds that :math:`0 \leq n \leq 1`, :math:`0 \leq p \leq 1` and :math:`0
|
||||
\leq n+p \leq 1`. Therefore :math:`n` and :math:`p` are two elements of a
|
||||
three element probability distribution.
|
||||
|
||||
"""
|
||||
def __init__(self,
|
||||
reasonings=None,
|
||||
initializer=None,
|
||||
*,
|
||||
initialized_components=None):
|
||||
if initialized_components is not None:
|
||||
components, reasonings = initialized_components
|
||||
|
||||
super().__init__(initialized_components=components)
|
||||
self.register_parameter("_reasonings", reasonings)
|
||||
else:
|
||||
self._initialize_reasonings(reasonings)
|
||||
super().__init__(len(self._reasonings), initializer=initializer)
|
||||
|
||||
def _initialize_reasonings(self, reasonings):
|
||||
if type(reasonings) == tuple:
|
||||
num_classes, num_components = reasonings
|
||||
reasonings = ZeroReasoningsInitializer(num_classes, num_components)
|
||||
|
||||
_reasonings = reasonings.generate()
|
||||
self.register_parameter("_reasonings", _reasonings)
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
"""Returns Reasoning Matrix.
|
||||
|
||||
Dimension NxCx2
|
||||
|
||||
"""
|
||||
return self._reasonings.detach()
|
||||
|
||||
def forward(self):
|
||||
return super().forward(), self._reasonings
|
228
prototorch/components/initializers.py
Normal file
228
prototorch/components/initializers.py
Normal file
@@ -0,0 +1,228 @@
|
||||
"""ProtoTroch Initializers."""
|
||||
import warnings
|
||||
from collections.abc import Iterable
|
||||
from itertools import chain
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
|
||||
def parse_data_arg(data_arg):
|
||||
if isinstance(data_arg, Dataset):
|
||||
data_arg = DataLoader(data_arg, batch_size=len(data_arg))
|
||||
|
||||
if isinstance(data_arg, DataLoader):
|
||||
data = torch.tensor([])
|
||||
labels = torch.tensor([])
|
||||
for x, y in data_arg:
|
||||
data = torch.cat([data, x])
|
||||
labels = torch.cat([labels, y])
|
||||
else:
|
||||
data, labels = data_arg
|
||||
if not isinstance(data, torch.Tensor):
|
||||
wmsg = f"Converting data to {torch.Tensor}."
|
||||
warnings.warn(wmsg)
|
||||
data = torch.Tensor(data)
|
||||
if not isinstance(labels, torch.Tensor):
|
||||
wmsg = f"Converting labels to {torch.Tensor}."
|
||||
warnings.warn(wmsg)
|
||||
labels = torch.Tensor(labels)
|
||||
return data, labels
|
||||
|
||||
|
||||
# Components
|
||||
class ComponentsInitializer(object):
|
||||
def generate(self, number_of_components):
|
||||
raise NotImplementedError("Subclasses should implement this!")
|
||||
|
||||
|
||||
class DimensionAwareInitializer(ComponentsInitializer):
|
||||
def __init__(self, c_dims):
|
||||
super().__init__()
|
||||
if isinstance(c_dims, Iterable):
|
||||
self.components_dims = tuple(c_dims)
|
||||
else:
|
||||
self.components_dims = (c_dims, )
|
||||
|
||||
|
||||
class OnesInitializer(DimensionAwareInitializer):
|
||||
def generate(self, length):
|
||||
gen_dims = (length, ) + self.components_dims
|
||||
return torch.ones(gen_dims)
|
||||
|
||||
|
||||
class ZerosInitializer(DimensionAwareInitializer):
|
||||
def generate(self, length):
|
||||
gen_dims = (length, ) + self.components_dims
|
||||
return torch.zeros(gen_dims)
|
||||
|
||||
|
||||
class UniformInitializer(DimensionAwareInitializer):
|
||||
def __init__(self, c_dims, min=0.0, max=1.0):
|
||||
super().__init__(c_dims)
|
||||
|
||||
self.min = min
|
||||
self.max = max
|
||||
|
||||
def generate(self, length):
|
||||
gen_dims = (length, ) + self.components_dims
|
||||
return torch.ones(gen_dims).uniform_(self.min, self.max)
|
||||
|
||||
|
||||
class DataAwareInitializer(ComponentsInitializer):
|
||||
def __init__(self, data):
|
||||
super().__init__()
|
||||
self.data = data
|
||||
|
||||
|
||||
class SelectionInitializer(DataAwareInitializer):
|
||||
def generate(self, length):
|
||||
indices = torch.LongTensor(length).random_(0, len(self.data))
|
||||
return self.data[indices]
|
||||
|
||||
|
||||
class MeanInitializer(DataAwareInitializer):
|
||||
def generate(self, length):
|
||||
mean = torch.mean(self.data, dim=0)
|
||||
repeat_dim = [length] + [1] * len(mean.shape)
|
||||
return mean.repeat(repeat_dim)
|
||||
|
||||
|
||||
class ClassAwareInitializer(ComponentsInitializer):
|
||||
def __init__(self, data, transform=torch.nn.Identity()):
|
||||
super().__init__()
|
||||
data, labels = parse_data_arg(data)
|
||||
self.data = data
|
||||
self.labels = labels
|
||||
|
||||
self.transform = transform
|
||||
|
||||
self.clabels = torch.unique(self.labels)
|
||||
self.num_classes = len(self.clabels)
|
||||
|
||||
def _get_samples_from_initializer(self, length, dist):
|
||||
if not dist:
|
||||
per_class = length // self.num_classes
|
||||
dist = self.num_classes * [per_class]
|
||||
if type(dist) == dict:
|
||||
dist = dist.values()
|
||||
samples_list = [
|
||||
init.generate(n) for init, n in zip(self.initializers, dist)
|
||||
]
|
||||
out = torch.vstack(samples_list)
|
||||
with torch.no_grad():
|
||||
out = self.transform(out)
|
||||
return out
|
||||
|
||||
def __del__(self):
|
||||
del self.data
|
||||
del self.labels
|
||||
|
||||
|
||||
class StratifiedMeanInitializer(ClassAwareInitializer):
|
||||
def __init__(self, data, **kwargs):
|
||||
super().__init__(data, **kwargs)
|
||||
|
||||
self.initializers = []
|
||||
for clabel in self.clabels:
|
||||
class_data = self.data[self.labels == clabel]
|
||||
class_initializer = MeanInitializer(class_data)
|
||||
self.initializers.append(class_initializer)
|
||||
|
||||
def generate(self, length, dist=[]):
|
||||
samples = self._get_samples_from_initializer(length, dist)
|
||||
return samples
|
||||
|
||||
|
||||
class StratifiedSelectionInitializer(ClassAwareInitializer):
|
||||
def __init__(self, data, noise=None, **kwargs):
|
||||
super().__init__(data, **kwargs)
|
||||
self.noise = noise
|
||||
|
||||
self.initializers = []
|
||||
for clabel in self.clabels:
|
||||
class_data = self.data[self.labels == clabel]
|
||||
class_initializer = SelectionInitializer(class_data)
|
||||
self.initializers.append(class_initializer)
|
||||
|
||||
def add_noise_v1(self, x):
|
||||
return x + self.noise
|
||||
|
||||
def add_noise_v2(self, x):
|
||||
"""Shifts some dimensions of the data randomly."""
|
||||
n1 = torch.rand_like(x)
|
||||
n2 = torch.rand_like(x)
|
||||
mask = torch.bernoulli(n1) - torch.bernoulli(n2)
|
||||
return x + (self.noise * mask)
|
||||
|
||||
def generate(self, length, dist=[]):
|
||||
samples = self._get_samples_from_initializer(length, dist)
|
||||
if self.noise is not None:
|
||||
samples = self.add_noise_v1(samples)
|
||||
return samples
|
||||
|
||||
|
||||
# Labels
|
||||
class LabelsInitializer:
|
||||
def generate(self):
|
||||
raise NotImplementedError("Subclasses should implement this!")
|
||||
|
||||
|
||||
class UnequalLabelsInitializer(LabelsInitializer):
|
||||
def __init__(self, dist):
|
||||
self.dist = dist
|
||||
|
||||
@property
|
||||
def distribution(self):
|
||||
return self.dist
|
||||
|
||||
def generate(self, clabels=None, dist=None):
|
||||
if not clabels:
|
||||
clabels = range(len(self.dist))
|
||||
if not dist:
|
||||
dist = self.dist
|
||||
labels = list(chain(*[[i] * n for i, n in zip(clabels, dist)]))
|
||||
return torch.LongTensor(labels)
|
||||
|
||||
|
||||
class EqualLabelsInitializer(LabelsInitializer):
|
||||
def __init__(self, classes, per_class):
|
||||
self.classes = classes
|
||||
self.per_class = per_class
|
||||
|
||||
@property
|
||||
def distribution(self):
|
||||
return self.classes * [self.per_class]
|
||||
|
||||
def generate(self):
|
||||
return torch.arange(self.classes).repeat(self.per_class, 1).T.flatten()
|
||||
|
||||
|
||||
class CustomLabelsInitializer(UnequalLabelsInitializer):
|
||||
def generate(self):
|
||||
clabels = list(self.dist.keys())
|
||||
dist = list(self.dist.values())
|
||||
return super().generate(clabels, dist)
|
||||
|
||||
|
||||
# Reasonings
|
||||
class ReasoningsInitializer:
|
||||
def generate(self, length):
|
||||
raise NotImplementedError("Subclasses should implement this!")
|
||||
|
||||
|
||||
class ZeroReasoningsInitializer(ReasoningsInitializer):
|
||||
def __init__(self, classes, length):
|
||||
self.classes = classes
|
||||
self.length = length
|
||||
|
||||
def generate(self):
|
||||
return torch.zeros((self.length, self.classes, 2))
|
||||
|
||||
|
||||
# Aliases
|
||||
SSI = StratifiedSampleInitializer = StratifiedSelectionInitializer
|
||||
SMI = StratifiedMeanInitializer
|
||||
Random = RandomInitializer = UniformInitializer
|
||||
Zeros = ZerosInitializer
|
||||
Ones = OnesInitializer
|
@@ -1,7 +1,8 @@
|
||||
"""ProtoTorch datasets."""
|
||||
|
||||
from .abstract import NumpyDataset
|
||||
from .iris import Iris
|
||||
from .spiral import Spiral
|
||||
from .tecator import Tecator
|
||||
|
||||
__all__ = [
|
||||
'Tecator',
|
||||
]
|
||||
__all__ = ['Iris', 'Spiral', 'Tecator']
|
||||
|
@@ -12,6 +12,15 @@ import os
|
||||
import torch
|
||||
|
||||
|
||||
class NumpyDataset(torch.utils.data.TensorDataset):
|
||||
"""Create a PyTorch TensorDataset from NumPy arrays."""
|
||||
def __init__(self, data, targets):
|
||||
self.data = data
|
||||
self.targets = targets
|
||||
tensors = [torch.Tensor(data), torch.Tensor(targets)]
|
||||
super().__init__(*tensors)
|
||||
|
||||
|
||||
class Dataset(torch.utils.data.Dataset):
|
||||
"""Abstract dataset class to be inherited."""
|
||||
|
||||
@@ -44,15 +53,13 @@ class ProtoDataset(Dataset):
|
||||
self._download()
|
||||
|
||||
if not self._check_exists():
|
||||
raise RuntimeError(
|
||||
"Dataset not found. " "You can use download=True to download it"
|
||||
)
|
||||
raise RuntimeError("Dataset not found. "
|
||||
"You can use download=True to download it")
|
||||
|
||||
data_file = self.training_file if self.train else self.test_file
|
||||
|
||||
self.data, self.targets = torch.load(
|
||||
os.path.join(self.processed_folder, data_file)
|
||||
)
|
||||
os.path.join(self.processed_folder, data_file))
|
||||
|
||||
@property
|
||||
def raw_folder(self):
|
||||
@@ -68,8 +75,9 @@ class ProtoDataset(Dataset):
|
||||
|
||||
def _check_exists(self):
|
||||
return os.path.exists(
|
||||
os.path.join(self.processed_folder, self.training_file)
|
||||
) and os.path.exists(os.path.join(self.processed_folder, self.test_file))
|
||||
os.path.join(
|
||||
self.processed_folder, self.training_file)) and os.path.exists(
|
||||
os.path.join(self.processed_folder, self.test_file))
|
||||
|
||||
def __repr__(self):
|
||||
head = "Dataset " + self.__class__.__name__
|
||||
|
40
prototorch/datasets/iris.py
Normal file
40
prototorch/datasets/iris.py
Normal file
@@ -0,0 +1,40 @@
|
||||
"""Thin wrapper for the Iris classification dataset from sklearn.
|
||||
|
||||
URL:
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
|
||||
class Iris(NumpyDataset):
|
||||
"""
|
||||
Iris Dataset by Ronald Fisher introduced in 1936.
|
||||
|
||||
The dataset contains four measurements from flowers of three species of iris.
|
||||
|
||||
.. list-table:: Iris
|
||||
:header-rows: 1
|
||||
|
||||
* - dimensions
|
||||
- classes
|
||||
- training size
|
||||
- validation size
|
||||
- test size
|
||||
* - 4
|
||||
- 3
|
||||
- 150
|
||||
- 0
|
||||
- 0
|
||||
|
||||
:param dims: select a subset of dimensions
|
||||
"""
|
||||
def __init__(self, dims: Sequence[int] = None):
|
||||
x, y = load_iris(return_X_y=True)
|
||||
if dims:
|
||||
x = x[:, dims]
|
||||
super().__init__(x, y)
|
57
prototorch/datasets/spiral.py
Normal file
57
prototorch/datasets/spiral.py
Normal file
@@ -0,0 +1,57 @@
|
||||
"""Spiral dataset for binary classification."""
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def make_spiral(num_samples=500, noise=0.3):
|
||||
"""Generates the Spiral Dataset.
|
||||
|
||||
For use in Prototorch use `prototorch.datasets.Spiral` instead.
|
||||
"""
|
||||
def get_samples(n, delta_t):
|
||||
points = []
|
||||
for i in range(n):
|
||||
r = i / num_samples * 5
|
||||
t = 1.75 * i / n * 2 * np.pi + delta_t
|
||||
x = r * np.sin(t) + np.random.rand(1) * noise
|
||||
y = r * np.cos(t) + np.random.rand(1) * noise
|
||||
points.append([x, y])
|
||||
return points
|
||||
|
||||
n = num_samples // 2
|
||||
positive = get_samples(n=n, delta_t=0)
|
||||
negative = get_samples(n=n, delta_t=np.pi)
|
||||
x = np.concatenate(
|
||||
[np.array(positive).reshape(n, -1),
|
||||
np.array(negative).reshape(n, -1)],
|
||||
axis=0)
|
||||
y = np.concatenate([np.zeros(n), np.ones(n)])
|
||||
return x, y
|
||||
|
||||
|
||||
class Spiral(torch.utils.data.TensorDataset):
|
||||
"""Spiral dataset for binary classification.
|
||||
|
||||
This datasets consists of two spirals of two different classes.
|
||||
|
||||
.. list-table:: Spiral
|
||||
:header-rows: 1
|
||||
|
||||
* - dimensions
|
||||
- classes
|
||||
- training size
|
||||
- validation size
|
||||
- test size
|
||||
* - 2
|
||||
- 2
|
||||
- num_samples
|
||||
- 0
|
||||
- 0
|
||||
|
||||
:param num_samples: number of random samples
|
||||
:param noise: noise added to the spirals
|
||||
"""
|
||||
def __init__(self, num_samples: int = 500, noise: float = 0.3):
|
||||
x, y = make_spiral(num_samples, noise)
|
||||
super().__init__(torch.Tensor(x), torch.LongTensor(y))
|
@@ -40,19 +40,34 @@ import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torchvision.datasets.utils import download_file_from_google_drive
|
||||
|
||||
from prototorch.datasets.abstract import ProtoDataset
|
||||
from torchvision.datasets.utils import download_file_from_google_drive
|
||||
|
||||
|
||||
class Tecator(ProtoDataset):
|
||||
"""
|
||||
`Tecator Dataset <http://lib.stat.cmu.edu/datasets/tecator>`__
|
||||
for classification.
|
||||
`Tecator Dataset <http://lib.stat.cmu.edu/datasets/tecator>`__ for classification.
|
||||
|
||||
The dataset contains wavelength measurements of meat.
|
||||
|
||||
.. list-table:: Tecator
|
||||
:header-rows: 1
|
||||
|
||||
* - dimensions
|
||||
- classes
|
||||
- training size
|
||||
- validation size
|
||||
- test size
|
||||
* - 100
|
||||
- 2
|
||||
- 129
|
||||
- 43
|
||||
- 43
|
||||
"""
|
||||
|
||||
_resources = [
|
||||
("1MMuUK8V41IgNpnPDbg3E-QAL6wlErTk0", "ba5607c580d0f91bb27dc29d13c2f8df"),
|
||||
("1P9WIYnyxFPh6f1vqAbnKfK8oYmUgyV83",
|
||||
"ba5607c580d0f91bb27dc29d13c2f8df"),
|
||||
] # (google_storage_id, md5hash)
|
||||
classes = ["0 - low_fat", "1 - high_fat"]
|
||||
|
||||
@@ -74,15 +89,15 @@ class Tecator(ProtoDataset):
|
||||
print("Downloading...")
|
||||
for fileid, md5 in self._resources:
|
||||
filename = "tecator.npz"
|
||||
download_file_from_google_drive(
|
||||
fileid, root=self.raw_folder, filename=filename, md5=md5
|
||||
)
|
||||
download_file_from_google_drive(fileid,
|
||||
root=self.raw_folder,
|
||||
filename=filename,
|
||||
md5=md5)
|
||||
|
||||
if self.verbose:
|
||||
print("Processing...")
|
||||
with np.load(
|
||||
os.path.join(self.raw_folder, "tecator.npz"), allow_pickle=False
|
||||
) as f:
|
||||
with np.load(os.path.join(self.raw_folder, "tecator.npz"),
|
||||
allow_pickle=False) as f:
|
||||
x_train, y_train = f["x_train"], f["y_train"]
|
||||
x_test, y_test = f["x_test"], f["y_test"]
|
||||
training_set = [
|
||||
@@ -94,9 +109,11 @@ class Tecator(ProtoDataset):
|
||||
torch.tensor(y_test),
|
||||
]
|
||||
|
||||
with open(os.path.join(self.processed_folder, self.training_file), "wb") as f:
|
||||
with open(os.path.join(self.processed_folder, self.training_file),
|
||||
"wb") as f:
|
||||
torch.save(training_set, f)
|
||||
with open(os.path.join(self.processed_folder, self.test_file), "wb") as f:
|
||||
with open(os.path.join(self.processed_folder, self.test_file),
|
||||
"wb") as f:
|
||||
torch.save(test_set, f)
|
||||
|
||||
if self.verbose:
|
||||
|
@@ -4,9 +4,9 @@ from .activations import identity, sigmoid_beta, swish_beta
|
||||
from .competitions import knnc, wtac
|
||||
|
||||
__all__ = [
|
||||
'identity',
|
||||
'sigmoid_beta',
|
||||
'swish_beta',
|
||||
'knnc',
|
||||
'wtac',
|
||||
"identity",
|
||||
"sigmoid_beta",
|
||||
"swish_beta",
|
||||
"knnc",
|
||||
"wtac",
|
||||
]
|
||||
|
@@ -16,40 +16,43 @@ def register_activation(function):
|
||||
|
||||
@register_activation
|
||||
# @torch.jit.script
|
||||
def identity(x, beta=torch.tensor(0)):
|
||||
def identity(x, beta=0.0):
|
||||
"""Identity activation function.
|
||||
|
||||
Definition:
|
||||
:math:`f(x) = x`
|
||||
|
||||
Keyword Arguments:
|
||||
beta (`float`): Ignored.
|
||||
"""
|
||||
return x
|
||||
|
||||
|
||||
@register_activation
|
||||
# @torch.jit.script
|
||||
def sigmoid_beta(x, beta=torch.tensor(10)):
|
||||
def sigmoid_beta(x, beta=10.0):
|
||||
r"""Sigmoid activation function with scaling.
|
||||
|
||||
Definition:
|
||||
:math:`f(x) = \frac{1}{1 + e^{-\beta x}}`
|
||||
|
||||
Keyword Arguments:
|
||||
beta (`torch.tensor`): Scaling parameter :math:`\beta`
|
||||
beta (`float`): Scaling parameter :math:`\beta`
|
||||
"""
|
||||
out = torch.reciprocal(1.0 + torch.exp(-int(beta.item()) * x))
|
||||
out = 1.0 / (1.0 + torch.exp(-1.0 * beta * x))
|
||||
return out
|
||||
|
||||
|
||||
@register_activation
|
||||
# @torch.jit.script
|
||||
def swish_beta(x, beta=torch.tensor(10)):
|
||||
def swish_beta(x, beta=10.0):
|
||||
r"""Swish activation function with scaling.
|
||||
|
||||
Definition:
|
||||
:math:`f(x) = \frac{x}{1 + e^{-\beta x}}`
|
||||
|
||||
Keyword Arguments:
|
||||
beta (`torch.tensor`): Scaling parameter :math:`\beta`
|
||||
beta (`float`): Scaling parameter :math:`\beta`
|
||||
"""
|
||||
out = x * sigmoid_beta(x, beta=beta)
|
||||
return out
|
||||
@@ -61,4 +64,4 @@ def get_activation(funcname):
|
||||
return funcname
|
||||
if funcname in ACTIVATIONS:
|
||||
return ACTIVATIONS.get(funcname)
|
||||
raise NameError(f'Activation {funcname} was not found.')
|
||||
raise NameError(f"Activation {funcname} was not found.")
|
||||
|
@@ -3,23 +3,22 @@
|
||||
import torch
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def stratified_min(distances, labels):
|
||||
clabels = torch.unique(labels, dim=0)
|
||||
nclasses = clabels.size()[0]
|
||||
if distances.size()[1] == nclasses:
|
||||
num_classes = clabels.size()[0]
|
||||
if distances.size()[1] == num_classes:
|
||||
# skip if only one prototype per class
|
||||
return distances
|
||||
batch_size = distances.size()[0]
|
||||
winning_distances = torch.zeros(nclasses, batch_size)
|
||||
inf = torch.full_like(distances.T, fill_value=float('inf'))
|
||||
winning_distances = torch.zeros(num_classes, batch_size)
|
||||
inf = torch.full_like(distances.T, fill_value=float("inf"))
|
||||
# distances_to_wpluses = torch.where(matcher, distances, inf)
|
||||
for i, cl in enumerate(clabels):
|
||||
# cdists = distances.T[labels == cl]
|
||||
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
|
||||
if labels.ndim == 2:
|
||||
# if the labels are one-hot vectors
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
|
||||
cdists = torch.where(matcher, distances.T, inf).T
|
||||
winning_distances[i] = torch.min(cdists, dim=1,
|
||||
keepdim=True).values.squeeze()
|
||||
@@ -31,15 +30,15 @@ def stratified_min(distances, labels):
|
||||
return winning_distances.T # return with `batch_size` first
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def wtac(distances, labels):
|
||||
winning_indices = torch.min(distances, dim=1).indices
|
||||
winning_labels = labels[winning_indices].squeeze()
|
||||
return winning_labels
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def knnc(distances, labels, k):
|
||||
winning_indices = torch.topk(-distances, k=k.item(), dim=1).indices
|
||||
winning_labels = labels[winning_indices].squeeze()
|
||||
def knnc(distances, labels, k=1):
|
||||
winning_indices = torch.topk(-distances, k=k, dim=1).indices
|
||||
# winning_labels = torch.mode(labels[winning_indices].squeeze(),
|
||||
# dim=1).values
|
||||
winning_labels = torch.mode(labels[winning_indices], dim=1).values
|
||||
return winning_labels
|
||||
|
@@ -1,12 +1,9 @@
|
||||
"""ProtoTorch distance functions."""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.helper import (
|
||||
equal_int_shape,
|
||||
_int_and_mixed_shape,
|
||||
_check_shapes,
|
||||
)
|
||||
import numpy as np
|
||||
import torch
|
||||
from prototorch.functions.helper import (_check_shapes, _int_and_mixed_shape,
|
||||
equal_int_shape, get_flat)
|
||||
|
||||
|
||||
def squared_euclidean_distance(x, y):
|
||||
@@ -14,12 +11,10 @@ def squared_euclidean_distance(x, y):
|
||||
|
||||
Compute :math:`{\langle \bm x - \bm y \rangle}_2`
|
||||
|
||||
:param `torch.tensor` x: Two dimensional vector
|
||||
:param `torch.tensor` y: Two dimensional vector
|
||||
|
||||
**Alias:**
|
||||
``prototorch.functions.distances.sed``
|
||||
"""
|
||||
x, y = get_flat(x, y)
|
||||
expanded_x = x.unsqueeze(dim=1)
|
||||
batchwise_difference = y - expanded_x
|
||||
differences_raised = torch.pow(batchwise_difference, 2)
|
||||
@@ -32,30 +27,40 @@ def euclidean_distance(x, y):
|
||||
|
||||
Compute :math:`\sqrt{{\langle \bm x - \bm y \rangle}_2}`
|
||||
|
||||
:param `torch.tensor` x: Input Tensor of shape :math:`X \times N`
|
||||
:param `torch.tensor` y: Input Tensor of shape :math:`Y \times N`
|
||||
|
||||
:returns: Distance Tensor of shape :math:`X \times Y`
|
||||
:rtype: `torch.tensor`
|
||||
"""
|
||||
x, y = get_flat(x, y)
|
||||
distances_raised = squared_euclidean_distance(x, y)
|
||||
distances = torch.sqrt(distances_raised)
|
||||
return distances
|
||||
|
||||
|
||||
def euclidean_distance_v2(x, y):
|
||||
x, y = get_flat(x, y)
|
||||
diff = y - x.unsqueeze(1)
|
||||
pairwise_distances = (diff @ diff.permute((0, 2, 1))).sqrt()
|
||||
# Passing `dim1=-2` and `dim2=-1` to `diagonal()` takes the
|
||||
# batch diagonal. See:
|
||||
# https://pytorch.org/docs/stable/generated/torch.diagonal.html
|
||||
distances = torch.diagonal(pairwise_distances, dim1=-2, dim2=-1)
|
||||
# print(f"{diff.shape=}") # (nx, ny, ndim)
|
||||
# print(f"{pairwise_distances.shape=}") # (nx, ny, ny)
|
||||
# print(f"{distances.shape=}") # (nx, ny)
|
||||
return distances
|
||||
|
||||
|
||||
def lpnorm_distance(x, y, p):
|
||||
r"""
|
||||
Calculates the lp-norm between :math:`\bm x` and :math:`\bm y`.
|
||||
r"""Calculate the lp-norm between :math:`\bm x` and :math:`\bm y`.
|
||||
Also known as Minkowski distance.
|
||||
|
||||
Compute :math:`{\| \bm x - \bm y \|}_p`.
|
||||
|
||||
Calls ``torch.cdist``
|
||||
|
||||
:param `torch.tensor` x: Two dimensional vector
|
||||
:param `torch.tensor` y: Two dimensional vector
|
||||
:param p: p parameter of the lp norm
|
||||
"""
|
||||
x, y = get_flat(x, y)
|
||||
distances = torch.cdist(x, y, p=p)
|
||||
return distances
|
||||
|
||||
@@ -65,10 +70,9 @@ def omega_distance(x, y, omega):
|
||||
|
||||
Compute :math:`{\| \Omega \bm x - \Omega \bm y \|}_p`
|
||||
|
||||
:param `torch.tensor` x: Two dimensional vector
|
||||
:param `torch.tensor` y: Two dimensional vector
|
||||
:param `torch.tensor` omega: Two dimensional matrix
|
||||
"""
|
||||
x, y = get_flat(x, y)
|
||||
projected_x = x @ omega
|
||||
projected_y = y @ omega
|
||||
distances = squared_euclidean_distance(projected_x, projected_y)
|
||||
@@ -80,15 +84,14 @@ def lomega_distance(x, y, omegas):
|
||||
|
||||
Compute :math:`{\| \Omega_k \bm x - \Omega_k \bm y_k \|}_p`
|
||||
|
||||
:param `torch.tensor` x: Two dimensional vector
|
||||
:param `torch.tensor` y: Two dimensional vector
|
||||
:param `torch.tensor` omegas: Three dimensional matrix
|
||||
"""
|
||||
x, y = get_flat(x, y)
|
||||
projected_x = x @ omegas
|
||||
projected_y = torch.diagonal(y @ omegas).T
|
||||
expanded_y = torch.unsqueeze(projected_y, dim=1)
|
||||
batchwise_difference = expanded_y - projected_x
|
||||
differences_squared = batchwise_difference ** 2
|
||||
differences_squared = batchwise_difference**2
|
||||
distances = torch.sum(differences_squared, dim=2)
|
||||
distances = distances.permute(1, 0)
|
||||
return distances
|
||||
@@ -107,26 +110,18 @@ def euclidean_distance_matrix(x, y, squared=False, epsilon=1e-10):
|
||||
for tensor in [x, y]:
|
||||
if tensor.ndim != 2:
|
||||
raise ValueError(
|
||||
"The tensor dimension must be two. You provide: tensor.ndim="
|
||||
+ str(tensor.ndim)
|
||||
+ "."
|
||||
)
|
||||
"The tensor dimension must be two. You provide: tensor.ndim=" +
|
||||
str(tensor.ndim) + ".")
|
||||
if not equal_int_shape([tuple(x.shape)[1]], [tuple(y.shape)[1]]):
|
||||
raise ValueError(
|
||||
"The vector shape must be equivalent in both tensors. You provide: tuple(y.shape)[1]="
|
||||
+ str(tuple(x.shape)[1])
|
||||
+ " and tuple(y.shape)(y)[1]="
|
||||
+ str(tuple(y.shape)[1])
|
||||
+ "."
|
||||
)
|
||||
+ str(tuple(x.shape)[1]) + " and tuple(y.shape)(y)[1]=" +
|
||||
str(tuple(y.shape)[1]) + ".")
|
||||
|
||||
y = torch.transpose(y)
|
||||
|
||||
diss = (
|
||||
torch.sum(x ** 2, axis=1, keepdims=True)
|
||||
- 2 * torch.dot(x, y)
|
||||
+ torch.sum(y ** 2, axis=0, keepdims=True)
|
||||
)
|
||||
diss = (torch.sum(x**2, axis=1, keepdims=True) - 2 * torch.dot(x, y) +
|
||||
torch.sum(y**2, axis=0, keepdims=True))
|
||||
|
||||
if not squared:
|
||||
if epsilon == 0:
|
||||
@@ -173,19 +168,18 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
if subspaces.ndim == 2:
|
||||
# clean solution without map if the matrix_scope is global
|
||||
projectors = torch.eye(subspace_int_shape[-2]) - torch.dot(
|
||||
subspaces, torch.transpose(subspaces)
|
||||
)
|
||||
subspaces, torch.transpose(subspaces))
|
||||
|
||||
projected_signals = torch.dot(signals, projectors)
|
||||
projected_protos = torch.dot(protos, projectors)
|
||||
|
||||
diss = euclidean_distance_matrix(
|
||||
projected_signals, projected_protos, squared=squared, epsilon=epsilon
|
||||
)
|
||||
diss = euclidean_distance_matrix(projected_signals,
|
||||
projected_protos,
|
||||
squared=squared,
|
||||
epsilon=epsilon)
|
||||
|
||||
diss = torch.reshape(
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]]
|
||||
)
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]])
|
||||
|
||||
return torch.permute(diss, [0, 2, 1])
|
||||
|
||||
@@ -193,21 +187,18 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
|
||||
# no solution without map possible --> memory efficient but slow!
|
||||
projectors = torch.eye(subspace_int_shape[-2]) - torch.bmm(
|
||||
subspaces, subspaces
|
||||
) # K.batch_dot(subspaces, subspaces, [2, 2])
|
||||
subspaces,
|
||||
subspaces) # K.batch_dot(subspaces, subspaces, [2, 2])
|
||||
|
||||
projected_protos = (
|
||||
protos @ subspaces
|
||||
).T # K.batch_dot(projectors, protos, [1, 1]))
|
||||
projected_protos = (protos @ subspaces
|
||||
).T # K.batch_dot(projectors, protos, [1, 1]))
|
||||
|
||||
def projected_norm(projector):
|
||||
return torch.sum(torch.dot(signals, projector) ** 2, axis=1)
|
||||
return torch.sum(torch.dot(signals, projector)**2, axis=1)
|
||||
|
||||
diss = (
|
||||
torch.transpose(map(projected_norm, projectors))
|
||||
- 2 * torch.dot(signals, projected_protos)
|
||||
+ torch.sum(projected_protos ** 2, axis=0, keepdims=True)
|
||||
)
|
||||
diss = (torch.transpose(map(projected_norm, projectors)) -
|
||||
2 * torch.dot(signals, projected_protos) +
|
||||
torch.sum(projected_protos**2, axis=0, keepdims=True))
|
||||
|
||||
if not squared:
|
||||
if epsilon == 0:
|
||||
@@ -216,8 +207,7 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
diss = torch.sqrt(torch.max(diss, epsilon))
|
||||
|
||||
diss = torch.reshape(
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]]
|
||||
)
|
||||
diss, [signal_shape[0], signal_shape[2], proto_shape[0]])
|
||||
|
||||
return torch.permute(diss, [0, 2, 1])
|
||||
|
||||
@@ -233,12 +223,12 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
|
||||
# Scope: Tangentspace Projections
|
||||
diff = torch.reshape(
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1)
|
||||
)
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
|
||||
projected_diff = diff @ projectors
|
||||
projected_diff = torch.reshape(
|
||||
projected_diff,
|
||||
(signal_shape[0], signal_shape[2], signal_shape[1]) + signal_shape[3:],
|
||||
(signal_shape[0], signal_shape[2], signal_shape[1]) +
|
||||
signal_shape[3:],
|
||||
)
|
||||
|
||||
diss = torch.norm(projected_diff, 2, dim=-1)
|
||||
@@ -251,13 +241,13 @@ def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
|
||||
|
||||
# Scope: Tangentspace Projections
|
||||
diff = torch.reshape(
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1)
|
||||
)
|
||||
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
|
||||
diff = diff.permute([1, 0, 2])
|
||||
projected_diff = torch.bmm(diff, projectors)
|
||||
projected_diff = torch.reshape(
|
||||
projected_diff,
|
||||
(signal_shape[1], signal_shape[0], signal_shape[2]) + signal_shape[3:],
|
||||
(signal_shape[1], signal_shape[0], signal_shape[2]) +
|
||||
signal_shape[3:],
|
||||
)
|
||||
|
||||
diss = torch.norm(projected_diff, 2, dim=-1)
|
||||
|
@@ -1,6 +1,11 @@
|
||||
import torch
|
||||
|
||||
|
||||
def get_flat(*args):
|
||||
rv = [x.view(x.size(0), -1) for x in args]
|
||||
return rv
|
||||
|
||||
|
||||
def calculate_prototype_accuracy(y_pred, y_true, plabels):
|
||||
"""Computes the accuracy of a prototype based model.
|
||||
via Winner-Takes-All rule.
|
||||
@@ -23,7 +28,7 @@ def predict_label(y_pred, plabels):
|
||||
|
||||
def mixed_shape(inputs):
|
||||
if not torch.is_tensor(inputs):
|
||||
raise ValueError('Input must be a tensor.')
|
||||
raise ValueError("Input must be a tensor.")
|
||||
else:
|
||||
int_shape = list(inputs.shape)
|
||||
# sometimes int_shape returns mixed integer types
|
||||
@@ -39,11 +44,11 @@ def mixed_shape(inputs):
|
||||
def equal_int_shape(shape_1, shape_2):
|
||||
if not isinstance(shape_1,
|
||||
(tuple, list)) or not isinstance(shape_2, (tuple, list)):
|
||||
raise ValueError('Input shapes must list or tuple.')
|
||||
raise ValueError("Input shapes must list or tuple.")
|
||||
for shape in [shape_1, shape_2]:
|
||||
if not all([isinstance(x, int) or x is None for x in shape]):
|
||||
raise ValueError(
|
||||
'Input shapes must be list or tuple of int and None values.')
|
||||
"Input shapes must be list or tuple of int and None values.")
|
||||
|
||||
if len(shape_1) != len(shape_2):
|
||||
return False
|
||||
|
@@ -15,59 +15,59 @@ def register_initializer(function):
|
||||
|
||||
def labels_from(distribution, one_hot=True):
|
||||
"""Takes a distribution tensor and returns a labels tensor."""
|
||||
nclasses = distribution.shape[0]
|
||||
llist = [[i] * n for i, n in zip(range(nclasses), distribution)]
|
||||
num_classes = distribution.shape[0]
|
||||
llist = [[i] * n for i, n in zip(range(num_classes), distribution)]
|
||||
# labels = [l for cl in llist for l in cl] # flatten the list of lists
|
||||
flat_llist = list(chain(*llist)) # flatten label list with itertools.chain
|
||||
plabels = torch.tensor(flat_llist, requires_grad=False)
|
||||
if one_hot:
|
||||
return torch.eye(nclasses)[plabels]
|
||||
return torch.eye(num_classes)[plabels]
|
||||
return plabels
|
||||
|
||||
|
||||
@register_initializer
|
||||
def ones(x_train, y_train, prototype_distribution, one_hot=True):
|
||||
nprotos = torch.sum(prototype_distribution)
|
||||
protos = torch.ones(nprotos, *x_train.shape[1:])
|
||||
num_protos = torch.sum(prototype_distribution)
|
||||
protos = torch.ones(num_protos, *x_train.shape[1:])
|
||||
plabels = labels_from(prototype_distribution, one_hot)
|
||||
return protos, plabels
|
||||
|
||||
|
||||
@register_initializer
|
||||
def zeros(x_train, y_train, prototype_distribution, one_hot=True):
|
||||
nprotos = torch.sum(prototype_distribution)
|
||||
protos = torch.zeros(nprotos, *x_train.shape[1:])
|
||||
num_protos = torch.sum(prototype_distribution)
|
||||
protos = torch.zeros(num_protos, *x_train.shape[1:])
|
||||
plabels = labels_from(prototype_distribution, one_hot)
|
||||
return protos, plabels
|
||||
|
||||
|
||||
@register_initializer
|
||||
def rand(x_train, y_train, prototype_distribution, one_hot=True):
|
||||
nprotos = torch.sum(prototype_distribution)
|
||||
protos = torch.rand(nprotos, *x_train.shape[1:])
|
||||
num_protos = torch.sum(prototype_distribution)
|
||||
protos = torch.rand(num_protos, *x_train.shape[1:])
|
||||
plabels = labels_from(prototype_distribution, one_hot)
|
||||
return protos, plabels
|
||||
|
||||
|
||||
@register_initializer
|
||||
def randn(x_train, y_train, prototype_distribution, one_hot=True):
|
||||
nprotos = torch.sum(prototype_distribution)
|
||||
protos = torch.randn(nprotos, *x_train.shape[1:])
|
||||
num_protos = torch.sum(prototype_distribution)
|
||||
protos = torch.randn(num_protos, *x_train.shape[1:])
|
||||
plabels = labels_from(prototype_distribution, one_hot)
|
||||
return protos, plabels
|
||||
|
||||
|
||||
@register_initializer
|
||||
def stratified_mean(x_train, y_train, prototype_distribution, one_hot=True):
|
||||
nprotos = torch.sum(prototype_distribution)
|
||||
num_protos = torch.sum(prototype_distribution)
|
||||
pdim = x_train.shape[1]
|
||||
protos = torch.empty(nprotos, pdim)
|
||||
protos = torch.empty(num_protos, pdim)
|
||||
plabels = labels_from(prototype_distribution, one_hot)
|
||||
for i, label in enumerate(plabels):
|
||||
matcher = torch.eq(label.unsqueeze(dim=0), y_train)
|
||||
if one_hot:
|
||||
nclasses = y_train.size()[1]
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
|
||||
num_classes = y_train.size()[1]
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
|
||||
xl = x_train[matcher]
|
||||
mean_xl = torch.mean(xl, dim=0)
|
||||
protos[i] = mean_xl
|
||||
@@ -81,15 +81,15 @@ def stratified_random(x_train,
|
||||
prototype_distribution,
|
||||
one_hot=True,
|
||||
epsilon=1e-7):
|
||||
nprotos = torch.sum(prototype_distribution)
|
||||
num_protos = torch.sum(prototype_distribution)
|
||||
pdim = x_train.shape[1]
|
||||
protos = torch.empty(nprotos, pdim)
|
||||
protos = torch.empty(num_protos, pdim)
|
||||
plabels = labels_from(prototype_distribution, one_hot)
|
||||
for i, label in enumerate(plabels):
|
||||
matcher = torch.eq(label.unsqueeze(dim=0), y_train)
|
||||
if one_hot:
|
||||
nclasses = y_train.size()[1]
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
|
||||
num_classes = y_train.size()[1]
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
|
||||
xl = x_train[matcher]
|
||||
rand_index = torch.zeros(1).long().random_(0, xl.shape[0] - 1)
|
||||
random_xl = xl[rand_index]
|
||||
@@ -104,4 +104,4 @@ def get_initializer(funcname):
|
||||
return funcname
|
||||
if funcname in INITIALIZERS:
|
||||
return INITIALIZERS.get(funcname)
|
||||
raise NameError(f'Initializer {funcname} was not found.')
|
||||
raise NameError(f"Initializer {funcname} was not found.")
|
||||
|
@@ -3,20 +3,29 @@
|
||||
import torch
|
||||
|
||||
|
||||
def _get_dp_dm(distances, targets, plabels):
|
||||
matcher = torch.eq(targets.unsqueeze(dim=1), plabels)
|
||||
if plabels.ndim == 2:
|
||||
def _get_matcher(targets, labels):
|
||||
"""Returns a boolean tensor."""
|
||||
matcher = torch.eq(targets.unsqueeze(dim=1), labels)
|
||||
if labels.ndim == 2:
|
||||
# if the labels are one-hot vectors
|
||||
nclasses = targets.size()[1]
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
|
||||
num_classes = targets.size()[1]
|
||||
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
|
||||
return matcher
|
||||
|
||||
|
||||
def _get_dp_dm(distances, targets, plabels, with_indices=False):
|
||||
"""Returns the d+ and d- values for a batch of distances."""
|
||||
matcher = _get_matcher(targets, plabels)
|
||||
not_matcher = torch.bitwise_not(matcher)
|
||||
|
||||
inf = torch.full_like(distances, fill_value=float('inf'))
|
||||
inf = torch.full_like(distances, fill_value=float("inf"))
|
||||
d_matching = torch.where(matcher, distances, inf)
|
||||
d_unmatching = torch.where(not_matcher, distances, inf)
|
||||
dp = torch.min(d_matching, dim=1, keepdim=True).values
|
||||
dm = torch.min(d_unmatching, dim=1, keepdim=True).values
|
||||
return dp, dm
|
||||
dp = torch.min(d_matching, dim=-1, keepdim=True)
|
||||
dm = torch.min(d_unmatching, dim=-1, keepdim=True)
|
||||
if with_indices:
|
||||
return dp, dm
|
||||
return dp.values, dm.values
|
||||
|
||||
|
||||
def glvq_loss(distances, target_labels, prototype_labels):
|
||||
@@ -24,3 +33,27 @@ def glvq_loss(distances, target_labels, prototype_labels):
|
||||
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
|
||||
mu = (dp - dm) / (dp + dm)
|
||||
return mu
|
||||
|
||||
|
||||
def lvq1_loss(distances, target_labels, prototype_labels):
|
||||
"""LVQ1 loss function with support for one-hot labels.
|
||||
|
||||
See Section 4 [Sado&Yamada]
|
||||
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
|
||||
"""
|
||||
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
|
||||
mu = dp
|
||||
mu[dp > dm] = -dm[dp > dm]
|
||||
return mu
|
||||
|
||||
|
||||
def lvq21_loss(distances, target_labels, prototype_labels):
|
||||
"""LVQ2.1 loss function with support for one-hot labels.
|
||||
|
||||
See Section 4 [Sado&Yamada]
|
||||
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
|
||||
"""
|
||||
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
|
||||
mu = dp - dm
|
||||
|
||||
return mu
|
||||
|
@@ -1,7 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from __future__ import print_function
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import torch
|
||||
|
||||
|
18
prototorch/functions/similarities.py
Normal file
18
prototorch/functions/similarities.py
Normal file
@@ -0,0 +1,18 @@
|
||||
"""ProtoTorch similarity functions."""
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def cosine_similarity(x, y):
|
||||
"""Compute the cosine similarity between :math:`x` and :math:`y`.
|
||||
|
||||
Expected dimension of x is 2.
|
||||
Expected dimension of y is 2.
|
||||
"""
|
||||
norm_x = x.pow(2).sum(1).sqrt()
|
||||
norm_y = y.pow(2).sum(1).sqrt()
|
||||
norm_mat = norm_x.unsqueeze(-1) @ norm_y.unsqueeze(-1).T
|
||||
epsilon = torch.finfo(norm_mat.dtype).eps
|
||||
norm_mat.clamp_(min=epsilon)
|
||||
similarities = (x @ y.T) / norm_mat
|
||||
return similarities
|
@@ -3,5 +3,5 @@
|
||||
from .prototypes import Prototypes1D
|
||||
|
||||
__all__ = [
|
||||
'Prototypes1D',
|
||||
"Prototypes1D",
|
||||
]
|
||||
|
@@ -7,7 +7,7 @@ from prototorch.functions.losses import glvq_loss
|
||||
|
||||
|
||||
class GLVQLoss(torch.nn.Module):
|
||||
def __init__(self, margin=0.0, squashing='identity', beta=10, **kwargs):
|
||||
def __init__(self, margin=0.0, squashing="identity", beta=10, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.margin = margin
|
||||
self.squashing = get_activation(squashing)
|
||||
@@ -18,3 +18,23 @@ class GLVQLoss(torch.nn.Module):
|
||||
mu = glvq_loss(distances, targets, prototype_labels=plabels)
|
||||
batch_loss = self.squashing(mu + self.margin, beta=self.beta)
|
||||
return torch.sum(batch_loss, dim=0)
|
||||
|
||||
|
||||
class NeuralGasEnergy(torch.nn.Module):
|
||||
def __init__(self, lm):
|
||||
super().__init__()
|
||||
self.lm = lm
|
||||
|
||||
def forward(self, d):
|
||||
order = torch.argsort(d, dim=1)
|
||||
ranks = torch.argsort(order, dim=1)
|
||||
cost = torch.sum(self._nghood_fn(ranks, self.lm) * d)
|
||||
|
||||
return cost, order
|
||||
|
||||
def extra_repr(self):
|
||||
return f"lambda: {self.lm}"
|
||||
|
||||
@staticmethod
|
||||
def _nghood_fn(rankings, lm):
|
||||
return torch.exp(-rankings / lm)
|
||||
|
@@ -1,10 +1,8 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
from prototorch.modules.prototypes import Prototypes1D
|
||||
from prototorch.functions.distances import tangent_distance, euclidean_distance_matrix
|
||||
from prototorch.functions.distances import euclidean_distance_matrix
|
||||
from prototorch.functions.normalization import orthogonalization
|
||||
from prototorch.functions.helper import _check_shapes, _int_and_mixed_shape
|
||||
|
||||
from prototorch.modules.prototypes import Prototypes1D
|
||||
from torch import nn
|
||||
|
||||
class GTLVQ(nn.Module):
|
||||
r""" Generalized Tangent Learning Vector Quantization
|
||||
@@ -71,50 +69,42 @@ class GTLVQ(nn.Module):
|
||||
subspace_data=None,
|
||||
prototype_data=None,
|
||||
subspace_size=256,
|
||||
tangent_projection_type='local',
|
||||
tangent_projection_type="local",
|
||||
prototypes_per_class=2,
|
||||
feature_dim=256,
|
||||
):
|
||||
super(GTLVQ, self).__init__()
|
||||
|
||||
self.num_protos = num_classes * prototypes_per_class
|
||||
self.num_protos_class = prototypes_per_class
|
||||
self.subspace_size = feature_dim if subspace_size is None else subspace_size
|
||||
self.feature_dim = feature_dim
|
||||
self.num_classes = num_classes
|
||||
|
||||
self.cls = Prototypes1D(
|
||||
input_dim=feature_dim,
|
||||
prototypes_per_class=prototypes_per_class,
|
||||
nclasses=num_classes,
|
||||
prototype_initializer="stratified_mean",
|
||||
data=prototype_data,
|
||||
)
|
||||
|
||||
if subspace_data is None:
|
||||
raise ValueError('Init Data must be specified!')
|
||||
raise ValueError("Init Data must be specified!")
|
||||
|
||||
self.tpt = tangent_projection_type
|
||||
with torch.no_grad():
|
||||
if self.tpt == 'local' or self.tpt == 'local_proj':
|
||||
self.init_local_subspace(subspace_data)
|
||||
elif self.tpt == 'global':
|
||||
if self.tpt == "local":
|
||||
self.init_local_subspace(subspace_data, subspace_size,
|
||||
self.num_protos)
|
||||
elif self.tpt == "global":
|
||||
self.init_gobal_subspace(subspace_data, subspace_size)
|
||||
else:
|
||||
self.subspaces = None
|
||||
|
||||
# Hypothesis-Margin-Classifier
|
||||
self.cls = Prototypes1D(input_dim=feature_dim,
|
||||
prototypes_per_class=prototypes_per_class,
|
||||
nclasses=num_classes,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=prototype_data)
|
||||
|
||||
def forward(self, x):
|
||||
# Tangent Projection
|
||||
if self.tpt == 'local_proj':
|
||||
x_conform = x.unsqueeze(1).repeat_interleave(self.num_protos,
|
||||
1).unsqueeze(2)
|
||||
dis, proj_x = self.local_tangent_projection(x_conform)
|
||||
|
||||
proj_x = proj_x.reshape(x.shape[0] * self.num_protos,
|
||||
self.feature_dim)
|
||||
return proj_x, dis
|
||||
elif self.tpt == "local":
|
||||
x_conform = x.unsqueeze(1).repeat_interleave(self.num_protos,
|
||||
1).unsqueeze(2)
|
||||
dis = tangent_distance(x_conform, self.cls.prototypes,
|
||||
self.subspaces)
|
||||
if self.tpt == "local":
|
||||
dis = self.local_tangent_distances(x)
|
||||
elif self.tpt == "gloabl":
|
||||
dis = self.global_tangent_distances(x)
|
||||
else:
|
||||
@@ -127,51 +117,39 @@ class GTLVQ(nn.Module):
|
||||
_, _, v = torch.svd(data)
|
||||
subspace = (torch.eye(v.shape[0]) - (v @ v.T)).T
|
||||
subspaces = subspace[:, :num_subspaces]
|
||||
self.subspaces = torch.nn.Parameter(
|
||||
subspaces).clone().detach().requires_grad_(True)
|
||||
self.subspaces = nn.Parameter(subspaces, requires_grad=True)
|
||||
|
||||
def init_local_subspace(self, data):
|
||||
_, _, v = torch.svd(data)
|
||||
inital_projector = (torch.eye(v.shape[0]) - (v @ v.T)).T
|
||||
subspaces = inital_projector.unsqueeze(0).repeat_interleave(
|
||||
self.num_protos, 0)
|
||||
self.subspaces = torch.nn.Parameter(
|
||||
subspaces).clone().detach().requires_grad_(True)
|
||||
def init_local_subspace(self, data,num_subspaces,num_protos):
|
||||
data = data - torch.mean(data,dim=0)
|
||||
_,_,v = torch.svd(data,some=False)
|
||||
v = v[:,:num_subspaces]
|
||||
subspaces = v.unsqueeze(0).repeat_interleave(num_protos,0)
|
||||
self.subspaces = nn.Parameter(subspaces,requires_grad=True)
|
||||
|
||||
def global_tangent_distances(self, x):
|
||||
# Tangent Projection
|
||||
x, projected_prototypes = x @ self.subspaces, self.cls.prototypes @ self.subspaces
|
||||
x, projected_prototypes = (
|
||||
x @ self.subspaces,
|
||||
self.cls.prototypes @ self.subspaces,
|
||||
)
|
||||
# Euclidean Distance
|
||||
return euclidean_distance_matrix(x, projected_prototypes)
|
||||
|
||||
def local_tangent_projection(self,
|
||||
signals):
|
||||
# Note: subspaces is always assumed as transposed and must be orthogonal!
|
||||
# shape(signals): batch x proto_number x channels x dim1 x dim2 x ... x dimN
|
||||
# shape(protos): proto_number x dim1 x dim2 x ... x dimN
|
||||
# shape(subspaces): (optional [proto_number]) x prod(dim1 * dim2 * ... * dimN) x prod(projected_atom_shape)
|
||||
# subspace should be orthogonalized
|
||||
# Origin Source Code
|
||||
# Origin Author:
|
||||
protos = self.cls.prototypes
|
||||
subspaces = self.subspaces
|
||||
signal_shape, signal_int_shape = _int_and_mixed_shape(signals)
|
||||
_, proto_int_shape = _int_and_mixed_shape(protos)
|
||||
def local_tangent_distances(self, x):
|
||||
|
||||
# check if the shapes are correct
|
||||
_check_shapes(signal_int_shape, proto_int_shape)
|
||||
|
||||
# Tangent Data Projections
|
||||
projected_protos = torch.bmm(protos.unsqueeze(1), subspaces).squeeze(1)
|
||||
data = signals.squeeze(2).permute([1, 0, 2])
|
||||
projected_data = torch.bmm(data, subspaces)
|
||||
projected_data = projected_data.permute([1, 0, 2]).unsqueeze(1)
|
||||
diff = projected_data - projected_protos
|
||||
projected_diff = torch.reshape(
|
||||
diff, (signal_shape[1], signal_shape[0], signal_shape[2]) +
|
||||
signal_shape[3:])
|
||||
diss = torch.norm(projected_diff, 2, dim=-1)
|
||||
return diss.permute([1, 0, 2]).squeeze(-1), projected_data.squeeze(1)
|
||||
# Tangent Distance
|
||||
x = x.unsqueeze(1).expand(x.size(0), self.cls.prototypes.size(0),
|
||||
x.size(-1))
|
||||
protos = self.cls.prototypes.unsqueeze(0).expand(
|
||||
x.size(0), self.cls.prototypes.size(0), x.size(-1))
|
||||
projectors = torch.eye(
|
||||
self.subspaces.shape[-2], device=x.device) - torch.bmm(
|
||||
self.subspaces, self.subspaces.permute([0, 2, 1]))
|
||||
diff = (x - protos)
|
||||
diff = diff.permute([1, 0, 2])
|
||||
diff = torch.bmm(diff, projectors)
|
||||
diff = torch.norm(diff,2,dim=-1).T
|
||||
return diff
|
||||
|
||||
def get_parameters(self):
|
||||
return {
|
||||
@@ -183,8 +161,7 @@ class GTLVQ(nn.Module):
|
||||
def orthogonalize_subspace(self):
|
||||
if self.subspaces is not None:
|
||||
with torch.no_grad():
|
||||
ortho_subpsaces = orthogonalization(
|
||||
self.subspaces
|
||||
) if self.tpt == 'global' else torch.nn.init.orthogonal_(
|
||||
self.subspaces)
|
||||
ortho_subpsaces = (orthogonalization(self.subspaces)
|
||||
if self.tpt == "global" else
|
||||
torch.nn.init.orthogonal_(self.subspaces))
|
||||
self.subspaces.copy_(ortho_subpsaces)
|
||||
|
@@ -3,7 +3,6 @@
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
|
||||
from prototorch.functions.initializers import get_initializer
|
||||
|
||||
|
||||
@@ -29,14 +28,19 @@ class Prototypes1D(_Prototypes):
|
||||
|
||||
TODO Complete this doc-string.
|
||||
"""
|
||||
def __init__(self,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="ones",
|
||||
prototype_distribution=None,
|
||||
data=None,
|
||||
dtype=torch.float32,
|
||||
one_hot_labels=False,
|
||||
**kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="ones",
|
||||
prototype_distribution=None,
|
||||
data=None,
|
||||
dtype=torch.float32,
|
||||
one_hot_labels=False,
|
||||
**kwargs,
|
||||
):
|
||||
warnings.warn(
|
||||
PendingDeprecationWarning(
|
||||
"Prototypes1D will be replaced in future versions."))
|
||||
|
||||
# Convert tensors to python lists before processing
|
||||
if prototype_distribution is not None:
|
||||
@@ -48,13 +52,13 @@ class Prototypes1D(_Prototypes):
|
||||
raise NameError("`input_dim` required if "
|
||||
"no `data` is provided.")
|
||||
if prototype_distribution:
|
||||
kwargs_nclasses = sum(prototype_distribution)
|
||||
kwargs_num_classes = sum(prototype_distribution)
|
||||
else:
|
||||
if "nclasses" not in kwargs:
|
||||
if "num_classes" not in kwargs:
|
||||
raise NameError("`prototype_distribution` required if "
|
||||
"both `data` and `nclasses` are not "
|
||||
"both `data` and `num_classes` are not "
|
||||
"provided.")
|
||||
kwargs_nclasses = kwargs.pop("nclasses")
|
||||
kwargs_num_classes = kwargs.pop("num_classes")
|
||||
input_dim = kwargs.pop("input_dim")
|
||||
if prototype_initializer in [
|
||||
"stratified_mean", "stratified_random"
|
||||
@@ -63,18 +67,18 @@ class Prototypes1D(_Prototypes):
|
||||
f"`prototype_initializer`: `{prototype_initializer}` "
|
||||
"requires `data`, but `data` is not provided. "
|
||||
"Using randomly generated data instead.")
|
||||
x_train = torch.rand(kwargs_nclasses, input_dim)
|
||||
y_train = torch.arange(kwargs_nclasses)
|
||||
x_train = torch.rand(kwargs_num_classes, input_dim)
|
||||
y_train = torch.arange(kwargs_num_classes)
|
||||
if one_hot_labels:
|
||||
y_train = torch.eye(kwargs_nclasses)[y_train]
|
||||
y_train = torch.eye(kwargs_num_classes)[y_train]
|
||||
data = [x_train, y_train]
|
||||
|
||||
x_train, y_train = data
|
||||
x_train = torch.as_tensor(x_train).type(dtype)
|
||||
y_train = torch.as_tensor(y_train).type(torch.int)
|
||||
nclasses = torch.unique(y_train, dim=-1).shape[-1]
|
||||
num_classes = torch.unique(y_train, dim=-1).shape[-1]
|
||||
|
||||
if nclasses == 1:
|
||||
if num_classes == 1:
|
||||
warnings.warn("Are you sure about having one class only?")
|
||||
|
||||
if x_train.ndim != 2:
|
||||
@@ -100,19 +104,20 @@ class Prototypes1D(_Prototypes):
|
||||
"not match data dimension "
|
||||
f"`data[0].shape[1]`={x_train.shape[1]}")
|
||||
|
||||
# Verify the number of classes if `nclasses` is provided
|
||||
if "nclasses" in kwargs:
|
||||
kwargs_nclasses = kwargs.pop("nclasses")
|
||||
if kwargs_nclasses != nclasses:
|
||||
raise ValueError(f"Provided `nclasses={kwargs_nclasses}` does "
|
||||
"not match data labels "
|
||||
"`torch.unique(data[1]).shape[0]`"
|
||||
f"={nclasses}")
|
||||
# Verify the number of classes if `num_classes` is provided
|
||||
if "num_classes" in kwargs:
|
||||
kwargs_num_classes = kwargs.pop("num_classes")
|
||||
if kwargs_num_classes != num_classes:
|
||||
raise ValueError(
|
||||
f"Provided `num_classes={kwargs_num_classes}` does "
|
||||
"not match data labels "
|
||||
"`torch.unique(data[1]).shape[0]`"
|
||||
f"={num_classes}")
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
if not prototype_distribution:
|
||||
prototype_distribution = [prototypes_per_class] * nclasses
|
||||
prototype_distribution = [prototypes_per_class] * num_classes
|
||||
with torch.no_grad():
|
||||
self.prototype_distribution = torch.tensor(prototype_distribution)
|
||||
|
||||
|
@@ -1 +0,0 @@
|
||||
from .colors import color_scheme, get_legend_handles
|
||||
|
46
prototorch/utils/celluloid.py
Normal file
46
prototorch/utils/celluloid.py
Normal file
@@ -0,0 +1,46 @@
|
||||
"""Easy matplotlib animation. From https://github.com/jwkvam/celluloid."""
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import Dict, List
|
||||
|
||||
from matplotlib.animation import ArtistAnimation
|
||||
from matplotlib.artist import Artist
|
||||
from matplotlib.figure import Figure
|
||||
|
||||
__version__ = "0.2.0"
|
||||
|
||||
|
||||
class Camera:
|
||||
"""Make animations easier."""
|
||||
def __init__(self, figure: Figure) -> None:
|
||||
"""Create camera from matplotlib figure."""
|
||||
self._figure = figure
|
||||
# need to keep track off artists for each axis
|
||||
self._offsets: Dict[str, Dict[int, int]] = {
|
||||
k: defaultdict(int)
|
||||
for k in
|
||||
["collections", "patches", "lines", "texts", "artists", "images"]
|
||||
}
|
||||
self._photos: List[List[Artist]] = []
|
||||
|
||||
def snap(self) -> List[Artist]:
|
||||
"""Capture current state of the figure."""
|
||||
frame_artists: List[Artist] = []
|
||||
for i, axis in enumerate(self._figure.axes):
|
||||
if axis.legend_ is not None:
|
||||
axis.add_artist(axis.legend_)
|
||||
for name in self._offsets:
|
||||
new_artists = getattr(axis, name)[self._offsets[name][i]:]
|
||||
frame_artists += new_artists
|
||||
self._offsets[name][i] += len(new_artists)
|
||||
self._photos.append(frame_artists)
|
||||
return frame_artists
|
||||
|
||||
def animate(self, *args, **kwargs) -> ArtistAnimation:
|
||||
"""Animate the snapshots taken.
|
||||
Uses matplotlib.animation.ArtistAnimation
|
||||
Returns
|
||||
-------
|
||||
ArtistAnimation
|
||||
"""
|
||||
return ArtistAnimation(self._figure, self._photos, *args, **kwargs)
|
@@ -1,13 +1,14 @@
|
||||
"""ProtoFlow color utilities."""
|
||||
|
||||
from matplotlib import cm
|
||||
from matplotlib.colors import Normalize
|
||||
from matplotlib.colors import to_hex
|
||||
from matplotlib.colors import to_rgb
|
||||
import matplotlib.lines as mlines
|
||||
from matplotlib import cm
|
||||
from matplotlib.colors import Normalize, to_hex, to_rgb
|
||||
|
||||
|
||||
def color_scheme(n, cmap="viridis", form="hex", tikz=False,
|
||||
def color_scheme(n,
|
||||
cmap="viridis",
|
||||
form="hex",
|
||||
tikz=False,
|
||||
zero_indexed=False):
|
||||
"""Return *n* colors from the color scheme.
|
||||
|
||||
@@ -57,13 +58,16 @@ def get_legend_handles(labels, marker="dots", zero_indexed=False):
|
||||
zero_indexed=zero_indexed)
|
||||
for label, color in zip(labels, colors.values()):
|
||||
if marker == "dots":
|
||||
handle = mlines.Line2D([], [],
|
||||
color="white",
|
||||
markerfacecolor=color,
|
||||
marker="o",
|
||||
markersize=10,
|
||||
markeredgecolor="k",
|
||||
label=label)
|
||||
handle = mlines.Line2D(
|
||||
[],
|
||||
[],
|
||||
color="white",
|
||||
markerfacecolor=color,
|
||||
marker="o",
|
||||
markersize=10,
|
||||
markeredgecolor="k",
|
||||
label=label,
|
||||
)
|
||||
else:
|
||||
handle = mlines.Line2D([], [],
|
||||
color=color,
|
||||
|
243
prototorch/utils/utils.py
Normal file
243
prototorch/utils/utils.py
Normal file
@@ -0,0 +1,243 @@
|
||||
"""Utilities that provide various small functionalities."""
|
||||
|
||||
import os
|
||||
import pickle
|
||||
import sys
|
||||
from time import time
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
def progressbar(title, value, end, bar_width=20):
|
||||
percent = float(value) / end
|
||||
arrow = "=" * int(round(percent * bar_width) - 1) + ">"
|
||||
spaces = "." * (bar_width - len(arrow))
|
||||
sys.stdout.write("\r{}: [{}] {}%".format(title, arrow + spaces,
|
||||
int(round(percent * 100))))
|
||||
sys.stdout.flush()
|
||||
if percent == 1.0:
|
||||
print()
|
||||
|
||||
|
||||
def prettify_string(inputs, start="", sep=" ", end="\n"):
|
||||
outputs = start + " ".join(inputs.split()) + end
|
||||
return outputs
|
||||
|
||||
|
||||
def pretty_print(inputs):
|
||||
print(prettify_string(inputs))
|
||||
|
||||
|
||||
def writelog(self, *logs, logdir="./logs", logfile="run.txt"):
|
||||
f = os.path.join(logdir, logfile)
|
||||
with open(f, "a+") as fh:
|
||||
for log in logs:
|
||||
fh.write(log)
|
||||
fh.write("\n")
|
||||
|
||||
|
||||
def start_tensorboard(self, logdir="./logs"):
|
||||
cmd = f"tensorboard --logdir={logdir} --port=6006"
|
||||
os.system(cmd)
|
||||
|
||||
|
||||
def make_directory(save_dir):
|
||||
if not os.path.exists(save_dir):
|
||||
print(f"Making directory {save_dir}.")
|
||||
os.mkdir(save_dir)
|
||||
|
||||
|
||||
def make_gif(filenames, duration, output_file=None):
|
||||
try:
|
||||
import imageio
|
||||
except ModuleNotFoundError as e:
|
||||
print("Please install Protoflow with [other] extra requirements.")
|
||||
raise (e)
|
||||
|
||||
images = list()
|
||||
for filename in filenames:
|
||||
images.append(imageio.imread(filename))
|
||||
if not output_file:
|
||||
output_file = f"makegif.gif"
|
||||
if images:
|
||||
imageio.mimwrite(output_file, images, duration=duration)
|
||||
|
||||
|
||||
def gif_from_dir(directory,
|
||||
duration,
|
||||
prefix="",
|
||||
output_file=None,
|
||||
verbose=True):
|
||||
images = os.listdir(directory)
|
||||
if verbose:
|
||||
print(f"Making gif from {len(images)} images under {directory}.")
|
||||
filenames = list()
|
||||
# Sort images
|
||||
images = sorted(
|
||||
images,
|
||||
key=lambda img: int(os.path.splitext(img)[0].replace(prefix, "")))
|
||||
for image in images:
|
||||
fname = os.path.join(directory, image)
|
||||
filenames.append(fname)
|
||||
if not output_file:
|
||||
output_file = os.path.join(directory, "makegif.gif")
|
||||
make_gif(filenames=filenames, duration=duration, output_file=output_file)
|
||||
|
||||
|
||||
def accuracy_score(y_true, y_pred):
|
||||
accuracy = np.sum(y_true == y_pred)
|
||||
normalized_acc = accuracy / float(len(y_true))
|
||||
return normalized_acc
|
||||
|
||||
|
||||
def predict_and_score(clf,
|
||||
x_test,
|
||||
y_test,
|
||||
verbose=False,
|
||||
title="Test accuracy"):
|
||||
y_pred = clf.predict(x_test)
|
||||
accuracy = np.sum(y_test == y_pred)
|
||||
normalized_acc = accuracy / float(len(y_test))
|
||||
if verbose:
|
||||
print(f"{title}: {normalized_acc * 100:06.04f}%")
|
||||
return normalized_acc
|
||||
|
||||
|
||||
def remove_nan_rows(arr):
|
||||
"""Remove all rows with `nan` values in `arr`."""
|
||||
mask = np.isnan(arr).any(axis=1)
|
||||
return arr[~mask]
|
||||
|
||||
|
||||
def remove_nan_cols(arr):
|
||||
"""Remove all columns with `nan` values in `arr`."""
|
||||
mask = np.isnan(arr).any(axis=0)
|
||||
return arr[~mask]
|
||||
|
||||
|
||||
def replace_in(arr, replacement_dict, inplace=False):
|
||||
"""Replace the keys found in `arr` with the values from
|
||||
the `replacement_dict`.
|
||||
"""
|
||||
if inplace:
|
||||
new_arr = arr
|
||||
else:
|
||||
import copy
|
||||
|
||||
new_arr = copy.deepcopy(arr)
|
||||
for k, v in replacement_dict.items():
|
||||
new_arr[arr == k] = v
|
||||
return new_arr
|
||||
|
||||
|
||||
def train_test_split(data, train=0.7, val=0.15, shuffle=None, return_xy=False):
|
||||
"""Split a classification dataset in such a way so as to
|
||||
preserve the class distribution in subsamples of the dataset.
|
||||
"""
|
||||
if train + val > 1.0:
|
||||
raise ValueError("Invalid split values for train and val.")
|
||||
Y = data[:, -1]
|
||||
labels = set(Y)
|
||||
hist = dict()
|
||||
for l in labels:
|
||||
data_l = data[Y == l]
|
||||
nl = len(data_l)
|
||||
nl_train = int(nl * train)
|
||||
nl_val = int(nl * val)
|
||||
nl_test = nl - (nl_train + nl_val)
|
||||
hist[l] = (nl_train, nl_val, nl_test)
|
||||
|
||||
train_data = list()
|
||||
val_data = list()
|
||||
test_data = list()
|
||||
for l, (nl_train, nl_val, nl_test) in hist.items():
|
||||
data_l = data[Y == l]
|
||||
if shuffle:
|
||||
np.random.shuffle(data_l)
|
||||
train_l = data_l[:nl_train]
|
||||
val_l = data_l[nl_train:nl_train + nl_val]
|
||||
test_l = data_l[nl_train + nl_val:nl_train + nl_val + nl_test]
|
||||
train_data.append(train_l)
|
||||
val_data.append(val_l)
|
||||
test_data.append(test_l)
|
||||
|
||||
def _squash(data_list):
|
||||
data = np.array(data_list[0])
|
||||
for item in data_list[1:]:
|
||||
data = np.vstack((data, np.array(item)))
|
||||
return data
|
||||
|
||||
train_data = _squash(train_data)
|
||||
if val_data:
|
||||
val_data = _squash(val_data)
|
||||
if test_data:
|
||||
test_data = _squash(test_data)
|
||||
if return_xy:
|
||||
x_train = train_data[:, :-1]
|
||||
y_train = train_data[:, -1]
|
||||
x_val = val_data[:, :-1]
|
||||
y_val = val_data[:, -1]
|
||||
x_test = test_data[:, :-1]
|
||||
y_test = test_data[:, -1]
|
||||
return (x_train, y_train), (x_val, y_val), (x_test, y_test)
|
||||
return train_data, val_data, test_data
|
||||
|
||||
|
||||
def class_histogram(data, title="Untitled"):
|
||||
plt.figure(title)
|
||||
plt.clf()
|
||||
plt.title(title)
|
||||
dist, counts = np.unique(data[:, -1], return_counts=True)
|
||||
plt.bar(dist, counts)
|
||||
plt.xticks(dist)
|
||||
print("Call matplotlib.pyplot.show() to see the plot.")
|
||||
|
||||
|
||||
def ntimer(n=10):
|
||||
"""Wraps a function which wraps another function to time it."""
|
||||
if n < 1:
|
||||
raise (Exception(f"Invalid n = {n} given."))
|
||||
|
||||
def timer(func):
|
||||
"""Wraps `func` with a timer and returns the wrapped `func`."""
|
||||
def wrapper(*args, **kwargs):
|
||||
rv = None
|
||||
before = time()
|
||||
for _ in range(n):
|
||||
rv = func(*args, **kwargs)
|
||||
after = time()
|
||||
elapsed = after - before
|
||||
print(f"Elapsed: {elapsed*1e3:02.02f} ms")
|
||||
return rv
|
||||
|
||||
return wrapper
|
||||
|
||||
return timer
|
||||
|
||||
|
||||
def memoize(verbose=True):
|
||||
"""Wraps a function which wraps another function that memoizes."""
|
||||
def memoizer(func):
|
||||
"""Memoize (cache) return values of `func`.
|
||||
Wraps `func` and returns the wrapped `func` so that `func`
|
||||
is executed when the results are not available in the cache.
|
||||
"""
|
||||
cache = {}
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
t = (pickle.dumps(args), pickle.dumps(kwargs))
|
||||
if t not in cache:
|
||||
if verbose:
|
||||
print(f"Adding NEW rv {func.__name__}{args}{kwargs} "
|
||||
"to cache.")
|
||||
cache[t] = func(*args, **kwargs)
|
||||
else:
|
||||
if verbose:
|
||||
print(f"Using OLD rv {func.__name__}{args}{kwargs} "
|
||||
"from cache.")
|
||||
return cache[t]
|
||||
|
||||
return wrapper
|
||||
|
||||
return memoizer
|
@@ -1,5 +0,0 @@
|
||||
matplotlib==3.1.2
|
||||
pytest==5.3.4
|
||||
requests==2.22.0
|
||||
codecov==2.0.22
|
||||
tqdm==4.44.1
|
32
setup.py
32
setup.py
@@ -1,15 +1,14 @@
|
||||
"""
|
||||
_____ _ _______ _
|
||||
| __ \ | | |__ __| | |
|
||||
_____ _ _______ _
|
||||
| __ \ | | |__ __| | |
|
||||
| |__) | __ ___ | |_ ___ | | ___ _ __ ___| |__
|
||||
| ___/ '__/ _ \| __/ _ \| |/ _ \| '__/ __| '_ \
|
||||
| ___/ '__/ _ \| __/ _ \| |/ _ \| '__/ __| '_ \
|
||||
| | | | | (_) | || (_) | | (_) | | | (__| | | |
|
||||
|_| |_| \___/ \__\___/|_|\___/|_| \___|_| |_|
|
||||
|
||||
ProtoTorch Core Package
|
||||
"""
|
||||
from setuptools import setup
|
||||
from setuptools import find_packages
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
PROJECT_URL = "https://github.com/si-cim/prototorch"
|
||||
DOWNLOAD_URL = "https://github.com/si-cim/prototorch.git"
|
||||
@@ -21,28 +20,30 @@ INSTALL_REQUIRES = [
|
||||
"torch>=1.3.1",
|
||||
"torchvision>=0.5.0",
|
||||
"numpy>=1.9.1",
|
||||
]
|
||||
DOCS = [
|
||||
"recommonmark",
|
||||
"sphinx",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-katex",
|
||||
"sklearn",
|
||||
]
|
||||
DATASETS = [
|
||||
"requests",
|
||||
"tqdm",
|
||||
]
|
||||
DEV = ["bumpversion"]
|
||||
DOCS = [
|
||||
"recommonmark",
|
||||
"sphinx",
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib-katex",
|
||||
"sphinx-autodoc-typehints",
|
||||
]
|
||||
EXAMPLES = [
|
||||
"sklearn",
|
||||
"matplotlib",
|
||||
"torchinfo",
|
||||
]
|
||||
TESTS = ["pytest"]
|
||||
ALL = DOCS + DATASETS + EXAMPLES + TESTS
|
||||
TESTS = ["codecov", "pytest"]
|
||||
ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
|
||||
|
||||
setup(
|
||||
name="prototorch",
|
||||
version="0.3.0-dev0",
|
||||
version="0.4.5",
|
||||
description="Highly extensible, GPU-supported "
|
||||
"Learning Vector Quantization (LVQ) toolbox "
|
||||
"built using PyTorch and its nn API.",
|
||||
@@ -72,6 +73,7 @@ setup(
|
||||
"Programming Language :: Python :: 3.6",
|
||||
"Programming Language :: Python :: 3.7",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Operating System :: OS Independent",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
|
25
tests/test_components.py
Normal file
25
tests/test_components.py
Normal file
@@ -0,0 +1,25 @@
|
||||
"""ProtoTorch components test suite."""
|
||||
|
||||
import prototorch as pt
|
||||
import torch
|
||||
|
||||
|
||||
def test_labcomps_zeros_init():
|
||||
protos = torch.zeros(3, 2)
|
||||
c = pt.components.LabeledComponents(
|
||||
distribution=[1, 1, 1],
|
||||
initializer=pt.components.Zeros(2),
|
||||
)
|
||||
assert (c.components == protos).any() == True
|
||||
|
||||
|
||||
def test_labcomps_warmstart():
|
||||
protos = torch.randn(3, 2)
|
||||
plabels = torch.tensor([1, 2, 3])
|
||||
c = pt.components.LabeledComponents(
|
||||
distribution=[1, 1, 1],
|
||||
initializer=None,
|
||||
initialized_components=[protos, plabels],
|
||||
)
|
||||
assert (c.components == protos).any() == True
|
||||
assert (c.component_labels == plabels).any() == True
|
@@ -12,26 +12,26 @@ from prototorch.datasets import abstract, tecator
|
||||
class TestAbstract(unittest.TestCase):
|
||||
def test_getitem(self):
|
||||
with self.assertRaises(NotImplementedError):
|
||||
abstract.Dataset('./artifacts')[0]
|
||||
abstract.Dataset("./artifacts")[0]
|
||||
|
||||
def test_len(self):
|
||||
with self.assertRaises(NotImplementedError):
|
||||
len(abstract.Dataset('./artifacts'))
|
||||
len(abstract.Dataset("./artifacts"))
|
||||
|
||||
|
||||
class TestProtoDataset(unittest.TestCase):
|
||||
def test_getitem(self):
|
||||
with self.assertRaises(NotImplementedError):
|
||||
abstract.ProtoDataset('./artifacts')[0]
|
||||
abstract.ProtoDataset("./artifacts")[0]
|
||||
|
||||
def test_download(self):
|
||||
with self.assertRaises(NotImplementedError):
|
||||
abstract.ProtoDataset('./artifacts').download()
|
||||
abstract.ProtoDataset("./artifacts").download()
|
||||
|
||||
|
||||
class TestTecator(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.artifacts_dir = './artifacts/Tecator'
|
||||
self.artifacts_dir = "./artifacts/Tecator"
|
||||
self._remove_artifacts()
|
||||
|
||||
def _remove_artifacts(self):
|
||||
@@ -39,23 +39,23 @@ class TestTecator(unittest.TestCase):
|
||||
shutil.rmtree(self.artifacts_dir)
|
||||
|
||||
def test_download_false(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
self._remove_artifacts()
|
||||
with self.assertRaises(RuntimeError):
|
||||
_ = tecator.Tecator(rootdir, download=False)
|
||||
|
||||
def test_download_caching(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
_ = tecator.Tecator(rootdir, download=True, verbose=False)
|
||||
_ = tecator.Tecator(rootdir, download=False, verbose=False)
|
||||
|
||||
def test_repr(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
train = tecator.Tecator(rootdir, download=True, verbose=True)
|
||||
self.assertTrue('Split: Train' in train.__repr__())
|
||||
self.assertTrue("Split: Train" in train.__repr__())
|
||||
|
||||
def test_download_train(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
train = tecator.Tecator(root=rootdir,
|
||||
train=True,
|
||||
download=True,
|
||||
@@ -67,7 +67,7 @@ class TestTecator(unittest.TestCase):
|
||||
self.assertEqual(x_train.shape[1], 100)
|
||||
|
||||
def test_download_test(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
test = tecator.Tecator(root=rootdir, train=False, verbose=False)
|
||||
x_test, y_test = test.data, test.targets
|
||||
self.assertEqual(x_test.shape[0], 71)
|
||||
@@ -75,19 +75,19 @@ class TestTecator(unittest.TestCase):
|
||||
self.assertEqual(x_test.shape[1], 100)
|
||||
|
||||
def test_class_to_idx(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
test = tecator.Tecator(root=rootdir, train=False, verbose=False)
|
||||
_ = test.class_to_idx
|
||||
|
||||
def test_getitem(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
test = tecator.Tecator(root=rootdir, train=False, verbose=False)
|
||||
x, y = test[0]
|
||||
self.assertEqual(x.shape[0], 100)
|
||||
self.assertIsInstance(y, int)
|
||||
|
||||
def test_loadable_with_dataloader(self):
|
||||
rootdir = self.artifacts_dir.rpartition('/')[0]
|
||||
rootdir = self.artifacts_dir.rpartition("/")[0]
|
||||
test = tecator.Tecator(root=rootdir, train=False, verbose=False)
|
||||
_ = torch.utils.data.DataLoader(test, batch_size=64, shuffle=True)
|
||||
|
||||
|
@@ -4,14 +4,13 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from prototorch.functions import (activations, competitions, distances,
|
||||
initializers, losses)
|
||||
|
||||
|
||||
class TestActivations(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.flist = ['identity', 'sigmoid_beta', 'swish_beta']
|
||||
self.flist = ["identity", "sigmoid_beta", "swish_beta"]
|
||||
self.x = torch.randn(1024, 1)
|
||||
|
||||
def test_registry(self):
|
||||
@@ -39,7 +38,7 @@ class TestActivations(unittest.TestCase):
|
||||
self.assertEqual(1, f(1))
|
||||
|
||||
def test_unknown_deserialization(self):
|
||||
for funcname in ['blubb', 'foobar']:
|
||||
for funcname in ["blubb", "foobar"]:
|
||||
with self.assertRaises(NameError):
|
||||
_ = activations.get_activation(funcname)
|
||||
|
||||
@@ -52,7 +51,7 @@ class TestActivations(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_sigmoid_beta1(self):
|
||||
actual = activations.sigmoid_beta(self.x, beta=torch.tensor(1))
|
||||
actual = activations.sigmoid_beta(self.x, beta=1.0)
|
||||
desired = torch.sigmoid(self.x)
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
@@ -60,7 +59,7 @@ class TestActivations(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_swish_beta1(self):
|
||||
actual = activations.swish_beta(self.x, beta=torch.tensor(1))
|
||||
actual = activations.swish_beta(self.x, beta=1.0)
|
||||
desired = self.x * torch.sigmoid(self.x)
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
@@ -76,7 +75,7 @@ class TestCompetitions(unittest.TestCase):
|
||||
pass
|
||||
|
||||
def test_wtac(self):
|
||||
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
|
||||
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
|
||||
labels = torch.tensor([0, 1, 2, 3])
|
||||
actual = competitions.wtac(d, labels)
|
||||
desired = torch.tensor([2, 0])
|
||||
@@ -86,7 +85,7 @@ class TestCompetitions(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_wtac_unequal_dist(self):
|
||||
d = torch.tensor([[2., 3., 4.], [2., 3., 1.]])
|
||||
d = torch.tensor([[2.0, 3.0, 4.0], [2.0, 3.0, 1.0]])
|
||||
labels = torch.tensor([0, 1, 1])
|
||||
actual = competitions.wtac(d, labels)
|
||||
desired = torch.tensor([0, 1])
|
||||
@@ -96,7 +95,7 @@ class TestCompetitions(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_wtac_one_hot(self):
|
||||
d = torch.tensor([[1.99, 3.01], [3., 2.01]])
|
||||
d = torch.tensor([[1.99, 3.01], [3.0, 2.01]])
|
||||
labels = torch.tensor([[0, 1], [1, 0]])
|
||||
actual = competitions.wtac(d, labels)
|
||||
desired = torch.tensor([[0, 1], [1, 0]])
|
||||
@@ -106,40 +105,40 @@ class TestCompetitions(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_stratified_min(self):
|
||||
d = torch.tensor([[1., 0., 2., 3.], [9., 8., 0, 1]])
|
||||
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
|
||||
labels = torch.tensor([0, 0, 1, 2])
|
||||
actual = competitions.stratified_min(d, labels)
|
||||
desired = torch.tensor([[0., 2., 3.], [8., 0., 1.]])
|
||||
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_stratified_min_one_hot(self):
|
||||
d = torch.tensor([[1., 0., 2., 3.], [9., 8., 0, 1]])
|
||||
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
|
||||
labels = torch.tensor([0, 0, 1, 2])
|
||||
labels = torch.eye(3)[labels]
|
||||
actual = competitions.stratified_min(d, labels)
|
||||
desired = torch.tensor([[0., 2., 3.], [8., 0., 1.]])
|
||||
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_stratified_min_simple(self):
|
||||
d = torch.tensor([[0., 2., 3.], [8., 0, 1]])
|
||||
d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]])
|
||||
labels = torch.tensor([0, 1, 2])
|
||||
actual = competitions.stratified_min(d, labels)
|
||||
desired = torch.tensor([[0., 2., 3.], [8., 0., 1.]])
|
||||
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_knnc_k1(self):
|
||||
d = torch.tensor([[2., 3., 1.99, 3.01], [2., 3., 2.01, 3.]])
|
||||
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
|
||||
labels = torch.tensor([0, 1, 2, 3])
|
||||
actual = competitions.knnc(d, labels, k=torch.tensor([1]))
|
||||
actual = competitions.knnc(d, labels, k=1)
|
||||
desired = torch.tensor([2, 0])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
@@ -194,12 +193,12 @@ class TestDistances(unittest.TestCase):
|
||||
desired = torch.empty(self.nx, self.ny)
|
||||
for i in range(self.nx):
|
||||
for j in range(self.ny):
|
||||
desired[i][j] = torch.nn.functional.pairwise_distance(
|
||||
desired[i][j] = (torch.nn.functional.pairwise_distance(
|
||||
self.x[i].reshape(1, -1),
|
||||
self.y[j].reshape(1, -1),
|
||||
p=2,
|
||||
keepdim=False,
|
||||
)**2
|
||||
)**2)
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=2)
|
||||
@@ -254,14 +253,14 @@ class TestDistances(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_lpnorm_pinf(self):
|
||||
actual = distances.lpnorm_distance(self.x, self.y, p=float('inf'))
|
||||
actual = distances.lpnorm_distance(self.x, self.y, p=float("inf"))
|
||||
desired = torch.empty(self.nx, self.ny)
|
||||
for i in range(self.nx):
|
||||
for j in range(self.ny):
|
||||
desired[i][j] = torch.nn.functional.pairwise_distance(
|
||||
self.x[i].reshape(1, -1),
|
||||
self.y[j].reshape(1, -1),
|
||||
p=float('inf'),
|
||||
p=float("inf"),
|
||||
keepdim=False,
|
||||
)
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
@@ -275,12 +274,12 @@ class TestDistances(unittest.TestCase):
|
||||
desired = torch.empty(self.nx, self.ny)
|
||||
for i in range(self.nx):
|
||||
for j in range(self.ny):
|
||||
desired[i][j] = torch.nn.functional.pairwise_distance(
|
||||
desired[i][j] = (torch.nn.functional.pairwise_distance(
|
||||
self.x[i].reshape(1, -1),
|
||||
self.y[j].reshape(1, -1),
|
||||
p=2,
|
||||
keepdim=False,
|
||||
)**2
|
||||
)**2)
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=2)
|
||||
@@ -293,12 +292,12 @@ class TestDistances(unittest.TestCase):
|
||||
desired = torch.empty(self.nx, self.ny)
|
||||
for i in range(self.nx):
|
||||
for j in range(self.ny):
|
||||
desired[i][j] = torch.nn.functional.pairwise_distance(
|
||||
desired[i][j] = (torch.nn.functional.pairwise_distance(
|
||||
self.x[i].reshape(1, -1),
|
||||
self.y[j].reshape(1, -1),
|
||||
p=2,
|
||||
keepdim=False,
|
||||
)**2
|
||||
)**2)
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=2)
|
||||
@@ -311,8 +310,12 @@ class TestDistances(unittest.TestCase):
|
||||
class TestInitializers(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.flist = [
|
||||
'zeros', 'ones', 'rand', 'randn', 'stratified_mean',
|
||||
'stratified_random'
|
||||
"zeros",
|
||||
"ones",
|
||||
"rand",
|
||||
"randn",
|
||||
"stratified_mean",
|
||||
"stratified_random",
|
||||
]
|
||||
self.x = torch.tensor(
|
||||
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
|
||||
@@ -340,7 +343,7 @@ class TestInitializers(unittest.TestCase):
|
||||
self.assertEqual(1, f(1))
|
||||
|
||||
def test_unknown_deserialization(self):
|
||||
for funcname in ['blubb', 'foobar']:
|
||||
for funcname in ["blubb", "foobar"]:
|
||||
with self.assertRaises(NameError):
|
||||
_ = initializers.get_initializer(funcname)
|
||||
|
||||
@@ -383,7 +386,7 @@ class TestInitializers(unittest.TestCase):
|
||||
def test_stratified_mean_equal1(self):
|
||||
pdist = torch.tensor([1, 1])
|
||||
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
|
||||
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.]])
|
||||
desired = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
@@ -393,7 +396,7 @@ class TestInitializers(unittest.TestCase):
|
||||
pdist = torch.tensor([1, 1])
|
||||
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
|
||||
False)
|
||||
desired = torch.tensor([[0., -1., -2.], [0., 0., 0.]])
|
||||
desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
@@ -402,8 +405,8 @@ class TestInitializers(unittest.TestCase):
|
||||
def test_stratified_mean_equal2(self):
|
||||
pdist = torch.tensor([2, 2])
|
||||
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
|
||||
desired = torch.tensor([[5., 5., 5.], [5., 5., 5.], [1., 1., 1.],
|
||||
[1., 1., 1.]])
|
||||
desired = torch.tensor([[5.0, 5.0, 5.0], [5.0, 5.0, 5.0],
|
||||
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
@@ -413,8 +416,8 @@ class TestInitializers(unittest.TestCase):
|
||||
pdist = torch.tensor([2, 2])
|
||||
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
|
||||
False)
|
||||
desired = torch.tensor([[0., -1., -2.], [0., -1., -2.], [0., 0., 0.],
|
||||
[0., 0., 0.]])
|
||||
desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, -1.0, -2.0],
|
||||
[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
@@ -423,8 +426,8 @@ class TestInitializers(unittest.TestCase):
|
||||
def test_stratified_mean_unequal(self):
|
||||
pdist = torch.tensor([1, 3])
|
||||
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
|
||||
desired = torch.tensor([[5., 5., 5.], [1., 1., 1.], [1., 1., 1.],
|
||||
[1., 1., 1.]])
|
||||
desired = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0],
|
||||
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
@@ -434,8 +437,8 @@ class TestInitializers(unittest.TestCase):
|
||||
pdist = torch.tensor([1, 3])
|
||||
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
|
||||
False)
|
||||
desired = torch.tensor([[0., -1., -2.], [0., 0., 0.], [0., 0., 0.],
|
||||
[0., 0., 0.]])
|
||||
desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
@@ -444,8 +447,8 @@ class TestInitializers(unittest.TestCase):
|
||||
def test_stratified_mean_unequal_one_hot(self):
|
||||
pdist = torch.tensor([1, 3])
|
||||
y = torch.eye(2)[self.y]
|
||||
desired1 = torch.tensor([[5., 5., 5.], [1., 1., 1.], [1., 1., 1.],
|
||||
[1., 1., 1.]])
|
||||
desired1 = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0],
|
||||
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
|
||||
actual1, actual2 = initializers.stratified_mean(self.x, y, pdist)
|
||||
desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual1,
|
||||
@@ -460,8 +463,8 @@ class TestInitializers(unittest.TestCase):
|
||||
pdist = torch.tensor([1, 3])
|
||||
y = torch.eye(2)[self.y]
|
||||
actual1, actual2 = initializers.stratified_random(self.x, y, pdist)
|
||||
desired1 = torch.tensor([[0., -1., -2.], [0., 0., 0.], [0., 0., 0.],
|
||||
[0., 0., 0.]])
|
||||
desired1 = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
|
||||
desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]])
|
||||
mismatch = np.testing.assert_array_almost_equal(actual1,
|
||||
desired1,
|
||||
|
@@ -4,7 +4,6 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from prototorch.modules import losses, prototypes
|
||||
|
||||
|
||||
@@ -18,21 +17,23 @@ class TestPrototypes(unittest.TestCase):
|
||||
|
||||
def test_prototypes1d_init_without_input_dim(self):
|
||||
with self.assertRaises(NameError):
|
||||
_ = prototypes.Prototypes1D(nclasses=2)
|
||||
_ = prototypes.Prototypes1D(num_classes=2)
|
||||
|
||||
def test_prototypes1d_init_without_nclasses(self):
|
||||
def test_prototypes1d_init_without_num_classes(self):
|
||||
with self.assertRaises(NameError):
|
||||
_ = prototypes.Prototypes1D(input_dim=1)
|
||||
|
||||
def test_prototypes1d_init_with_nclasses_1(self):
|
||||
def test_prototypes1d_init_with_num_classes_1(self):
|
||||
with self.assertWarns(UserWarning):
|
||||
_ = prototypes.Prototypes1D(nclasses=1, input_dim=1)
|
||||
_ = prototypes.Prototypes1D(num_classes=1, input_dim=1)
|
||||
|
||||
def test_prototypes1d_init_without_pdist(self):
|
||||
p1 = prototypes.Prototypes1D(input_dim=6,
|
||||
nclasses=2,
|
||||
prototypes_per_class=4,
|
||||
prototype_initializer='ones')
|
||||
p1 = prototypes.Prototypes1D(
|
||||
input_dim=6,
|
||||
num_classes=2,
|
||||
prototypes_per_class=4,
|
||||
prototype_initializer="ones",
|
||||
)
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.ones(8, 6)
|
||||
@@ -45,7 +46,7 @@ class TestPrototypes(unittest.TestCase):
|
||||
pdist = [2, 2]
|
||||
p1 = prototypes.Prototypes1D(input_dim=3,
|
||||
prototype_distribution=pdist,
|
||||
prototype_initializer='zeros')
|
||||
prototype_initializer="zeros")
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(4, 3)
|
||||
@@ -58,16 +59,17 @@ class TestPrototypes(unittest.TestCase):
|
||||
with self.assertWarns(UserWarning):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=3,
|
||||
nclasses=2,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=None)
|
||||
prototype_initializer="stratified_mean",
|
||||
data=None,
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_torch_pdist(self):
|
||||
pdist = torch.tensor([2, 2])
|
||||
p1 = prototypes.Prototypes1D(input_dim=3,
|
||||
prototype_distribution=pdist,
|
||||
prototype_initializer='zeros')
|
||||
prototype_initializer="zeros")
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(4, 3)
|
||||
@@ -77,24 +79,30 @@ class TestPrototypes(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_prototypes1d_init_without_inputdim_with_data(self):
|
||||
_ = prototypes.Prototypes1D(nclasses=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1.], [0.]], [1, 0]])
|
||||
_ = prototypes.Prototypes1D(
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[[[1.0], [0.0]], [1, 0]],
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_with_int_data(self):
|
||||
_ = prototypes.Prototypes1D(nclasses=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1], [0]], [1, 0]])
|
||||
_ = prototypes.Prototypes1D(
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[[[1], [0]], [1, 0]],
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_one_hot_without_data(self):
|
||||
_ = prototypes.Prototypes1D(input_dim=1,
|
||||
nclasses=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=None,
|
||||
one_hot_labels=True)
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=1,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="stratified_mean",
|
||||
data=None,
|
||||
one_hot_labels=True,
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_one_hot_labels_false(self):
|
||||
"""Test if ValueError is raised when `one_hot_labels` is set to `False`
|
||||
@@ -103,11 +111,12 @@ class TestPrototypes(unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=1,
|
||||
nclasses=2,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=([[0.], [1.]], [[0, 1], [1, 0]]),
|
||||
one_hot_labels=False)
|
||||
prototype_initializer="stratified_mean",
|
||||
data=([[0.0], [1.0]], [[0, 1], [1, 0]]),
|
||||
one_hot_labels=False,
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_1d_y_data_one_hot_labels_true(self):
|
||||
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
|
||||
@@ -116,11 +125,12 @@ class TestPrototypes(unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=1,
|
||||
nclasses=2,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=([[0.], [1.]], [0, 1]),
|
||||
one_hot_labels=True)
|
||||
prototype_initializer="stratified_mean",
|
||||
data=([[0.0], [1.0]], [0, 1]),
|
||||
one_hot_labels=True,
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_one_hot_labels_true(self):
|
||||
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
|
||||
@@ -130,53 +140,57 @@ class TestPrototypes(unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=1,
|
||||
nclasses=2,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=([[0.], [1.]], [[0], [1]]),
|
||||
one_hot_labels=True)
|
||||
prototype_initializer="stratified_mean",
|
||||
data=([[0.0], [1.0]], [[0], [1]]),
|
||||
one_hot_labels=True,
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_with_int_dtype(self):
|
||||
with self.assertRaises(RuntimeError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
nclasses=2,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[[[1], [0]], [1, 0]],
|
||||
dtype=torch.int32)
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
def test_prototypes1d_inputndim_with_data(self):
|
||||
with self.assertRaises(ValueError):
|
||||
_ = prototypes.Prototypes1D(input_dim=1,
|
||||
nclasses=1,
|
||||
num_classes=1,
|
||||
prototypes_per_class=1,
|
||||
data=[[1.], [1]])
|
||||
data=[[1.0], [1]])
|
||||
|
||||
def test_prototypes1d_inputdim_with_data(self):
|
||||
with self.assertRaises(ValueError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=2,
|
||||
nclasses=2,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1.], [0.]], [1, 0]])
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[[[1.0], [0.0]], [1, 0]],
|
||||
)
|
||||
|
||||
def test_prototypes1d_nclasses_with_data(self):
|
||||
"""Test ValueError raise if provided `nclasses` is not the same
|
||||
def test_prototypes1d_num_classes_with_data(self):
|
||||
"""Test ValueError raise if provided `num_classes` is not the same
|
||||
as the one computed from the provided `data`.
|
||||
"""
|
||||
with self.assertRaises(ValueError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=1,
|
||||
nclasses=1,
|
||||
num_classes=1,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1.], [2.]], [1, 2]])
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[[[1.0], [2.0]], [1, 2]],
|
||||
)
|
||||
|
||||
def test_prototypes1d_init_with_ppc(self):
|
||||
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer='zeros')
|
||||
prototype_initializer="zeros")
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(4, 3)
|
||||
@@ -186,9 +200,11 @@ class TestPrototypes(unittest.TestCase):
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_prototypes1d_init_with_pdist(self):
|
||||
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
|
||||
prototype_distribution=[6, 9],
|
||||
prototype_initializer='zeros')
|
||||
p1 = prototypes.Prototypes1D(
|
||||
data=[self.x, self.y],
|
||||
prototype_distribution=[6, 9],
|
||||
prototype_initializer="zeros",
|
||||
)
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(15, 3)
|
||||
@@ -201,10 +217,12 @@ class TestPrototypes(unittest.TestCase):
|
||||
def my_initializer(*args, **kwargs):
|
||||
return torch.full((2, 99), 99.0), torch.tensor([0, 1])
|
||||
|
||||
p1 = prototypes.Prototypes1D(input_dim=99,
|
||||
nclasses=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer=my_initializer)
|
||||
p1 = prototypes.Prototypes1D(
|
||||
input_dim=99,
|
||||
num_classes=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer=my_initializer,
|
||||
)
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = 99 * torch.ones(2, 99)
|
||||
@@ -231,7 +249,7 @@ class TestPrototypes(unittest.TestCase):
|
||||
def test_prototypes1d_validate_extra_repr_not_empty(self):
|
||||
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
|
||||
rep = p1.extra_repr()
|
||||
self.assertNotEqual(rep, '')
|
||||
self.assertNotEqual(rep, "")
|
||||
|
||||
def tearDown(self):
|
||||
del self.x, self.y, self.gen
|
||||
@@ -243,11 +261,11 @@ class TestLosses(unittest.TestCase):
|
||||
pass
|
||||
|
||||
def test_glvqloss_init(self):
|
||||
_ = losses.GLVQLoss(0, 'swish_beta', beta=20)
|
||||
_ = losses.GLVQLoss(0, "swish_beta", beta=20)
|
||||
|
||||
def test_glvqloss_forward_1ppc(self):
|
||||
criterion = losses.GLVQLoss(margin=0,
|
||||
squashing='sigmoid_beta',
|
||||
squashing="sigmoid_beta",
|
||||
beta=100)
|
||||
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
|
||||
labels = torch.tensor([0, 1])
|
||||
@@ -259,7 +277,7 @@ class TestLosses(unittest.TestCase):
|
||||
|
||||
def test_glvqloss_forward_2ppc(self):
|
||||
criterion = losses.GLVQLoss(margin=0,
|
||||
squashing='sigmoid_beta',
|
||||
squashing="sigmoid_beta",
|
||||
beta=100)
|
||||
d = torch.stack([
|
||||
torch.ones(100),
|
||||
|
15
tox.ini
15
tox.ini
@@ -1,15 +0,0 @@
|
||||
# tox (https://tox.readthedocs.io/) is a tool for running tests
|
||||
# in multiple virtualenvs. This configuration file will run the
|
||||
# test suite on all supported python versions. To use it, "pip install tox"
|
||||
# and then run "tox" from this directory.
|
||||
|
||||
[tox]
|
||||
envlist = py36,py37,py38
|
||||
|
||||
[testenv]
|
||||
deps =
|
||||
pytest
|
||||
coverage
|
||||
commands =
|
||||
pip install -e .
|
||||
coverage run -m pytest
|
Reference in New Issue
Block a user