Compare commits

...

189 Commits

Author SHA1 Message Date
Alexander Engelsberger
391473adf3 build: bump version 0.7.5 → 0.7.6 2023-10-04 14:47:27 +02:00
Alexander Engelsberger
0d8db31ff2
ci: update python versions 2023-06-20 16:34:41 +02:00
Alexander Engelsberger
89b96f0a98
chore: switch to pytorch 2.0+ 2023-06-20 16:27:54 +02:00
Alexander Engelsberger
ee4cf583e3
chore: fix minor errors and upgrade codebase 2023-06-20 16:06:53 +02:00
Alexander Engelsberger
6ed1b9a832
feat: add gmlvq example
it was necessary to update the pre-commit definition for a successfull
commit.
2023-06-20 15:12:32 +02:00
Alexander Engelsberger
4a7d4a3d99
chore(ci): update github actions 2022-12-05 17:14:54 +01:00
Alexander Engelsberger
0626af207f
build: bump version 0.7.4 → 0.7.5 2022-12-05 17:03:04 +01:00
rmschubert
7b23983887 fix: update scikit-learn dependency 2022-12-05 16:48:22 +01:00
Alexander Engelsberger
0649d5bb45
build: bump version 0.7.3 → 0.7.4 2022-05-17 11:57:32 +02:00
Alexander Engelsberger
339316aa7e
fix: use epsilon in cbc competition 2022-05-17 11:56:43 +02:00
Alexander Engelsberger
2a85c94b55
chore: minor changes and version updates 2022-05-17 11:56:18 +02:00
Alexander Engelsberger
6714cb7915 ci: add python 3.10 as supported python version 2022-04-27 09:56:06 +02:00
Alexander Engelsberger
a501ab6c3b build: bump version 0.7.2 → 0.7.3 2022-04-27 09:49:50 +02:00
Alexander Engelsberger
37add944b1 chore: merge dev into master 2022-04-27 09:48:58 +02:00
Jensun Ravichandran
0d10fc7e25
fix: correct typo 2022-04-04 21:50:22 +02:00
Jensun Ravichandran
71a2e74eff
feat: add RandomLinearTransformInitializer 2022-04-04 20:55:03 +02:00
Jensun Ravichandran
85f75bb28c
feat: add repr for LinearTransform 2022-04-01 10:13:25 +02:00
Alexander Engelsberger
46ff1c4eb1 fix: forward of LinearTransform uses undetached weights now 2022-03-29 17:07:17 +02:00
Jensun Ravichandran
ed5b9b6c62
feat: warn user when component counts do not match 2022-03-29 14:39:41 +02:00
Jensun Ravichandran
08b3f9bbb9
feat: add LiteralLinearTransformInitializer 2022-03-21 14:38:00 +01:00
Jensun Ravichandran
784a963527
chore: housekeeping 2022-03-10 14:46:56 +01:00
Jensun Ravichandran
236cbbc4d2
feat: add color utils 2022-03-10 14:45:55 +01:00
Jensun Ravichandran
695559fd4a
fix: incorrect variable names in GLVQLoss.forward 2022-03-09 13:20:00 +01:00
Jensun Ravichandran
a54acdef22
feat: update GLVQLoss to include a regularization term 2022-02-15 17:16:44 +01:00
Jensun Ravichandran
bebd13868f
fix: typo fix 2022-02-03 23:29:47 +01:00
Jensun Ravichandran
62df3c0457
feat: raise initializer error on unavailable data 2022-01-31 12:27:48 +01:00
Alexander Engelsberger
cce76c7940
build: bump version 0.7.1 → 0.7.2 2022-01-10 20:32:32 +01:00
Alexander Engelsberger
ca24422ab0
chore: reorganize setup.cfg 2022-01-10 20:32:29 +01:00
Alexander Engelsberger
a28601751e
Use github actions for CI (#10)
* chore: Absolute imports

* feat: Add new mesh util

* chore: replace bumpversion

original fork no longer maintained, move config

* ci: remove old configuration files

* ci: update github action

* ci: add python 3.10 test

* chore: update pre-commit hooks

* ci: update supported python versions

supported are 3.7, 3.8 and 3.9.

3.6 had EOL in december 2021.
3.10 has no pytorch distribution yet.

* ci: add windows test

* ci: update action

less windows tests, pre commit

* ci: fix typo

* chore: run precommit for all files

* ci: two step tests

* ci: compatibility waits for style

* fix: init file had missing imports

* ci: add deployment script

* ci: skip complete publish step

* ci: cleanup readme
2022-01-10 20:23:18 +01:00
Alexander Engelsberger
07a2d6caaa
feat: Add new mesh util 2021-10-15 13:08:19 +02:00
Alexander Engelsberger
3d3d27fbab
chore: Absolute imports 2021-10-15 13:07:08 +02:00
Alexander Engelsberger
b49b7a2d41
build: bump version 0.7.0 → 0.7.1 2021-08-30 17:55:48 +02:00
Alexander Engelsberger
b6e8242383
ci: add build phase for tags 2021-08-30 17:55:32 +02:00
Alexander Engelsberger
cd616d11b9
build: bump version 0.6.0 → 0.7.0 2021-08-30 17:42:27 +02:00
Alexander Engelsberger
afcfcb8973
fix: setup.py tags 2021-08-30 17:42:22 +02:00
Alexander Engelsberger
bf03a45475 feat(compatibility): Python3.6 compatibility 2021-08-30 17:39:10 +02:00
Alexander Engelsberger
083b5c1597 feat(compatibility): Python3.7 compatibility 2021-08-30 17:39:10 +02:00
Alexander Engelsberger
7f0a8e9bce feat(compatibility): Python3.8 compatibility 2021-08-30 17:39:10 +02:00
Jensun Ravichandran
bf09ff8f7f
feat: add XOR dataset 2021-07-15 18:14:38 +02:00
Jensun Ravichandran
c1d7cfee8f
fix(test): fix broken CSVDataset test 2021-07-06 17:07:26 +02:00
Jensun Ravichandran
99be965581
refactor: refactor GLVQLoss 2021-07-06 17:01:28 +02:00
Jensun Ravichandran
fdb9a7c66d
feat: add CSVDataset 2021-07-04 16:30:01 +02:00
Jensun Ravichandran
eb79b703d8
chore(github): update bug report issue template 2021-06-22 15:06:18 +02:00
Jensun Ravichandran
bc9a826b7d
fix: matmul bug in 2021-06-21 22:48:22 +02:00
Alexander Engelsberger
cfe09ec06b
fix: reasonings init parameters are used now 2021-06-21 14:53:22 +02:00
Alexander Engelsberger
3d76dffe3c
chore: Allow no-self-use for some class members
Classes are used as common interface and connection to pytorch.
2021-06-21 14:29:25 +02:00
Jensun Ravichandran
597c9fc1ee build: bump version 0.5.1 → 0.6.0 2021-06-20 19:12:01 +02:00
Jensun Ravichandran
a8c74a1a6f chore(bumpversion): modify bump message 2021-06-20 19:09:35 +02:00
Jensun Ravichandran
f78ff1a464 fix(initializers): bug fixes in LT initializers 2021-06-20 18:56:06 +02:00
Jensun Ravichandran
5a3dbfac2e chore(pre-commit): prettify .pre-commit-config.yaml 2021-06-20 18:54:37 +02:00
Jensun Ravichandran
478a3c2cfe fix: python is python3.9 2021-06-20 17:49:53 +02:00
Jensun Ravichandran
4520fdde8e chore(travis): point build badge to travis-ci.com 2021-06-18 19:27:28 +02:00
Jensun Ravichandran
b90044b86c fix: python is python3.9 2021-06-18 19:20:54 +02:00
Jensun Ravichandran
a1310df4ee test(datasets): turn off tecator tests temporarily 2021-06-18 19:10:29 +02:00
Jensun Ravichandran
5dc66494ea refactor(api)!: merge the new api changes into dev
BREAKING CHANGE: remove the following
`prototorch/functions/*`
`prototorch/components/*`
`prototorch/modules/*`
BREAKING CHANGE: move `initializers` into the `prototorch.initializers`
namespace from the `prototorch.components` namespace
BREAKING CHANGE: `functions` and `modules` and moved into `core` and `nn`
2021-06-18 18:54:55 +02:00
Jensun Ravichandran
74d420a77d refactor(api)!: merge the new api changes into dev
BREAKING CHANGE: remove the following
`prototorch/functions/*`
`prototorch/components/*`
`prototorch/modules/*`
BREAKING CHANGE: move `initializers` into the `prototorch.initializers`
namespace from the `prototorch.components` namespace
BREAKING CHANGE: `functions` and `modules` and moved into `core` and `nn`
2021-06-18 18:20:30 +02:00
Jensun Ravichandran
6ffd14e85c Bump version: 0.5.0 → 0.5.1 2021-06-18 15:49:20 +02:00
Jensun Ravichandran
40c1021c20 Remove examples 2021-06-18 13:41:03 +02:00
Jensun Ravichandran
acf3272fd7 Remove .swp files 2021-06-18 13:39:43 +02:00
danielstaps
c73f8e7a28
Added PCA initializer and component for OmegaMatrix or LinearMappings (#6)
* Added PCA initializer and component for OmegaMatrix or LinearMappings

* [QA] Add default configuration for pre commit hooks

* [QA] Add more pre commit checks

* [QA] Add more pre commit checks

* test(githooks): Add gitlint to check commit messages on commit

* docs(githooks): Add usage guide for pre-commit  to readme

* fix(githooks): mypy only checks source now

reverts changes on docs conf.py

* docs(githooks): Fix typo

Co-authored-by: staps@hs-mittweida.de <staps@hs-mittweida.de>
Co-authored-by: Alexander Engelsberger <alexanderengelsberger@gmail.com>
2021-06-18 13:28:25 +02:00
Jensun Ravichandran
de61bf7bca [BUGFIX] Fix reasonings initializer dimension bug 2021-06-17 18:10:05 +02:00
Jensun Ravichandran
ae11fedbf3 Add remarkrc 2021-06-17 14:25:52 +02:00
Jensun Ravichandran
11cd1b0032 [BUGFIX] Add missing file 2021-06-16 22:06:33 +02:00
Jensun Ravichandran
7a6da0c5fc [FEATURE] Add transforms 2021-06-16 21:53:36 +02:00
Alexander Engelsberger
bf23d5f7f8 docs(githooks): Fix typo 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
bcde3f6ac8 fix(githooks): mypy only checks source now
reverts changes on docs conf.py
2021-06-16 15:23:23 +02:00
Alexander Engelsberger
d5229b1750 docs(githooks): Add usage guide for pre-commit to readme 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
fc4b143fbb test(githooks): Add gitlint to check commit messages on commit 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
11cfa79746 [QA] Add more pre commit checks 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
d0ae94f2af [QA] Add more pre commit checks 2021-06-16 15:23:23 +02:00
Alexander Engelsberger
2c908a8361 [QA] Add default configuration for pre commit hooks 2021-06-16 15:23:23 +02:00
Jensun Ravichandran
c95f91cc29 Update examples/new_components.py to use the new API 2021-06-16 13:39:28 +02:00
Jensun Ravichandran
7763a57058 [FEATURE] Add property reasoning_matrices 2021-06-16 13:39:09 +02:00
Jensun Ravichandran
454718cdf5 Update gitignore 2021-06-16 12:39:23 +02:00
Jensun Ravichandran
70b4fa07e6 Update gitignore 2021-06-16 12:34:33 +02:00
Jensun Ravichandran
3a0e4a081e Improve error message 2021-06-16 12:34:15 +02:00
Jensun Ravichandran
42eb53d73a [FEATURE] Add euclidean_similarity and margin_loss 2021-06-15 15:57:59 +02:00
Jensun Ravichandran
6e8a52e371 [FEATURE] Add standalone reasonings and CBC competition 2021-06-15 15:41:28 +02:00
Jensun Ravichandran
0f450ed8a0 [BUGFIX] Remove dangerous mutable default arguments
See
https://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
for more information.
2021-06-15 00:14:34 +02:00
Jensun Ravichandran
1f458ac0cc [FEATURE] Add distribution property to LabeledComponents 2021-06-14 21:08:48 +02:00
Jensun Ravichandran
d45e71256c [TEST] Test literal initializers 2021-06-14 19:53:44 +02:00
Jensun Ravichandran
fc9edeaa97 [FEATURE] Add more initializers 2021-06-14 19:53:02 +02:00
Jensun Ravichandran
549e6a10c1 [TEST] Add tests for reasonings initializers 2021-06-14 17:20:57 +02:00
Jensun Ravichandran
9241475570 [REFACTOR] Refactor parse_distribution 2021-06-14 17:20:22 +02:00
Jensun Ravichandran
083cc929be [REFACTOR] Add reasonings initializers 2021-06-14 17:19:45 +02:00
Jensun Ravichandran
668c9a1fb7 [TEST] Add more tests 2021-06-14 14:45:14 +02:00
Jensun Ravichandran
d2d6f31e7b [REFACTOR] Simplify ReasoningComponents 2021-06-14 14:44:36 +02:00
Jensun Ravichandran
6ad665f8c2 [REFACTOR] Simplify initializer validation 2021-06-13 23:04:07 +00:00
Jensun Ravichandran
2af1da7f23 Add standalone labels module 2021-06-13 22:54:29 +00:00
Jensun Ravichandran
84e08955f7 Check if build passes with python3.9 2021-06-13 17:02:57 +00:00
Jensun Ravichandran
935d9fa7ad Add similarities 2021-06-12 20:50:04 +02:00
Jensun Ravichandran
d26a626677 Temporarily remove tangent distance 2021-06-12 20:48:39 +02:00
Jensun Ravichandran
b4ad870b7c Remove prototorch/functions and prototorch/modules 2021-06-12 20:48:09 +02:00
Jensun Ravichandran
38244f6691 Add setup.cfg 2021-06-12 20:41:00 +02:00
Jensun Ravichandran
1ba7f5c4f7 Add core test suite 2021-06-12 20:40:23 +02:00
Jensun Ravichandran
a30672b932 Temporarily remove GTLVQ 2021-06-12 20:39:47 +02:00
Jensun Ravichandran
093a79d533 [REFACTOR] Reorganize files and folders 2021-06-12 20:38:16 +02:00
Jensun Ravichandran
25dbde4e43 Remove tests/test_functions.py 2021-06-12 20:30:53 +02:00
Jensun Ravichandran
5dddb39ec4 [REFACTOR] Clean and move components and initializers into core 2021-06-12 20:29:24 +02:00
Jensun Ravichandran
b8969347b1 Add more utils 2021-06-12 04:58:11 +02:00
Jensun Ravichandran
dfefd128c4 Update gitignore 2021-06-12 04:57:26 +02:00
Jensun Ravichandran
5e72fd8187 Remove test_components.py 2021-06-12 04:54:54 +02:00
Jensun Ravichandran
4a99bcbf0d Update datasets test suite 2021-06-11 23:43:18 +02:00
Jensun Ravichandran
44e4709387 Minor aesthetic changes 2021-06-11 23:42:19 +02:00
Jensun Ravichandran
0b2aaa42b8 Add utils test suite 2021-06-11 23:08:32 +02:00
Jensun Ravichandran
abae72d624 Update utils module 2021-06-11 23:08:12 +02:00
Jensun Ravichandran
92b8d1785c Clean colors.py 2021-06-11 23:07:55 +02:00
Jensun Ravichandran
56d554ed83 Remove celluloid.py 2021-06-11 23:07:22 +02:00
Jensun Ravichandran
396d569351 Add utils.py 2021-06-11 23:07:07 +02:00
Jensun Ravichandran
24903b761c [WIP] Add labels.py 2021-06-11 18:48:43 +02:00
Alexander Engelsberger
e4257ec1f1
Merge branch 'dev' of github.com:si-cim/prototorch into dev 2021-06-11 16:10:04 +02:00
Alexander Engelsberger
aaad2b8626
[BUGFIX] Fix labeled components if initialized 2021-06-11 16:09:51 +02:00
Jensun Ravichandran
c0c0044a42 [REFACTOR] Remove CustomLabelsInitializer 2021-06-11 14:52:09 +02:00
Alexander Engelsberger
47d7f5831f [Refactor] Add Modules for prior distrbutions 2021-06-08 08:36:55 +02:00
Jensun Ravichandran
4f1c879528 [BUGFIX] Update unit tests 2021-06-04 22:29:30 +02:00
Jensun Ravichandran
2272c55092 [BUGFIX] Fix typo 2021-06-04 22:24:42 +02:00
Jensun Ravichandran
b03c9b1d3c Add competition and pooling modules 2021-06-04 22:18:46 +02:00
Jensun Ravichandran
0c28eda706 [FEATURE] Remove utility modules and add wrappers instead 2021-06-04 22:16:55 +02:00
Jensun Ravichandran
7bc0bfa3ab Rename loss functions 2021-06-04 22:15:57 +02:00
Jensun Ravichandran
827958a28a [FEATURE] Optional transforms in DataAwareInitializers 2021-06-04 22:14:45 +02:00
Jensun Ravichandran
8200e1d3d8 [FEATURE] Allow initialized_components to be a dataset 2021-06-04 22:13:36 +02:00
Jensun Ravichandran
729b20e9ab [FEATURE] Add scale to random initializer 2021-06-03 16:35:44 +02:00
Alexander Engelsberger
ca8ac7a43b [REFACTOR] Probabilistic losses 2021-06-03 14:01:13 +02:00
Alexander Engelsberger
b724a28a6f [BUGFIX] Stratified functions work on GPU now 2021-06-03 13:19:26 +02:00
Jensun Ravichandran
1e0a8392a2 [QA] Fix for "redefined-builtin" (W0622) 2021-06-02 00:07:44 +02:00
Jensun Ravichandran
2eb7b05653 [FEATURE] Add wrappers for more sklearn datasets 2021-06-01 23:33:51 +02:00
Jensun Ravichandran
d8a0b2dfcc Minor tweaks 2021-06-01 23:28:01 +02:00
Jensun Ravichandran
2a7394b593 [QA] Remove commented-out torch.jit.script decorators 2021-06-01 19:46:21 +02:00
Jensun Ravichandran
b1e64c8b8b [QA] Remove utils.py 2021-06-01 19:41:48 +02:00
Jensun Ravichandran
70cf17607e [BUGFIX] Fix broken _precheck_initializer 2021-06-01 19:41:21 +02:00
Jensun Ravichandran
b1568a550a [QA] Fix for "no-self-use" (R0201) 2021-06-01 19:26:05 +02:00
Jensun Ravichandran
e8e803e8ef [QA] Fix for "dangerous-default-value" (W0102) 2021-06-01 19:24:00 +02:00
Jensun Ravichandran
2c453265fe [QA] Remove duplicate headings 2021-06-01 19:18:37 +02:00
Jensun Ravichandran
7336d35fee [QA] Fix "dangerous-default-value" (W0102) 2021-06-01 19:15:06 +02:00
Jensun Ravichandran
bc18952c05 [QA] Fix "dangerous-default-value" (W0102) 2021-06-01 19:10:53 +02:00
Jensun Ravichandran
8e8d0b9c2c [QA] Fix "list-item-bullet-indent" 2021-06-01 19:08:37 +02:00
Jensun Ravichandran
5a7da2b40b [QA] Fix for "no-value-for-parameter" (E1120) 2021-06-01 19:03:57 +02:00
Jensun Ravichandran
b6d38f442b [QA] Remove trailing whitespace 2021-06-01 19:01:20 +02:00
Jensun Ravichandran
8e8851d962 Dynamically remove components 2021-06-01 18:45:47 +02:00
Jensun Ravichandran
27b43b06a7 Rename functions/transform.py -> functions/transforms.py 2021-06-01 17:43:23 +02:00
Jensun Ravichandran
ff69eb1256 Tecator.data is a Tensor and Tecator.targets is a LongTensor 2021-06-01 17:28:37 +02:00
Alexander Engelsberger
4ca581909a [FEATURE] Change NumpyDataset.data to torch.Tensor 2021-06-01 17:17:42 +02:00
Alexander Engelsberger
2722d976f5 [WIP] Add Growing Neural Gas Energy 2021-06-01 17:16:26 +02:00
Jensun Ravichandran
946cda00d2 Add more competition functions 2021-06-01 12:37:21 +02:00
Jensun Ravichandran
8227525c82 Add LambdaLayer 2021-05-31 16:47:20 +02:00
Jensun Ravichandran
e61ae73749 Make components dynamic 2021-05-31 00:31:40 +02:00
Alexander Engelsberger
040d1ee9e8 Add probabilistic losses
Based on Soft LVQ paper by Seo and Obermayer
2021-05-28 20:38:50 +02:00
Alexander Engelsberger
7f0da894fa Add transformation from distances into gaussian distribution 2021-05-28 16:50:04 +02:00
Alexander Engelsberger
62726df278 Add stratified sum as competition
For example used in RSLVQ
2021-05-28 16:49:39 +02:00
Alexander Engelsberger
0ba09db6fe Bump version: 0.4.5 → 0.5.0 2021-05-28 16:17:49 +02:00
Alexander Engelsberger
87334c11e6 Remove Prototypes1D and its tests 2021-05-28 16:17:49 +02:00
Alexander Engelsberger
40ef3aeda2 Remove usage of Prototype1D
Update Iris example to new component API
Update Tecator example to new component API
Update LGMLVQ example to new component API
Update GTLVQ to new component API
2021-05-28 16:17:40 +02:00
Christoph
94fe4435a8 Bump version: 0.4.4 → 0.4.5 2021-05-27 09:58:25 +02:00
Alexander Engelsberger
c204bc8e1f integrate reviews from ChristophRaab:master 2021-05-27 09:43:02 +02:00
Alexander Engelsberger
00615ae837 refactored gtlvq from ChristophRaab:master 2021-05-27 09:40:42 +02:00
Jensun Ravichandran
9f5f0d12dd [BUGFIX] Parse dictionary distribution appropirately 2021-05-25 20:52:39 +02:00
Jensun Ravichandran
8a291f7bfb Overload distribution argument in component initializers
The component initializers behave differently based on the type of the
`distribution` argument. If it is a Python
[list](https://docs.python.org/3/tutorial/datastructures.html), it is assumed
that there are as many entries in this list as there are classes, and the number
at each location of this list describes the number of prototypes to be used for
that particular class. So, `[1, 1, 1]` implies that we have three classes with
one prototype per class. If it is a Python
[tuple](https://docs.python.org/3/tutorial/datastructures.html), it a shorthand
of `(num_classes, prototypes_per_class)` is assumed. If it is a Python
[dictionary](https://docs.python.org/3/tutorial/datastructures.html), the
key-value pairs describe the class label and the number of prototypes for that
class respectively. So, `{0: 2, 1: 2, 2: 2}` implies that we have three classes
with labels `{1, 2, 3}`, each equipped with two prototypes.
2021-05-25 20:05:29 +02:00
Alexander Engelsberger
21e3e3b82d Cache pip in CI 2021-05-25 16:43:48 +02:00
Alexander Engelsberger
a6bd6e130a Add subpackages into prototorch namespace. 2021-05-25 16:40:53 +02:00
Alexander Engelsberger
fcdfa52892 Ignore artiifacts folder 2021-05-25 16:40:34 +02:00
Alexander Engelsberger
73e6fe384e Use 'num_' in all variable names 2021-05-25 15:57:05 +02:00
Alexander Engelsberger
aff7a385a3 Use dict for distribution
This change allows the use of LightningCLI.
2021-05-21 17:10:02 +02:00
Jensun Ravichandran
1e23ba05fa Add test_components 2021-05-21 16:22:02 +02:00
Alexander Engelsberger
ee30d4da5b [BUGFIX] Initializers can handle Dataloaders now 2021-05-21 16:00:20 +02:00
Alexander Engelsberger
14508f0600 [DOC] Small improvements 2021-05-21 15:59:44 +02:00
Jensun Ravichandran
e3f8828da4 Accept dataloaders for component initialization 2021-05-21 11:59:57 +02:00
Jensun Ravichandran
30adbf705c Update dependencies 2021-05-20 11:44:53 +02:00
Jensun Ravichandran
ee42fd68b1 NumpyDataset now has data and targets properties 2021-05-18 19:38:40 +02:00
Jensun Ravichandran
736d9a6349 Rename PositionAwareInitializer to DataAwareInitializer
Also, add the aliases `Zeros` and `Ones`.
2021-05-18 19:37:25 +02:00
Alexander Engelsberger
0055e15bc1 [DOC] Fix iris data dimension 2021-05-18 18:57:03 +02:00
Alexander Engelsberger
b2e1df7308 Improve dataset documentation. 2021-05-18 18:54:43 +02:00
Jensun Ravichandran
b935e9caf3 Update _get_dp_dm 2021-05-18 13:09:11 +02:00
Jensun Ravichandran
503ef0e05f Cleanup components 2021-05-17 16:58:57 +02:00
Jensun Ravichandran
dc6248413c Apply transformations in component initializers 2021-05-17 16:58:22 +02:00
Jensun Ravichandran
e73b70ceb7 Minor aesthetic change 2021-05-17 16:57:41 +02:00
Jensun Ravichandran
639198e774 Update Iris dataset 2021-05-17 16:57:13 +02:00
Alexander Engelsberger
768d969f89 Device agnostic initialization of components. 2021-05-13 15:21:04 +02:00
Alexander Engelsberger
aec422c277 Remove copy paste error from documentation. 2021-05-13 11:56:38 +02:00
Jensun Ravichandran
6c14170de6 [BUGFIX] Fix typo 2021-05-12 16:31:22 +02:00
Jensun Ravichandran
36a330aa66 Update component initializers 2021-05-12 16:28:55 +02:00
Jensun Ravichandran
acd4ac6a86 Flatten tensors before computing distances 2021-05-12 16:28:34 +02:00
Jensun Ravichandran
abe64cfe8f
Merge pull request #3 from dmoebius-dm/dev
Removed wrong parameter.
2021-05-12 16:23:27 +02:00
Danny
caae95d01d Removed wrong parameter. 2021-05-12 16:00:01 +02:00
Alexander Engelsberger
088429a16a Bump version: 0.4.3 → 0.4.4 2021-05-11 17:17:49 +02:00
Jensun Ravichandran
b6145223c8 [HOTFIX] Add missing iris.py and fix knnc bug 2021-05-11 17:20:48 +02:00
Alexander Engelsberger
09256956f3 Bump version: 0.4.2 → 0.4.3 2021-05-11 17:04:08 +02:00
Jensun Ravichandran
0ca90fdcee Merge branch 'dev' of github.com:si-cim/prototorch into dev 2021-05-11 17:07:04 +02:00
Jensun Ravichandran
be21412f8a Add thin wrapper for the Iris dataset 2021-05-11 17:06:41 +02:00
Jensun Ravichandran
ae6bc47f87 [BUGFIX] Fix knnc 2021-05-11 17:06:27 +02:00
66 changed files with 3454 additions and 3302 deletions

View File

@ -1,10 +1,10 @@
[bumpversion] [bumpversion]
current_version = 0.4.2 current_version = 0.7.6
commit = True commit = True
tag = True tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+) parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
serialize = serialize = {major}.{minor}.{patch}
{major}.{minor}.{patch} message = build: bump version {current_version} → {new_version}
[bumpversion:file:setup.py] [bumpversion:file:setup.py]

View File

@ -1,15 +0,0 @@
# To validate the contents of your configuration file
# run the following command in the folder where the configuration file is located:
# codacy-analysis-cli validate-configuration --directory `pwd`
# To analyse, run:
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
---
engines:
pylintpython3:
exclude_paths:
- config/engines.yml
remark-lint:
exclude_paths:
- config/engines.yml
exclude_paths:
- 'tests/**'

View File

@ -1,2 +0,0 @@
comment:
require_changes: yes

View File

@ -10,21 +10,28 @@ assignees: ''
**Describe the bug** **Describe the bug**
A clear and concise description of what the bug is. A clear and concise description of what the bug is.
**To Reproduce** **Steps to reproduce the behavior**
Steps to reproduce the behavior: 1. ...
1. Install Prototorch by running '...' 2. Run script '...' or this snippet:
2. Run script '...' ```python
import prototorch as pt
...
```
3. See errors 3. See errors
**Expected behavior** **Expected behavior**
A clear and concise description of what you expected to happen. A clear and concise description of what you expected to happen.
**Observed behavior**
A clear and concise description of what actually happened.
**Screenshots** **Screenshots**
If applicable, add screenshots to help explain your problem. If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):** **System and version information**
- OS: [e.g. Ubuntu 20.10] - OS: [e.g. Ubuntu 20.10]
- Prototorch Version: [e.g. v0.4.0] - ProtoTorch Version: [e.g. 0.4.0]
- Python Version: [e.g. 3.9.5] - Python Version: [e.g. 3.9.5]
**Additional context** **Additional context**

View File

@ -5,33 +5,71 @@ name: tests
on: on:
push: push:
branches: [ master, dev ]
pull_request: pull_request:
branches: [master] branches: [master]
jobs: jobs:
build: style:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v3
- name: Set up Python 3.8 - name: Set up Python 3.11
uses: actions/setup-python@v1 uses: actions/setup-python@v4
with: with:
python-version: 3.8 python-version: "3.11"
- name: Install dependencies - name: Install dependencies
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install .[all] pip install .[all]
- name: Lint with flake8 - uses: pre-commit/action@v3.0.0
compatibility:
needs: style
strategy:
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, windows-latest]
exclude:
- os: windows-latest
python-version: "3.8"
- os: windows-latest
python-version: "3.9"
- os: windows-latest
python-version: "3.10"
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: | run: |
pip install flake8 python -m pip install --upgrade pip
# stop the build if there are Python syntax errors or undefined names pip install .[all]
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
- name: Test with pytest - name: Test with pytest
run: | run: |
pip install pytest
pytest pytest
publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install wheel
- name: Build package
run: python setup.py sdist bdist_wheel
- name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

17
.gitignore vendored
View File

@ -129,14 +129,6 @@ dmypy.json
# End of https://www.gitignore.io/api/python # End of https://www.gitignore.io/api/python
# ProtoFlow
core
checkpoint
logs/
saved_weights/
scratch*
# Created by https://www.gitignore.io/api/visualstudiocode # Created by https://www.gitignore.io/api/visualstudiocode
# Edit at https://www.gitignore.io/?templates=visualstudiocode # Edit at https://www.gitignore.io/?templates=visualstudiocode
@ -154,4 +146,13 @@ scratch*
# End of https://www.gitignore.io/api/visualstudiocode # End of https://www.gitignore.io/api/visualstudiocode
.vscode/ .vscode/
# Vim
*~
*.swp
*.swo
# Artifacts created by ProtoTorch
reports reports
artifacts
examples/_*.py
examples/_*.ipynb

53
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,53 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-ast
- id: check-case-conflict
- repo: https://github.com/myint/autoflake
rev: v2.1.1
hooks:
- id: autoflake
- repo: http://github.com/PyCQA/isort
rev: 5.12.0
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.3.0
hooks:
- id: mypy
files: prototorch
additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
- repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.10.0
hooks:
- id: python-use-type-annotations
- id: python-no-log-warn
- id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade
rev: v3.7.0
hooks:
- id: pyupgrade
- repo: https://github.com/si-cim/gitlint
rev: v0.15.2-unofficial
hooks:
- id: gitlint
args: [--contrib=CT1, --ignore=B6, --msg-filename]

View File

@ -19,7 +19,7 @@ formats: all
# Optionally set the version of Python and requirements required to build your docs # Optionally set the version of Python and requirements required to build your docs
python: python:
version: 3.8 version: 3.9
install: install:
- method: pip - method: pip
path: . path: .

7
.remarkrc Normal file
View File

@ -0,0 +1,7 @@
{
"plugins": [
"remark-preset-lint-recommended",
["remark-lint-list-item-indent", false],
["no-emphasis-as-header", false]
]
}

View File

@ -1,34 +0,0 @@
dist: bionic
sudo: false
language: python
python: 3.8
cache:
directories:
- "./tests/artifacts"
install:
- pip install .[all] --progress-bar off
# Generate code coverage report
script:
- coverage run -m pytest
# Push the results to codecov
after_success:
- bash <(curl -s https://codecov.io/bash)
# Publish on PyPI
deploy:
provider: pypi
username: __token__
password:
secure: rVQNCxKIuiEtMz4zLSsjdt6spG7cf3miKN5eqjxZfcELALHxAV4w/+CideQObOn3u9emmxb87R9XWKcogqK2MXqnuIcY4mWg7HUqaip1bhz/4YiVXjFILcG6itjX9IUF1DrtjKKRk6xryucSZcEB7yTcXz1hQTb768KWlLlKOVTRNwr7j07eyeafexz/L2ANQCqfOZgS4b0k2AMeDBRPykPULtyeneEFlb6MJZ2MxeqtTNVK4b/6VsQSZwQ9jGJNGWonn5Y287gHmzvEcymSJogTe2taxGBWawPnOsibws9v88DEAHdsEvYdnqEE3hFl0R5La2Lkjd8CjNUYegxioQ57i3WNS3iksq10ZLMCbH29lb9YPG7r6Y8z9H85735kV2gKLdf+o7SPS03TRgjSZKN6pn4pLG0VWkxC6l8VfLuJnRNTHX4g6oLQwOWIBbxybn9Zw/yLjAXAJNgBHt5v86H6Jfi1Va4AhEV6itkoH9IM3/uDhrE/mmorqyVled/CPNtBWNTyoDevLNxMUDnbuhH0JzLki+VOjKnTxEfq12JB8X9faFG5BjvU9oGjPPewrp5DGGzg6KDra7dikciWUxE1eTFFDhMyG1CFGcjKlDvlAGHyI6Kih35egGUeq+N/pitr2330ftM9Dm4rWpOTxPyCI89bXKssx/MgmLG7kSM=
on:
tags: true
skip_existing: true
# The password is encrypted with:
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
# See https://docs.travis-ci.com/user/deployment/pypi and
# https://github.com/travis-ci/travis.rb#installation
# for more details
# Note: The encrypt command does not work well in ZSH.

View File

@ -1,6 +1,7 @@
MIT License MIT License
Copyright (c) 2020 si-cim Copyright (c) 2020 Saxon Institute for Computational Intelligence and Machine
Learning (SICIM)
Permission is hereby granted, free of charge, to any person obtaining a copy Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal of this software and associated documentation files (the "Software"), to deal

View File

@ -2,13 +2,9 @@
![ProtoTorch Logo](https://prototorch.readthedocs.io/en/latest/_static/horizontal-lockup.png) ![ProtoTorch Logo](https://prototorch.readthedocs.io/en/latest/_static/horizontal-lockup.png)
[![Build Status](https://travis-ci.org/si-cim/prototorch.svg?branch=master)](https://travis-ci.org/si-cim/prototorch)
![tests](https://github.com/si-cim/prototorch/workflows/tests/badge.svg) ![tests](https://github.com/si-cim/prototorch/workflows/tests/badge.svg)
[![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch?color=yellow&label=version)](https://github.com/si-cim/prototorch/releases) [![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch?color=yellow&label=version)](https://github.com/si-cim/prototorch/releases)
[![PyPI](https://img.shields.io/pypi/v/prototorch)](https://pypi.org/project/prototorch/) [![PyPI](https://img.shields.io/pypi/v/prototorch)](https://pypi.org/project/prototorch/)
[![codecov](https://codecov.io/gh/si-cim/prototorch/branch/master/graph/badge.svg)](https://codecov.io/gh/si-cim/prototorch)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/76273904bf9343f0a8b29cd8aca242e7)](https://www.codacy.com/gh/si-cim/prototorch?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=si-cim/prototorch&amp;utm_campaign=Badge_Grade)
![PyPI - Downloads](https://img.shields.io/pypi/dm/prototorch?color=blue)
[![GitHub license](https://img.shields.io/github/license/si-cim/prototorch)](https://github.com/si-cim/prototorch/blob/master/LICENSE) [![GitHub license](https://img.shields.io/github/license/si-cim/prototorch)](https://github.com/si-cim/prototorch/blob/master/LICENSE)
*Tensorflow users, see:* [ProtoFlow](https://github.com/si-cim/protoflow) *Tensorflow users, see:* [ProtoFlow](https://github.com/si-cim/protoflow)
@ -48,6 +44,23 @@ pip install -e .[all]
The documentation is available at <https://www.prototorch.ml/en/latest/>. Should The documentation is available at <https://www.prototorch.ml/en/latest/>. Should
that link not work try <https://prototorch.readthedocs.io/en/latest/>. that link not work try <https://prototorch.readthedocs.io/en/latest/>.
## Contribution
This repository contains definition for [git hooks](https://githooks.com).
[Pre-commit](https://pre-commit.com) is automatically installed as development
dependency with prototorch or you can install it manually with `pip install
pre-commit`.
Please install the hooks by running:
```bash
pre-commit install
pre-commit install --hook-type commit-msg
```
before creating the first commit.
The commit will fail if the commit message does not follow the specification
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
## Bibtex ## Bibtex
If you would like to cite the package, please use this: If you would like to cite the package, please use this:

View File

@ -1,13 +1,16 @@
# ProtoTorch Releases # ProtoTorch Releases
## Release 0.5.0
- Breaking: Removed deprecated `prototorch.modules.Prototypes1D`.
- Use `prototorch.components.LabeledComponents` instead.
## Release 0.2.0 ## Release 0.2.0
### Includes
- Fixes in example scripts. - Fixes in example scripts.
## Release 0.1.1-dev0 ## Release 0.1.1-dev0
### Includes
- Minor bugfixes. - Minor bugfixes.
- 100% line coverage. - 100% line coverage.

View File

@ -1,13 +1,24 @@
.. ProtoFlow API Reference .. ProtoTorch API Reference
ProtoFlow API Reference ProtoTorch API Reference
====================================== ======================================
Datasets Datasets
-------------------------------------- --------------------------------------
Common Datasets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: prototorch.datasets .. automodule:: prototorch.datasets
:members: :members:
:undoc-members:
Abstract Datasets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Abstract Datasets are used to build your own datasets.
.. autoclass:: prototorch.datasets.abstract.NumpyDataset
:members:
Functions Functions
-------------------------------------- --------------------------------------

View File

@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags # The full version, including alpha/beta/rc tags
# #
release = "0.4.2" release = "0.7.6"
# -- General configuration --------------------------------------------------- # -- General configuration ---------------------------------------------------
@ -46,6 +46,7 @@ extensions = [
"sphinx.ext.viewcode", "sphinx.ext.viewcode",
"sphinx_rtd_theme", "sphinx_rtd_theme",
"sphinxcontrib.katex", "sphinxcontrib.katex",
'sphinx_autodoc_typehints',
] ]
# katex_prerender = True # katex_prerender = True
@ -119,7 +120,7 @@ html_css_files = [
# -- Options for HTMLHelp output ------------------------------------------ # -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder. # Output file base name for HTML help builder.
htmlhelp_basename = "protoflowdoc" htmlhelp_basename = "prototorchdoc"
# -- Options for LaTeX output --------------------------------------------- # -- Options for LaTeX output ---------------------------------------------
@ -179,6 +180,9 @@ texinfo_documents = [
intersphinx_mapping = { intersphinx_mapping = {
"python": ("https://docs.python.org/", None), "python": ("https://docs.python.org/", None),
"numpy": ("https://docs.scipy.org/doc/numpy/", None), "numpy": ("https://docs.scipy.org/doc/numpy/", None),
"torch": ('https://pytorch.org/docs/stable/', None),
"pytorch_lightning":
("https://pytorch-lightning.readthedocs.io/en/stable/", None),
} }
# -- Options for Epub output ---------------------------------------------- # -- Options for Epub output ----------------------------------------------

100
examples/cbc_iris.py Normal file
View File

@ -0,0 +1,100 @@
"""ProtoTorch CBC example using 2D Iris data."""
import logging
import torch
from matplotlib import pyplot as plt
import prototorch as pt
class CBC(torch.nn.Module):
def __init__(self, data, **kwargs):
super().__init__(**kwargs)
self.components_layer = pt.components.ReasoningComponents(
distribution=[2, 1, 2],
components_initializer=pt.initializers.SSCI(data, noise=0.1),
reasonings_initializer=pt.initializers.PPRI(components_first=True),
)
def forward(self, x):
components, reasonings = self.components_layer()
sims = pt.similarities.euclidean_similarity(x, components)
probs = pt.competitions.cbcc(sims, reasonings)
return probs
class VisCBC2D():
def __init__(self, model, data):
self.model = model
self.x_train, self.y_train = pt.utils.parse_data_arg(data)
self.title = "Components Visualization"
self.fig = plt.figure(self.title)
self.border = 0.1
self.resolution = 100
self.cmap = "viridis"
def on_train_epoch_end(self):
x_train, y_train = self.x_train, self.y_train
_components = self.model.components_layer._components.detach()
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.axis("off")
ax.scatter(
x_train[:, 0],
x_train[:, 1],
c=y_train,
cmap=self.cmap,
edgecolor="k",
marker="o",
s=30,
)
ax.scatter(
_components[:, 0],
_components[:, 1],
c="w",
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50,
)
x = torch.vstack((x_train, _components))
mesh_input, xx, yy = pt.utils.mesh2d(x, self.border, self.resolution)
with torch.no_grad():
y_pred = self.model(
torch.Tensor(mesh_input).type_as(_components)).argmax(1)
y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
plt.pause(0.2)
if __name__ == "__main__":
train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
model = CBC(train_ds)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = pt.losses.MarginLoss(margin=0.1)
vis = VisCBC2D(model, train_ds)
for epoch in range(200):
correct = 0.0
for x, y in train_loader:
y_oh = torch.eye(3)[y]
y_pred = model(x)
loss = criterion(y_pred, y_oh).mean(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
correct += (y_pred.argmax(1) == y).float().sum(0)
acc = 100 * correct / len(train_ds)
logging.info(f"Epoch: {epoch} Accuracy: {acc:05.02f}%")
vis.on_train_epoch_end()

View File

@ -1,120 +0,0 @@
"""ProtoTorch GLVQ example using 2D Iris data."""
import numpy as np
import torch
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torchinfo import summary
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import euclidean_distance
from prototorch.modules.losses import GLVQLoss
from prototorch.modules.prototypes import Prototypes1D
# Prepare and preprocess the data
scaler = StandardScaler()
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
scaler.fit(x_train)
x_train = scaler.transform(x_train)
# Define the GLVQ model
class Model(torch.nn.Module):
def __init__(self):
"""GLVQ model for training on 2D Iris data."""
super().__init__()
self.proto_layer = Prototypes1D(
input_dim=2,
prototypes_per_class=3,
nclasses=3,
prototype_initializer="stratified_random",
data=[x_train, y_train],
)
def forward(self, x):
protos = self.proto_layer.prototypes
plabels = self.proto_layer.prototype_labels
dis = euclidean_distance(x, protos)
return dis, plabels
# Build the GLVQ model
model = Model()
# Print summary using torchinfo (might be buggy/incorrect)
print(summary(model))
# Optimize using SGD optimizer from `torch.optim`
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
x_in = torch.Tensor(x_train)
y_in = torch.Tensor(y_train)
# Training loop
title = "Prototype Visualization"
fig = plt.figure(title)
for epoch in range(70):
# Compute loss
dis, plabels = model(x_in)
loss = criterion([dis, plabels], y_in)
with torch.no_grad():
pred = wtac(dis, plabels)
correct = pred.eq(y_in.view_as(pred)).sum().item()
acc = 100.0 * correct / len(x_train)
print(
f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} Acc: {acc:05.02f}%"
)
# Take a gradient descent step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Get the prototypes form the model
protos = model.proto_layer.prototypes.data.numpy()
if np.isnan(np.sum(protos)):
print("Stopping training because of `nan` in prototypes.")
break
# Visualize the data and the prototypes
ax = fig.gca()
ax.cla()
ax.set_title(title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
cmap = "viridis"
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=plabels,
cmap=cmap,
edgecolor="k",
marker="D",
s=50,
)
# Paint decision regions
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
torch_input = torch.Tensor(mesh_input)
d = model(torch_input)[0]
w_indices = torch.argmin(d, dim=1)
y_pred = torch.index_select(plabels, 0, w_indices)
y_pred = y_pred.reshape(xx.shape)
# Plot voronoi regions
ax.contourf(xx, yy, y_pred, cmap=cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)

76
examples/gmlvq.py Normal file
View File

@ -0,0 +1,76 @@
"""ProtoTorch GMLVQ example using Iris data."""
import torch
import prototorch as pt
class GMLVQ(torch.nn.Module):
"""
Implementation of Generalized Matrix Learning Vector Quantization.
"""
def __init__(self, data, **kwargs):
super().__init__(**kwargs)
self.components_layer = pt.components.LabeledComponents(
distribution=[1, 1, 1],
components_initializer=pt.initializers.SMCI(data, noise=0.1),
)
self.backbone = pt.transforms.Omega(
len(data[0][0]),
len(data[0][0]),
pt.initializers.RandomLinearTransformInitializer(),
)
def forward(self, data):
"""
Forward function that returns a tuple of dissimilarities and label information.
Feed into GLVQLoss to get a complete GMLVQ model.
"""
components, label = self.components_layer()
latent_x = self.backbone(data)
latent_components = self.backbone(components)
distance = pt.distances.squared_euclidean_distance(
latent_x, latent_components)
return distance, label
def predict(self, data):
"""
The GMLVQ has a modified prediction step, where a competition layer is applied.
"""
components, label = self.components_layer()
distance = pt.distances.squared_euclidean_distance(data, components)
winning_label = pt.competitions.wtac(distance, label)
return winning_label
if __name__ == "__main__":
train_ds = pt.datasets.Iris()
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
model = GMLVQ(train_ds)
optimizer = torch.optim.Adam(model.parameters(), lr=0.05)
criterion = pt.losses.GLVQLoss()
for epoch in range(200):
correct = 0.0
for x, y in train_loader:
d, labels = model(x)
loss = criterion(d, y, labels).mean(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
y_pred = model.predict(x)
correct += (y_pred == y).float().sum(0)
acc = 100 * correct / len(train_ds)
print(f"Epoch: {epoch} Accuracy: {acc:05.02f}%")

View File

@ -1,104 +0,0 @@
"""ProtoTorch "siamese" GMLVQ example using Tecator."""
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader
from prototorch.datasets.tecator import Tecator
from prototorch.functions.distances import sed
from prototorch.modules import Prototypes1D
from prototorch.modules.losses import GLVQLoss
from prototorch.utils.colors import get_legend_handles
# Prepare the dataset and dataloader
train_data = Tecator(root="./artifacts", train=True)
train_loader = DataLoader(train_data, batch_size=128, shuffle=True)
class Model(torch.nn.Module):
def __init__(self, **kwargs):
"""GMLVQ model as a siamese network."""
super().__init__()
x, y = train_data.data, train_data.targets
self.p1 = Prototypes1D(
input_dim=100,
prototypes_per_class=2,
nclasses=2,
prototype_initializer="stratified_random",
data=[x, y],
)
self.omega = torch.nn.Linear(in_features=100,
out_features=100,
bias=False)
torch.nn.init.eye_(self.omega.weight)
def forward(self, x):
protos = self.p1.prototypes
plabels = self.p1.prototype_labels
# Process `x` and `protos` through `omega`
x_map = self.omega(x)
protos_map = self.omega(protos)
# Compute distances and output
dis = sed(x_map, protos_map)
return dis, plabels
# Build the GLVQ model
model = Model()
# Print a summary of the model
print(model)
# Optimize using Adam optimizer from `torch.optim`
optimizer = torch.optim.Adam(model.parameters(), lr=0.001_0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=75, gamma=0.1)
criterion = GLVQLoss(squashing="identity", beta=10)
# Training loop
for epoch in range(150):
epoch_loss = 0.0 # zero-out epoch loss
optimizer.zero_grad() # zero-out gradients
for xb, yb in train_loader:
# Compute loss
distances, plabels = model(xb)
loss = criterion([distances, plabels], yb)
epoch_loss += loss.item()
# Backprop
loss.backward()
# Take a gradient descent step
optimizer.step()
scheduler.step()
lr = optimizer.param_groups[0]["lr"]
print(f"Epoch: {epoch + 1:03d} Loss: {epoch_loss:06.02f} lr: {lr:07.06f}")
# Get the omega matrix form the model
omega = model.omega.weight.data.numpy().T
# Visualize the lambda matrix
title = "Lambda Matrix Visualization"
fig = plt.figure(title)
ax = fig.gca()
ax.set_title(title)
im = ax.imshow(omega.dot(omega.T), cmap="viridis")
plt.show()
# Get the prototypes form the model
protos = model.p1.prototypes.data.numpy()
plabels = model.p1.prototype_labels
# Visualize the prototypes
title = "Tecator Prototypes"
fig = plt.figure(title)
ax = fig.gca()
ax.set_title(title)
ax.set_xlabel("Spectral frequencies")
ax.set_ylabel("Absorption")
clabels = ["Class 0 - Low fat", "Class 1 - High fat"]
handles, colors = get_legend_handles(clabels, marker="line", zero_indexed=True)
for x, y in zip(protos, plabels):
ax.plot(x, c=colors[int(y)])
ax.legend(handles, clabels)
plt.show()

View File

@ -1,184 +0,0 @@
"""
ProtoTorch GTLVQ example using MNIST data.
The GTLVQ is placed as an classification model on
top of a CNN, considered as featurer extractor.
Initialization of subpsace and prototypes in
Siamnese fashion
For more info about GTLVQ see:
DOI:10.1109/IJCNN.2016.7727534
"""
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms
from prototorch.functions.helper import calculate_prototype_accuracy
from prototorch.modules.losses import GLVQLoss
from prototorch.modules.models import GTLVQ
# Parameters and options
n_epochs = 50
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.1
momentum = 0.5
log_interval = 10
cuda = "cuda:1"
random_seed = 1
device = torch.device(cuda if torch.cuda.is_available() else "cpu")
# Configures reproducability
torch.manual_seed(random_seed)
np.random.seed(random_seed)
# Prepare and preprocess the data
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(
"./files/",
train=True,
download=True,
transform=torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]),
),
batch_size=batch_size_train,
shuffle=True,
)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(
"./files/",
train=False,
download=True,
transform=torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]),
),
batch_size=batch_size_test,
shuffle=True,
)
# Define the GLVQ model plus appropriate feature extractor
class CNNGTLVQ(torch.nn.Module):
def __init__(
self,
num_classes,
subspace_data,
prototype_data,
tangent_projection_type="local",
prototypes_per_class=2,
bottleneck_dim=128,
):
super(CNNGTLVQ, self).__init__()
# Feature Extractor - Simple CNN
self.fe = nn.Sequential(
nn.Conv2d(1, 32, 3, 1),
nn.ReLU(),
nn.Conv2d(32, 64, 3, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Dropout(0.25),
nn.Flatten(),
nn.Linear(9216, bottleneck_dim),
nn.Dropout(0.5),
nn.LeakyReLU(),
nn.LayerNorm(bottleneck_dim),
)
# Forward pass of subspace and prototype initialization data through feature extractor
subspace_data = self.fe(subspace_data)
prototype_data[0] = self.fe(prototype_data[0])
# Initialization of GTLVQ
self.gtlvq = GTLVQ(
num_classes,
subspace_data,
prototype_data,
tangent_projection_type=tangent_projection_type,
feature_dim=bottleneck_dim,
prototypes_per_class=prototypes_per_class,
)
def forward(self, x):
# Feature Extraction
x = self.fe(x)
# GTLVQ Forward pass
dis = self.gtlvq(x)
return dis
# Get init data
subspace_data = torch.cat(
[next(iter(train_loader))[0],
next(iter(test_loader))[0]])
prototype_data = next(iter(train_loader))
# Build the CNN GTLVQ model
model = CNNGTLVQ(
10,
subspace_data,
prototype_data,
tangent_projection_type="local",
bottleneck_dim=128,
).to(device)
# Optimize using SGD optimizer from `torch.optim`
optimizer = torch.optim.Adam(
[{
"params": model.fe.parameters()
}, {
"params": model.gtlvq.parameters()
}],
lr=learning_rate,
)
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
# Training loop
for epoch in range(n_epochs):
for batch_idx, (x_train, y_train) in enumerate(train_loader):
model.train()
x_train, y_train = x_train.to(device), y_train.to(device)
optimizer.zero_grad()
distances = model(x_train)
plabels = model.gtlvq.cls.prototype_labels.to(device)
# Compute loss.
loss = criterion([distances, plabels], y_train)
loss.backward()
optimizer.step()
# GTLVQ uses projected SGD, which means to orthogonalize the subspaces after every gradient update.
model.gtlvq.orthogonalize_subspace()
if batch_idx % log_interval == 0:
acc = calculate_prototype_accuracy(distances, y_train, plabels)
print(
f"Epoch: {epoch + 1:02d}/{n_epochs:02d} Epoch Progress: {100. * batch_idx / len(train_loader):02.02f} % Loss: {loss.item():02.02f} \
Train Acc: {acc.item():02.02f}")
# Test
with torch.no_grad():
model.eval()
correct = 0
total = 0
for x_test, y_test in test_loader:
x_test, y_test = x_test.to(device), y_test.to(device)
test_distances = model(torch.tensor(x_test))
test_plabels = model.gtlvq.cls.prototype_labels.to(device)
i = torch.argmin(test_distances, 1)
correct += torch.sum(y_test == test_plabels[i])
total += y_test.size(0)
print("Accuracy of the network on the test images: %d %%" %
(torch.true_divide(correct, total) * 100))
# Save the model
PATH = "./glvq_mnist_model.pth"
torch.save(model.state_dict(), PATH)

View File

@ -1,110 +0,0 @@
"""ProtoTorch LGMLVQ example using 2D Iris data."""
import numpy as np
import torch
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from prototorch.functions.competitions import stratified_min
from prototorch.functions.distances import lomega_distance
from prototorch.functions.init import eye_
from prototorch.modules.losses import GLVQLoss
from prototorch.modules.prototypes import Prototypes1D
# Prepare training data
x_train, y_train = load_iris(True)
x_train = x_train[:, [0, 2]]
# Define the model
class Model(torch.nn.Module):
def __init__(self):
"""Local-GMLVQ model."""
super().__init__()
self.p1 = Prototypes1D(
input_dim=2,
prototype_distribution=[1, 2, 2],
prototype_initializer="stratified_random",
data=[x_train, y_train],
)
omegas = torch.zeros(5, 2, 2)
self.omegas = torch.nn.Parameter(omegas)
eye_(self.omegas)
def forward(self, x):
protos = self.p1.prototypes
plabels = self.p1.prototype_labels
omegas = self.omegas
dis = lomega_distance(x, protos, omegas)
return dis, plabels
# Build the model
model = Model()
# Optimize using Adam optimizer from `torch.optim`
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
x_in = torch.Tensor(x_train)
y_in = torch.Tensor(y_train)
# Training loop
title = "Prototype Visualization"
fig = plt.figure(title)
for epoch in range(100):
# Compute loss
dis, plabels = model(x_in)
loss = criterion([dis, plabels], y_in)
y_pred = np.argmin(stratified_min(dis, plabels).detach().numpy(), axis=1)
acc = accuracy_score(y_train, y_pred)
log_string = f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} "
log_string += f"Acc: {acc * 100:05.02f}%"
print(log_string)
# Take a gradient descent step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Get the prototypes form the model
protos = model.p1.prototypes.data.numpy()
# Visualize the data and the prototypes
ax = fig.gca()
ax.cla()
ax.set_title(title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
cmap = "viridis"
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=plabels,
cmap=cmap,
edgecolor="k",
marker="D",
s=50,
)
# Paint decision regions
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
d, plabels = model(torch.Tensor(mesh_input))
y_pred = np.argmin(stratified_min(d, plabels).detach().numpy(), axis=1)
y_pred = y_pred.reshape(xx.shape)
# Plot voronoi regions
ax.contourf(xx, yy, y_pred, cmap=cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)

View File

@ -1,39 +1,35 @@
"""This example script shows the usage of the new components architecture. """This example script shows the usage of the new components architecture.
Serialization/deserialization also works as expected. Serialization/deserialization also works as expected.
""" """
# DATASET
import torch import torch
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler() import prototorch as pt
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
scaler.fit(x_train)
x_train = scaler.transform(x_train)
x_train = torch.Tensor(x_train) ds = pt.datasets.Iris()
y_train = torch.Tensor(y_train)
num_classes = len(torch.unique(y_train))
# CREATE NEW COMPONENTS unsupervised = pt.components.Components(
from prototorch.components import * 6,
from prototorch.components.initializers import * initializer=pt.initializers.ZCI(2),
)
unsupervised = Components(6, SelectionInitializer(x_train))
print(unsupervised()) print(unsupervised())
prototypes = LabeledComponents( prototypes = pt.components.LabeledComponents(
(3, 2), StratifiedSelectionInitializer(x_train, y_train)) (3, 2),
components_initializer=pt.initializers.SSCI(ds),
)
print(prototypes()) print(prototypes())
components = ReasoningComponents( components = pt.components.ReasoningComponents(
(3, 6), StratifiedSelectionInitializer(x_train, y_train)) (3, 2),
print(components()) components_initializer=pt.initializers.SSCI(ds),
reasonings_initializer=pt.initializers.PPRI(),
)
print(prototypes())
# TEST SERIALIZATION # Test Serialization
import io import io
save = io.BytesIO() save = io.BytesIO()
@ -41,25 +37,20 @@ torch.save(unsupervised, save)
save.seek(0) save.seek(0)
serialized_unsupervised = torch.load(save) serialized_unsupervised = torch.load(save)
assert torch.all(unsupervised.components == serialized_unsupervised.components assert torch.all(unsupervised.components == serialized_unsupervised.components)
), "Serialization of Components failed."
save = io.BytesIO() save = io.BytesIO()
torch.save(prototypes, save) torch.save(prototypes, save)
save.seek(0) save.seek(0)
serialized_prototypes = torch.load(save) serialized_prototypes = torch.load(save)
assert torch.all(prototypes.components == serialized_prototypes.components assert torch.all(prototypes.components == serialized_prototypes.components)
), "Serialization of Components failed." assert torch.all(prototypes.labels == serialized_prototypes.labels)
assert torch.all(prototypes.component_labels == serialized_prototypes.
component_labels), "Serialization of Components failed."
save = io.BytesIO() save = io.BytesIO()
torch.save(components, save) torch.save(components, save)
save.seek(0) save.seek(0)
serialized_components = torch.load(save) serialized_components = torch.load(save)
assert torch.all(components.components == serialized_components.components assert torch.all(components.components == serialized_components.components)
), "Serialization of Components failed." assert torch.all(components.reasonings == serialized_components.reasonings)
assert torch.all(components.reasonings == serialized_components.reasonings
), "Serialization of Components failed."

View File

@ -1,21 +1,40 @@
"""ProtoTorch package.""" """ProtoTorch package"""
# Core Setup
__version__ = "0.4.2"
__all_core__ = [
"datasets",
"functions",
"modules",
]
from .datasets import *
# Plugin Loader
import pkgutil import pkgutil
import pkg_resources import pkg_resources
from . import datasets # noqa: F401
from . import nn # noqa: F401
from . import utils # noqa: F401
from .core import competitions # noqa: F401
from .core import components # noqa: F401
from .core import distances # noqa: F401
from .core import initializers # noqa: F401
from .core import losses # noqa: F401
from .core import pooling # noqa: F401
from .core import similarities # noqa: F401
from .core import transforms # noqa: F401
# Core Setup
__version__ = "0.7.6"
__all_core__ = [
"competitions",
"components",
"core",
"datasets",
"distances",
"initializers",
"losses",
"nn",
"pooling",
"similarities",
"transforms",
"utils",
]
# Plugin Loader
__path__ = pkgutil.extend_path(__path__, __name__) __path__ = pkgutil.extend_path(__path__, __name__)

View File

@ -1,2 +0,0 @@
from prototorch.components.components import *
from prototorch.components.initializers import *

View File

@ -1,151 +0,0 @@
"""ProtoTorch components modules."""
import warnings
from typing import Tuple
import torch
from prototorch.components.initializers import (ClassAwareInitializer,
ComponentsInitializer,
EqualLabelsInitializer,
UnequalLabelsInitializer,
ZeroReasoningsInitializer)
from prototorch.functions.initializers import get_initializer
from torch.nn.parameter import Parameter
class Components(torch.nn.Module):
"""Components is a set of learnable Tensors."""
def __init__(self,
number_of_components=None,
initializer=None,
*,
initialized_components=None,
dtype=torch.float32):
super().__init__()
# Ignore all initialization settings if initialized_components is given.
if initialized_components is not None:
self._components = Parameter(initialized_components)
if number_of_components is not None or initializer is not None:
wmsg = "Arguments ignored while initializing Components"
warnings.warn(wmsg)
else:
self._initialize_components(number_of_components, initializer)
def _precheck_initializer(self, initializer):
if not isinstance(initializer, ComponentsInitializer):
emsg = f"`initializer` has to be some subtype of " \
f"{ComponentsInitializer}. " \
f"You have provided: {initializer=} instead."
raise TypeError(emsg)
def _initialize_components(self, number_of_components, initializer):
self._precheck_initializer(initializer)
self._components = Parameter(
initializer.generate(number_of_components))
@property
def components(self):
"""Tensor containing the component tensors."""
return self._components.detach().cpu()
def forward(self):
return self._components
def extra_repr(self):
return f"components.shape: {tuple(self._components.shape)}"
class LabeledComponents(Components):
"""LabeledComponents generate a set of components and a set of labels.
Every Component has a label assigned.
"""
def __init__(self,
distribution=None,
initializer=None,
*,
initialized_components=None):
if initialized_components is not None:
super().__init__(initialized_components=initialized_components[0])
self._labels = initialized_components[1]
else:
self._initialize_labels(distribution)
super().__init__(number_of_components=len(self._labels),
initializer=initializer)
def _initialize_components(self, number_of_components, initializer):
if isinstance(initializer, ClassAwareInitializer):
self._precheck_initializer(initializer)
self._components = Parameter(
initializer.generate(number_of_components, self.distribution))
else:
super()._initialize_components(self, number_of_components,
initializer)
def _initialize_labels(self, distribution):
if type(distribution) == tuple:
num_classes, prototypes_per_class = distribution
labels = EqualLabelsInitializer(num_classes, prototypes_per_class)
elif type(distribution) == list:
labels = UnequalLabelsInitializer(distribution)
self.distribution = labels.distribution
self._labels = labels.generate()
@property
def component_labels(self):
"""Tensor containing the component tensors."""
return self._labels.detach().cpu()
def forward(self):
return super().forward(), self._labels
class ReasoningComponents(Components):
"""ReasoningComponents generate a set of components and a set of reasoning matrices.
Every Component has a reasoning matrix assigned.
A reasoning matrix is a Nx2 matrix, where N is the number of Classes. The
first element is called positive reasoning :math:`p`, the second negative
reasoning :math:`n`. A components can reason in favour (positive) of a
class, against (negative) a class or not at all (neutral).
It holds that :math:`0 \leq n \leq 1`, :math:`0 \leq p \leq 1` and :math:`0
\leq n+p \leq 1`. Therefore :math:`n` and :math:`p` are two elements of a
three element probability distribution.
"""
def __init__(self,
reasonings=None,
initializer=None,
*,
initialized_components=None):
if initialized_components is not None:
super().__init__(initialized_components=initialized_components[0])
self._reasonings = initialized_components[1]
else:
self._initialize_reasonings(reasonings)
super().__init__(number_of_components=len(self._reasonings),
initializer=initializer)
def _initialize_reasonings(self, reasonings):
if type(reasonings) == tuple:
num_classes, number_of_components = reasonings
reasonings = ZeroReasoningsInitializer(num_classes,
number_of_components)
self._reasonings = reasonings.generate()
@property
def reasonings(self):
"""Returns Reasoning Matrix.
Dimension NxCx2
"""
return self._reasonings.detach().cpu()
def forward(self):
return super().forward(), self._reasonings

View File

@ -1,197 +0,0 @@
"""ProtoTroch Initializers."""
import warnings
from collections.abc import Iterable
from itertools import chain
import torch
from torch.utils.data import DataLoader, Dataset
def parse_init_arg(arg):
if isinstance(arg, Dataset):
data, labels = next(iter(DataLoader(arg, batch_size=len(arg))))
# data = data.view(len(arg), -1) # flatten
else:
data, labels = arg
if not isinstance(data, torch.Tensor):
wmsg = f"Converting data to {torch.Tensor}."
warnings.warn(wmsg)
data = torch.Tensor(data)
if not isinstance(labels, torch.Tensor):
wmsg = f"Converting labels to {torch.Tensor}."
warnings.warn(wmsg)
labels = torch.Tensor(labels)
return data, labels
# Components
class ComponentsInitializer(object):
def generate(self, number_of_components):
raise NotImplementedError("Subclasses should implement this!")
class DimensionAwareInitializer(ComponentsInitializer):
def __init__(self, c_dims):
super().__init__()
if isinstance(c_dims, Iterable):
self.components_dims = tuple(c_dims)
else:
self.components_dims = (c_dims, )
class OnesInitializer(DimensionAwareInitializer):
def generate(self, length):
gen_dims = (length, ) + self.components_dims
return torch.ones(gen_dims)
class ZerosInitializer(DimensionAwareInitializer):
def generate(self, length):
gen_dims = (length, ) + self.components_dims
return torch.zeros(gen_dims)
class UniformInitializer(DimensionAwareInitializer):
def __init__(self, c_dims, min=0.0, max=1.0):
super().__init__(c_dims)
self.min = min
self.max = max
def generate(self, length):
gen_dims = (length, ) + self.components_dims
return torch.ones(gen_dims).uniform_(self.min, self.max)
class PositionAwareInitializer(ComponentsInitializer):
def __init__(self, positions):
super().__init__()
self.data = positions
class SelectionInitializer(PositionAwareInitializer):
def generate(self, length):
indices = torch.LongTensor(length).random_(0, len(self.data))
return self.data[indices]
class MeanInitializer(PositionAwareInitializer):
def generate(self, length):
mean = torch.mean(self.data, dim=0)
repeat_dim = [length] + [1] * len(mean.shape)
return mean.repeat(repeat_dim)
class ClassAwareInitializer(ComponentsInitializer):
def __init__(self, arg):
super().__init__()
data, labels = parse_init_arg(arg)
self.data = data
self.labels = labels
self.clabels = torch.unique(self.labels)
self.num_classes = len(self.clabels)
def _get_samples_from_initializer(self, length, dist):
if not dist:
per_class = length // self.num_classes
dist = self.num_classes * [per_class]
samples_list = [
init.generate(n) for init, n in zip(self.initializers, dist)
]
return torch.vstack(samples_list)
class StratifiedMeanInitializer(ClassAwareInitializer):
def __init__(self, arg):
super().__init__(arg)
self.initializers = []
for clabel in self.clabels:
class_data = self.data[self.labels == clabel]
class_initializer = MeanInitializer(class_data)
self.initializers.append(class_initializer)
def generate(self, length, dist=[]):
samples = self._get_samples_from_initializer(length, dist)
return samples
class StratifiedSelectionInitializer(ClassAwareInitializer):
def __init__(self, arg, *, noise=None):
super().__init__(arg)
self.noise = noise
self.initializers = []
for clabel in self.clabels:
class_data = self.data[self.labels == clabel]
class_initializer = SelectionInitializer(class_data)
self.initializers.append(class_initializer)
def add_noise(self, x):
"""Shifts some dimensions of the data randomly."""
n1 = torch.rand_like(x)
n2 = torch.rand_like(x)
mask = torch.bernoulli(n1) - torch.bernoulli(n2)
return x + (self.noise * mask)
def generate(self, length, dist=[]):
samples = self._get_samples_from_initializer(length, dist)
if self.noise is not None:
# samples = self.add_noise(samples)
samples = samples + self.noise
return samples
# Labels
class LabelsInitializer:
def generate(self):
raise NotImplementedError("Subclasses should implement this!")
class UnequalLabelsInitializer(LabelsInitializer):
def __init__(self, dist):
self.dist = dist
@property
def distribution(self):
return self.dist
def generate(self):
clabels = range(len(self.dist))
labels = list(chain(*[[i] * n for i, n in zip(clabels, self.dist)]))
return torch.tensor(labels)
class EqualLabelsInitializer(LabelsInitializer):
def __init__(self, classes, per_class):
self.classes = classes
self.per_class = per_class
@property
def distribution(self):
return self.classes * [self.per_class]
def generate(self):
return torch.arange(self.classes).repeat(self.per_class, 1).T.flatten()
# Reasonings
class ReasoningsInitializer:
def generate(self, length):
raise NotImplementedError("Subclasses should implement this!")
class ZeroReasoningsInitializer(ReasoningsInitializer):
def __init__(self, classes, length):
self.classes = classes
self.length = length
def generate(self):
return torch.zeros((self.length, self.classes, 2))
# Aliases
SSI = StratifiedSampleInitializer = StratifiedSelectionInitializer
SMI = StratifiedMeanInitializer
Random = RandomInitializer = UniformInitializer

View File

@ -0,0 +1,10 @@
"""ProtoTorch core"""
from .competitions import *
from .components import *
from .distances import *
from .initializers import *
from .losses import *
from .pooling import *
from .similarities import *
from .transforms import *

View File

@ -0,0 +1,93 @@
"""ProtoTorch competitions"""
import torch
def wtac(distances: torch.Tensor, labels: torch.LongTensor):
"""Winner-Takes-All-Competition.
Returns the labels corresponding to the winners.
"""
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
def knnc(distances: torch.Tensor, labels: torch.LongTensor, k: int = 1):
"""K-Nearest-Neighbors-Competition.
Returns the labels corresponding to the winners.
"""
winning_indices = torch.topk(-distances, k=k, dim=1).indices
winning_labels = torch.mode(labels[winning_indices], dim=1).values
return winning_labels
def cbcc(detections: torch.Tensor, reasonings: torch.Tensor):
"""Classification-By-Components Competition.
Returns probability distributions over the classes.
`detections` must be of shape [batch_size, num_components].
`reasonings` must be of shape [num_components, num_classes, 2].
"""
A, B = reasonings.permute(2, 1, 0).clamp(0, 1)
pk = A
nk = (1 - A) * B
numerator = (detections @ (pk - nk).T) + nk.sum(1)
probs = numerator / ((pk + nk).sum(1) + 1e-8)
return probs
class WTAC(torch.nn.Module):
"""Winner-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, distances, labels): # pylint: disable=no-self-use
return wtac(distances, labels)
class LTAC(torch.nn.Module):
"""Loser-Takes-All-Competition Layer.
Thin wrapper over the `wtac` function.
"""
def forward(self, probs, labels): # pylint: disable=no-self-use
return wtac(-1.0 * probs, labels)
class KNNC(torch.nn.Module):
"""K-Nearest-Neighbors-Competition.
Thin wrapper over the `knnc` function.
"""
def __init__(self, k=1, **kwargs):
super().__init__(**kwargs)
self.k = k
def forward(self, distances, labels):
return knnc(distances, labels, k=self.k)
def extra_repr(self):
return f"k: {self.k}"
class CBCC(torch.nn.Module):
"""Classification-By-Components Competition.
Thin wrapper over the `cbcc` function.
"""
def forward(self, detections, reasonings): # pylint: disable=no-self-use
return cbcc(detections, reasonings)

View File

@ -0,0 +1,380 @@
"""ProtoTorch components"""
import inspect
from typing import Union
import torch
from torch.nn.parameter import Parameter
from prototorch.utils import parse_distribution
from .initializers import (
AbstractClassAwareCompInitializer,
AbstractComponentsInitializer,
AbstractLabelsInitializer,
AbstractReasoningsInitializer,
LabelsInitializer,
PurePositiveReasoningsInitializer,
RandomReasoningsInitializer,
)
def validate_initializer(initializer, instanceof):
"""Check if the initializer is valid."""
if not isinstance(initializer, instanceof):
emsg = f"`initializer` has to be an instance " \
f"of some subtype of {instanceof}. " \
f"You have provided: {initializer} instead. "
helpmsg = ""
if inspect.isclass(initializer):
helpmsg = f"Perhaps you meant to say, {initializer.__name__}() " \
f"with the brackets instead of just {initializer.__name__}?"
raise TypeError(emsg + helpmsg)
return True
def gencat(ins, attr, init, *iargs, **ikwargs):
"""Generate new items and concatenate with existing items."""
new_items = init.generate(*iargs, **ikwargs)
if hasattr(ins, attr):
items = torch.cat([getattr(ins, attr), new_items])
else:
items = new_items
return items, new_items
def removeind(ins, attr, indices):
"""Remove items at specified indices."""
mask = torch.ones(len(ins), dtype=torch.bool)
mask[indices] = False
items = getattr(ins, attr)[mask]
return items, mask
def get_cikwargs(init, distribution):
"""Return appropriate key-word arguments for a component initializer."""
if isinstance(init, AbstractClassAwareCompInitializer):
cikwargs = dict(distribution=distribution)
else:
distribution = parse_distribution(distribution)
num_components = sum(distribution.values())
cikwargs = dict(num_components=num_components)
return cikwargs
class AbstractComponents(torch.nn.Module):
"""Abstract class for all components modules."""
@property
def num_components(self):
"""Current number of components."""
return len(self._components)
@property
def components(self):
"""Detached Tensor containing the components."""
return self._components.detach().cpu()
def _register_components(self, components):
self.register_parameter("_components", Parameter(components))
def extra_repr(self):
return f"components: (shape: {tuple(self._components.shape)})"
def __len__(self):
return self.num_components
class Components(AbstractComponents):
"""A set of adaptable Tensors."""
def __init__(self, num_components: int,
initializer: AbstractComponentsInitializer):
super().__init__()
self.add_components(num_components, initializer)
def add_components(self, num_components: int,
initializer: AbstractComponentsInitializer):
"""Generate and add new components."""
assert validate_initializer(initializer, AbstractComponentsInitializer)
_components, new_components = gencat(self, "_components", initializer,
num_components)
self._register_components(_components)
return new_components
def remove_components(self, indices):
"""Remove components at specified indices."""
_components, mask = removeind(self, "_components", indices)
self._register_components(_components)
return mask
def forward(self):
"""Simply return the components parameter Tensor."""
return self._components
class AbstractLabels(torch.nn.Module):
"""Abstract class for all labels modules."""
@property
def labels(self):
return self._labels.cpu()
@property
def num_labels(self):
return len(self._labels)
@property
def unique_labels(self):
return torch.unique(self._labels)
@property
def num_unique(self):
return len(self.unique_labels)
@property
def distribution(self):
unique, counts = torch.unique(self._labels,
sorted=True,
return_counts=True)
return dict(zip(unique.tolist(), counts.tolist()))
def _register_labels(self, labels):
self.register_buffer("_labels", labels)
def extra_repr(self):
r = f"num_labels: {self.num_labels}, num_unique: {self.num_unique}"
if len(self.distribution) < 11: # avoid lengthy representations
d = self.distribution
unique, counts = list(d.keys()), list(d.values())
r += f", unique: {unique}, counts: {counts}"
return r
def __len__(self):
return self.num_labels
class Labels(AbstractLabels):
"""A set of standalone labels."""
def __init__(self,
distribution: Union[dict, list, tuple],
initializer: AbstractLabelsInitializer = LabelsInitializer()):
super().__init__()
self.add_labels(distribution, initializer)
def add_labels(
self,
distribution: Union[dict, tuple, list],
initializer: AbstractLabelsInitializer = LabelsInitializer()):
"""Generate and add new labels."""
assert validate_initializer(initializer, AbstractLabelsInitializer)
_labels, new_labels = gencat(self, "_labels", initializer,
distribution)
self._register_labels(_labels)
return new_labels
def remove_labels(self, indices):
"""Remove labels at specified indices."""
_labels, mask = removeind(self, "_labels", indices)
self._register_labels(_labels)
return mask
def forward(self):
"""Simply return the labels."""
return self._labels
class LabeledComponents(AbstractComponents):
"""A set of adaptable components and corresponding unadaptable labels."""
def __init__(
self,
distribution: Union[dict, list, tuple],
components_initializer: AbstractComponentsInitializer,
labels_initializer: AbstractLabelsInitializer = LabelsInitializer()):
super().__init__()
self.add_components(distribution, components_initializer,
labels_initializer)
@property
def distribution(self):
unique, counts = torch.unique(self._labels,
sorted=True,
return_counts=True)
return dict(zip(unique.tolist(), counts.tolist()))
@property
def num_classes(self):
return len(self.distribution.keys())
@property
def labels(self):
"""Tensor containing the component labels."""
return self._labels.cpu()
def _register_labels(self, labels):
self.register_buffer("_labels", labels)
def add_components(
self,
distribution,
components_initializer,
labels_initializer: AbstractLabelsInitializer = LabelsInitializer()):
"""Generate and add new components and labels."""
assert validate_initializer(components_initializer,
AbstractComponentsInitializer)
assert validate_initializer(labels_initializer,
AbstractLabelsInitializer)
cikwargs = get_cikwargs(components_initializer, distribution)
_components, new_components = gencat(self, "_components",
components_initializer,
**cikwargs)
_labels, new_labels = gencat(self, "_labels", labels_initializer,
distribution)
self._register_components(_components)
self._register_labels(_labels)
return new_components, new_labels
def remove_components(self, indices):
"""Remove components and labels at specified indices."""
_components, mask = removeind(self, "_components", indices)
_labels, mask = removeind(self, "_labels", indices)
self._register_components(_components)
self._register_labels(_labels)
return mask
def forward(self):
"""Simply return the components parameter Tensor and labels."""
return self._components, self._labels
class Reasonings(torch.nn.Module):
"""A set of standalone reasoning matrices.
The `reasonings` tensor is of shape [num_components, num_classes, 2].
"""
def __init__(
self,
distribution: Union[dict, list, tuple],
initializer:
AbstractReasoningsInitializer = RandomReasoningsInitializer(),
):
super().__init__()
self.add_reasonings(distribution, initializer)
@property
def num_classes(self):
return self._reasonings.shape[1]
@property
def reasonings(self):
"""Tensor containing the reasoning matrices."""
return self._reasonings.detach().cpu()
def _register_reasonings(self, reasonings):
self.register_buffer("_reasonings", reasonings)
def add_reasonings(
self,
distribution: Union[dict, list, tuple],
initializer:
AbstractReasoningsInitializer = RandomReasoningsInitializer()):
"""Generate and add new reasonings."""
assert validate_initializer(initializer, AbstractReasoningsInitializer)
_reasonings, new_reasonings = gencat(self, "_reasonings", initializer,
distribution)
self._register_reasonings(_reasonings)
return new_reasonings
def remove_reasonings(self, indices):
"""Remove reasonings at specified indices."""
_reasonings, mask = removeind(self, "_reasonings", indices)
self._register_reasonings(_reasonings)
return mask
def forward(self):
"""Simply return the reasonings."""
return self._reasonings
class ReasoningComponents(AbstractComponents):
r"""A set of components and a corresponding adapatable reasoning matrices.
Every component has its own reasoning matrix.
A reasoning matrix is an Nx2 matrix, where N is the number of classes. The
first element is called positive reasoning :math:`p`, the second negative
reasoning :math:`n`. A components can reason in favour (positive) of a
class, against (negative) a class or not at all (neutral).
It holds that :math:`0 \leq n \leq 1`, :math:`0 \leq p \leq 1` and :math:`0
\leq n+p \leq 1`. Therefore :math:`n` and :math:`p` are two elements of a
three element probability distribution.
"""
def __init__(
self,
distribution: Union[dict, list, tuple],
components_initializer: AbstractComponentsInitializer,
reasonings_initializer:
AbstractReasoningsInitializer = PurePositiveReasoningsInitializer()):
super().__init__()
self.add_components(distribution, components_initializer,
reasonings_initializer)
@property
def num_classes(self):
return self._reasonings.shape[1]
@property
def reasonings(self):
"""Tensor containing the reasoning matrices."""
return self._reasonings.detach().cpu()
@property
def reasoning_matrices(self):
"""Reasoning matrices for each class."""
with torch.no_grad():
A, B = self._reasonings.permute(2, 1, 0).clamp(0, 1)
pk = A
nk = (1 - pk) * B
ik = 1 - pk - nk
matrices = torch.stack([pk, nk, ik], dim=-1).permute(1, 2, 0)
return matrices.cpu()
def _register_reasonings(self, reasonings):
self.register_parameter("_reasonings", Parameter(reasonings))
def add_components(self, distribution, components_initializer,
reasonings_initializer: AbstractReasoningsInitializer):
"""Generate and add new components and reasonings."""
assert validate_initializer(components_initializer,
AbstractComponentsInitializer)
assert validate_initializer(reasonings_initializer,
AbstractReasoningsInitializer)
cikwargs = get_cikwargs(components_initializer, distribution)
_components, new_components = gencat(self, "_components",
components_initializer,
**cikwargs)
_reasonings, new_reasonings = gencat(self, "_reasonings",
reasonings_initializer,
distribution)
self._register_components(_components)
self._register_reasonings(_reasonings)
return new_components, new_reasonings
def remove_components(self, indices):
"""Remove components and reasonings at specified indices."""
_components, mask = removeind(self, "_components", indices)
_reasonings, mask = removeind(self, "_reasonings", indices)
self._register_components(_components)
self._register_reasonings(_reasonings)
return mask
def forward(self):
"""Simply return the components and reasonings."""
return self._components, self._reasonings

View File

@ -0,0 +1,95 @@
"""ProtoTorch distances"""
import torch
def squared_euclidean_distance(x, y):
r"""Compute the squared Euclidean distance between :math:`\bm x` and :math:`\bm y`.
Compute :math:`{\langle \bm x - \bm y \rangle}_2`
**Alias:**
``prototorch.functions.distances.sed``
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
expanded_x = x.unsqueeze(dim=1)
batchwise_difference = y - expanded_x
differences_raised = torch.pow(batchwise_difference, 2)
distances = torch.sum(differences_raised, axis=2)
return distances
def euclidean_distance(x, y):
r"""Compute the Euclidean distance between :math:`x` and :math:`y`.
Compute :math:`\sqrt{{\langle \bm x - \bm y \rangle}_2}`
:returns: Distance Tensor of shape :math:`X \times Y`
:rtype: `torch.tensor`
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
distances_raised = squared_euclidean_distance(x, y)
distances = torch.sqrt(distances_raised)
return distances
def euclidean_distance_v2(x, y):
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
diff = y - x.unsqueeze(1)
pairwise_distances = (diff @ diff.permute((0, 2, 1))).sqrt()
# Passing `dim1=-2` and `dim2=-1` to `diagonal()` takes the
# batch diagonal. See:
# https://pytorch.org/docs/stable/generated/torch.diagonal.html
distances = torch.diagonal(pairwise_distances, dim1=-2, dim2=-1)
return distances
def lpnorm_distance(x, y, p):
r"""Calculate the lp-norm between :math:`\bm x` and :math:`\bm y`.
Also known as Minkowski distance.
Compute :math:`{\| \bm x - \bm y \|}_p`.
Calls ``torch.cdist``
:param p: p parameter of the lp norm
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
distances = torch.cdist(x, y, p=p)
return distances
def omega_distance(x, y, omega):
r"""Omega distance.
Compute :math:`{\| \Omega \bm x - \Omega \bm y \|}_p`
:param `torch.tensor` omega: Two dimensional matrix
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
projected_x = x @ omega
projected_y = y @ omega
distances = squared_euclidean_distance(projected_x, projected_y)
return distances
def lomega_distance(x, y, omegas):
r"""Localized Omega distance.
Compute :math:`{\| \Omega_k \bm x - \Omega_k \bm y_k \|}_p`
:param `torch.tensor` omegas: Three dimensional matrix
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
projected_x = x @ omegas
projected_y = torch.diagonal(y @ omegas).T
expanded_y = torch.unsqueeze(projected_y, dim=1)
batchwise_difference = expanded_y - projected_x
differences_squared = batchwise_difference**2
distances = torch.sum(differences_squared, dim=2)
distances = distances.permute(1, 0)
return distances
# Aliases
sed = squared_euclidean_distance

View File

@ -0,0 +1,555 @@
"""ProtoTorch code initializers"""
import warnings
from abc import ABC, abstractmethod
from collections.abc import Iterable
from typing import (
Callable,
Type,
Union,
)
import torch
from prototorch.utils import parse_data_arg, parse_distribution
# Components
class AbstractComponentsInitializer(ABC):
"""Abstract class for all components initializers."""
...
class LiteralCompInitializer(AbstractComponentsInitializer):
"""'Generate' the provided components.
Use this to 'generate' pre-initialized components elsewhere.
"""
def __init__(self, components):
self.components = components
def generate(self, num_components: int = 0):
"""Ignore `num_components` and simply return `self.components`."""
provided_num_components = len(self.components)
if provided_num_components != num_components:
wmsg = f"The number of components ({provided_num_components}) " \
f"provided to {self.__class__.__name__} " \
f"does not match the expected number ({num_components})."
warnings.warn(wmsg)
if not isinstance(self.components, torch.Tensor):
wmsg = f"Converting components to {torch.Tensor}..."
warnings.warn(wmsg)
self.components = torch.Tensor(self.components)
return self.components
class ShapeAwareCompInitializer(AbstractComponentsInitializer):
"""Abstract class for all dimension-aware components initializers."""
def __init__(self, shape: Union[Iterable, int]):
if isinstance(shape, Iterable):
self.component_shape = tuple(shape)
else:
self.component_shape = (shape, )
@abstractmethod
def generate(self, num_components: int):
...
class ZerosCompInitializer(ShapeAwareCompInitializer):
"""Generate zeros corresponding to the components shape."""
def generate(self, num_components: int):
components = torch.zeros((num_components, ) + self.component_shape)
return components
class OnesCompInitializer(ShapeAwareCompInitializer):
"""Generate ones corresponding to the components shape."""
def generate(self, num_components: int):
components = torch.ones((num_components, ) + self.component_shape)
return components
class FillValueCompInitializer(OnesCompInitializer):
"""Generate components with the provided `fill_value`."""
def __init__(self, shape, fill_value: float = 1.0):
super().__init__(shape)
self.fill_value = fill_value
def generate(self, num_components: int):
ones = super().generate(num_components)
components = ones.fill_(self.fill_value)
return components
class UniformCompInitializer(OnesCompInitializer):
"""Generate components by sampling from a continuous uniform distribution."""
def __init__(self, shape, minimum=0.0, maximum=1.0, scale=1.0):
super().__init__(shape)
self.minimum = minimum
self.maximum = maximum
self.scale = scale
def generate(self, num_components: int):
ones = super().generate(num_components)
components = self.scale * ones.uniform_(self.minimum, self.maximum)
return components
class RandomNormalCompInitializer(OnesCompInitializer):
"""Generate components by sampling from a standard normal distribution."""
def __init__(self, shape, shift=0.0, scale=1.0):
super().__init__(shape)
self.shift = shift
self.scale = scale
def generate(self, num_components: int):
ones = super().generate(num_components)
components = self.scale * (torch.randn_like(ones) + self.shift)
return components
class AbstractDataAwareCompInitializer(AbstractComponentsInitializer):
"""Abstract class for all data-aware components initializers.
Components generated by data-aware components initializers inherit the shape
of the provided data.
`data` has to be a torch tensor.
"""
def __init__(self,
data: torch.Tensor,
noise: float = 0.0,
transform: Callable = torch.nn.Identity()):
self.data = data
self.noise = noise
self.transform = transform
def generate_end_hook(self, samples):
drift = torch.rand_like(samples) * self.noise
components = self.transform(samples + drift)
return components
@abstractmethod
def generate(self, num_components: int):
...
return self.generate_end_hook(...)
def __del__(self):
del self.data
class DataAwareCompInitializer(AbstractDataAwareCompInitializer):
"""'Generate' the components from the provided data."""
def generate(self, num_components: int = 0):
"""Ignore `num_components` and simply return transformed `self.data`."""
components = self.generate_end_hook(self.data)
return components
class SelectionCompInitializer(AbstractDataAwareCompInitializer):
"""Generate components by uniformly sampling from the provided data."""
def generate(self, num_components: int):
indices = torch.LongTensor(num_components).random_(0, len(self.data))
samples = self.data[indices]
components = self.generate_end_hook(samples)
return components
class MeanCompInitializer(AbstractDataAwareCompInitializer):
"""Generate components by computing the mean of the provided data."""
def generate(self, num_components: int):
mean = self.data.mean(dim=0)
repeat_dim = [num_components] + [1] * len(mean.shape)
samples = mean.repeat(repeat_dim)
components = self.generate_end_hook(samples)
return components
class AbstractClassAwareCompInitializer(AbstractComponentsInitializer):
"""Abstract class for all class-aware components initializers.
Components generated by class-aware components initializers inherit the shape
of the provided data.
`data` could be a torch Dataset or DataLoader or a list/tuple of data and
target tensors.
"""
def __init__(self,
data,
noise: float = 0.0,
transform: Callable = torch.nn.Identity()):
self.data, self.targets = parse_data_arg(data)
self.noise = noise
self.transform = transform
self.clabels = torch.unique(self.targets).int().tolist()
self.num_classes = len(self.clabels)
def generate_end_hook(self, samples):
drift = torch.rand_like(samples) * self.noise
components = self.transform(samples + drift)
return components
@abstractmethod
def generate(self, distribution: Union[dict, list, tuple]):
...
return self.generate_end_hook(...)
def __del__(self):
del self.data
del self.targets
class ClassAwareCompInitializer(AbstractClassAwareCompInitializer):
"""'Generate' components from provided data and requested distribution."""
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `distribution` and simply return transformed `self.data`."""
components = self.generate_end_hook(self.data)
return components
class AbstractStratifiedCompInitializer(AbstractClassAwareCompInitializer):
"""Abstract class for all stratified components initializers."""
@property
@abstractmethod
def subinit_type(self) -> Type[AbstractDataAwareCompInitializer]:
...
def generate(self, distribution: Union[dict, list, tuple]):
distribution = parse_distribution(distribution)
components = torch.tensor([])
for k, v in distribution.items():
stratified_data = self.data[self.targets == k]
if len(stratified_data) == 0:
raise ValueError(f"No data available for class {k}.")
initializer = self.subinit_type(
stratified_data,
noise=self.noise,
transform=self.transform,
)
samples = initializer.generate(num_components=v)
components = torch.cat([components, samples])
return components
class StratifiedSelectionCompInitializer(AbstractStratifiedCompInitializer):
"""Generate components using stratified sampling from the provided data."""
@property
def subinit_type(self):
return SelectionCompInitializer
class StratifiedMeanCompInitializer(AbstractStratifiedCompInitializer):
"""Generate components at stratified means of the provided data."""
@property
def subinit_type(self):
return MeanCompInitializer
# Labels
class AbstractLabelsInitializer(ABC):
"""Abstract class for all labels initializers."""
@abstractmethod
def generate(self, distribution: Union[dict, list, tuple]):
...
class LiteralLabelsInitializer(AbstractLabelsInitializer):
"""'Generate' the provided labels.
Use this to 'generate' pre-initialized labels elsewhere.
"""
def __init__(self, labels):
self.labels = labels
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `distribution` and simply return `self.labels`.
Convert to long tensor, if necessary.
"""
labels = self.labels
if not isinstance(labels, torch.LongTensor):
wmsg = f"Converting labels to {torch.LongTensor}..."
warnings.warn(wmsg)
labels = torch.LongTensor(labels)
return labels
class DataAwareLabelsInitializer(AbstractLabelsInitializer):
"""'Generate' the labels from a torch Dataset."""
def __init__(self, data):
self.data, self.targets = parse_data_arg(data)
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `num_components` and simply return `self.targets`."""
return self.targets
class LabelsInitializer(AbstractLabelsInitializer):
"""Generate labels from `distribution`."""
def generate(self, distribution: Union[dict, list, tuple]):
distribution = parse_distribution(distribution)
labels_list = []
for k, v in distribution.items():
labels_list.extend([k] * v)
labels = torch.LongTensor(labels_list)
return labels
class OneHotLabelsInitializer(LabelsInitializer):
"""Generate one-hot-encoded labels from `distribution`."""
def generate(self, distribution: Union[dict, list, tuple]):
distribution = parse_distribution(distribution)
num_classes = len(distribution.keys())
# this breaks if class labels are not [0,...,nclasses]
labels = torch.eye(num_classes)[super().generate(distribution)]
return labels
# Reasonings
def compute_distribution_shape(distribution):
distribution = parse_distribution(distribution)
num_components = sum(distribution.values())
num_classes = len(distribution.keys())
return (num_components, num_classes, 2)
class AbstractReasoningsInitializer(ABC):
"""Abstract class for all reasonings initializers."""
def __init__(self, components_first: bool = True):
self.components_first = components_first
def generate_end_hook(self, reasonings):
if not self.components_first:
reasonings = reasonings.permute(2, 1, 0)
return reasonings
@abstractmethod
def generate(self, distribution: Union[dict, list, tuple]):
...
return self.generate_end_hook(...)
class LiteralReasoningsInitializer(AbstractReasoningsInitializer):
"""'Generate' the provided reasonings.
Use this to 'generate' pre-initialized reasonings elsewhere.
"""
def __init__(self, reasonings, **kwargs):
super().__init__(**kwargs)
self.reasonings = reasonings
def generate(self, distribution: Union[dict, list, tuple]):
"""Ignore `distributuion` and simply return self.reasonings."""
reasonings = self.reasonings
if not isinstance(reasonings, torch.Tensor):
wmsg = f"Converting reasonings to {torch.Tensor}..."
warnings.warn(wmsg)
reasonings = torch.Tensor(reasonings)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class ZerosReasoningsInitializer(AbstractReasoningsInitializer):
"""Reasonings are all initialized with zeros."""
def generate(self, distribution: Union[dict, list, tuple]):
shape = compute_distribution_shape(distribution)
reasonings = torch.zeros(*shape)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class OnesReasoningsInitializer(AbstractReasoningsInitializer):
"""Reasonings are all initialized with ones."""
def generate(self, distribution: Union[dict, list, tuple]):
shape = compute_distribution_shape(distribution)
reasonings = torch.ones(*shape)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class RandomReasoningsInitializer(AbstractReasoningsInitializer):
"""Reasonings are randomly initialized."""
def __init__(self, minimum=0.4, maximum=0.6, **kwargs):
super().__init__(**kwargs)
self.minimum = minimum
self.maximum = maximum
def generate(self, distribution: Union[dict, list, tuple]):
shape = compute_distribution_shape(distribution)
reasonings = torch.ones(*shape).uniform_(self.minimum, self.maximum)
reasonings = self.generate_end_hook(reasonings)
return reasonings
class PurePositiveReasoningsInitializer(AbstractReasoningsInitializer):
"""Each component reasons positively for exactly one class."""
def generate(self, distribution: Union[dict, list, tuple]):
num_components, num_classes, _ = compute_distribution_shape(
distribution)
A = OneHotLabelsInitializer().generate(distribution)
B = torch.zeros(num_components, num_classes)
reasonings = torch.stack([A, B], dim=-1)
reasonings = self.generate_end_hook(reasonings)
return reasonings
# Transforms
class AbstractTransformInitializer(ABC):
"""Abstract class for all transform initializers."""
...
class AbstractLinearTransformInitializer(AbstractTransformInitializer):
"""Abstract class for all linear transform initializers."""
def __init__(self, out_dim_first: bool = False):
self.out_dim_first = out_dim_first
def generate_end_hook(self, weights):
if self.out_dim_first:
weights = weights.permute(1, 0)
return weights
@abstractmethod
def generate(self, in_dim: int, out_dim: int):
...
return self.generate_end_hook(...)
class ZerosLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with zeros."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.zeros(in_dim, out_dim)
return self.generate_end_hook(weights)
class OnesLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with ones."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.ones(in_dim, out_dim)
return self.generate_end_hook(weights)
class RandomLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with random values."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.rand(in_dim, out_dim)
return self.generate_end_hook(weights)
class EyeLinearTransformInitializer(AbstractLinearTransformInitializer):
"""Initialize a matrix with the largest possible identity matrix."""
def generate(self, in_dim: int, out_dim: int):
weights = torch.zeros(in_dim, out_dim)
I = torch.eye(min(in_dim, out_dim))
weights[:I.shape[0], :I.shape[1]] = I
return self.generate_end_hook(weights)
class AbstractDataAwareLTInitializer(AbstractLinearTransformInitializer):
"""Abstract class for all data-aware linear transform initializers."""
def __init__(self,
data: torch.Tensor,
noise: float = 0.0,
transform: Callable = torch.nn.Identity(),
out_dim_first: bool = False):
super().__init__(out_dim_first)
self.data = data
self.noise = noise
self.transform = transform
def generate_end_hook(self, weights: torch.Tensor):
drift = torch.rand_like(weights) * self.noise
weights = self.transform(weights + drift)
if self.out_dim_first:
weights = weights.permute(1, 0)
return weights
class PCALinearTransformInitializer(AbstractDataAwareLTInitializer):
"""Initialize a matrix with Eigenvectors from the data."""
def generate(self, in_dim: int, out_dim: int):
_, _, weights = torch.pca_lowrank(self.data, q=out_dim)
return self.generate_end_hook(weights)
class LiteralLinearTransformInitializer(AbstractDataAwareLTInitializer):
"""'Generate' the provided weights."""
def generate(self, in_dim: int, out_dim: int):
return self.generate_end_hook(self.data)
# Aliases - Components
CACI = ClassAwareCompInitializer
DACI = DataAwareCompInitializer
FVCI = FillValueCompInitializer
LCI = LiteralCompInitializer
MCI = MeanCompInitializer
OCI = OnesCompInitializer
RNCI = RandomNormalCompInitializer
SCI = SelectionCompInitializer
SMCI = StratifiedMeanCompInitializer
SSCI = StratifiedSelectionCompInitializer
UCI = UniformCompInitializer
ZCI = ZerosCompInitializer
# Aliases - Labels
DLI = DataAwareLabelsInitializer
LI = LabelsInitializer
LLI = LiteralLabelsInitializer
OHLI = OneHotLabelsInitializer
# Aliases - Reasonings
LRI = LiteralReasoningsInitializer
ORI = OnesReasoningsInitializer
PPRI = PurePositiveReasoningsInitializer
RRI = RandomReasoningsInitializer
ZRI = ZerosReasoningsInitializer
# Aliases - Transforms
ELTI = Eye = EyeLinearTransformInitializer
OLTI = OnesLinearTransformInitializer
RLTI = RandomLinearTransformInitializer
ZLTI = ZerosLinearTransformInitializer
PCALTI = PCALinearTransformInitializer
LLTI = LiteralLinearTransformInitializer

184
prototorch/core/losses.py Normal file
View File

@ -0,0 +1,184 @@
"""ProtoTorch losses"""
import torch
from prototorch.nn.activations import get_activation
# Helpers
def _get_matcher(targets, labels):
"""Returns a boolean tensor."""
matcher = torch.eq(targets.unsqueeze(dim=1), labels)
if labels.ndim == 2:
# if the labels are one-hot vectors
num_classes = targets.size()[1]
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
return matcher
def _get_dp_dm(distances, targets, plabels, with_indices=False):
"""Returns the d+ and d- values for a batch of distances."""
matcher = _get_matcher(targets, plabels)
not_matcher = torch.bitwise_not(matcher)
inf = torch.full_like(distances, fill_value=float("inf"))
d_matching = torch.where(matcher, distances, inf)
d_unmatching = torch.where(not_matcher, distances, inf)
dp = torch.min(d_matching, dim=-1, keepdim=True)
dm = torch.min(d_unmatching, dim=-1, keepdim=True)
if with_indices:
return dp, dm
return dp.values, dm.values
# GLVQ
def glvq_loss(distances, target_labels, prototype_labels):
"""GLVQ loss function with support for one-hot labels."""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = (dp - dm) / (dp + dm)
return mu
def lvq1_loss(distances, target_labels, prototype_labels):
"""LVQ1 loss function with support for one-hot labels.
See Section 4 [Sado&Yamada]
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
"""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = dp
mu[dp > dm] = -dm[dp > dm]
return mu
def lvq21_loss(distances, target_labels, prototype_labels):
"""LVQ2.1 loss function with support for one-hot labels.
See Section 4 [Sado&Yamada]
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
"""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = dp - dm
return mu
# Probabilistic
def _get_class_probabilities(probabilities, targets, prototype_labels):
# Create Label Mapping
uniques = prototype_labels.unique(sorted=True).tolist()
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
target_indices = torch.LongTensor(list(map(key_val.get, targets.tolist())))
whole = probabilities.sum(dim=1)
correct = probabilities[torch.arange(len(probabilities)), target_indices]
wrong = whole - correct
return whole, correct, wrong
def nllr_loss(probabilities, targets, prototype_labels):
"""Compute the Negative Log-Likelihood Ratio loss."""
_, correct, wrong = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / wrong
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood
def rslvq_loss(probabilities, targets, prototype_labels):
"""Compute the Robust Soft Learning Vector Quantization (RSLVQ) loss."""
whole, correct, _ = _get_class_probabilities(probabilities, targets,
prototype_labels)
likelihood = correct / whole
log_likelihood = torch.log(likelihood)
return -1.0 * log_likelihood
def margin_loss(y_pred, y_true, margin=0.3):
"""Compute the margin loss."""
dp = torch.sum(y_true * y_pred, dim=-1)
dm = torch.max(y_pred - y_true, dim=-1).values
return torch.nn.functional.relu(dm - dp + margin)
class GLVQLoss(torch.nn.Module):
def __init__(self,
margin=0.0,
transfer_fn="identity",
beta=10,
add_dp=False,
**kwargs):
super().__init__(**kwargs)
self.margin = margin
self.transfer_fn = get_activation(transfer_fn)
self.beta = torch.tensor(beta)
self.add_dp = add_dp
def forward(self, outputs, targets, plabels):
# mu = glvq_loss(outputs, targets, plabels)
dp, dm = _get_dp_dm(outputs, targets, plabels)
mu = (dp - dm) / (dp + dm)
if self.add_dp:
mu = mu + dp
batch_loss = self.transfer_fn(mu + self.margin, beta=self.beta)
return batch_loss.sum()
class MarginLoss(torch.nn.modules.loss._Loss):
def __init__(self,
margin=0.3,
size_average=None,
reduce=None,
reduction="mean"):
super().__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, y_pred, y_true):
return margin_loss(y_pred, y_true, self.margin)
class NeuralGasEnergy(torch.nn.Module):
def __init__(self, lm, **kwargs):
super().__init__(**kwargs)
self.lm = lm
def forward(self, d):
order = torch.argsort(d, dim=1)
ranks = torch.argsort(order, dim=1)
cost = torch.sum(self._nghood_fn(ranks, self.lm) * d)
return cost, order
def extra_repr(self):
return f"lambda: {self.lm}"
@staticmethod
def _nghood_fn(rankings, lm):
return torch.exp(-rankings / lm)
class GrowingNeuralGasEnergy(NeuralGasEnergy):
def __init__(self, topology_layer, **kwargs):
super().__init__(**kwargs)
self.topology_layer = topology_layer
@staticmethod
def _nghood_fn(rankings, topology):
winner = rankings[:, 0]
weights = torch.zeros_like(rankings, dtype=torch.float)
weights[torch.arange(rankings.shape[0]), winner] = 1.0
neighbours = topology.get_neighbours(winner)
weights[neighbours] = 0.1
return weights

108
prototorch/core/pooling.py Normal file
View File

@ -0,0 +1,108 @@
"""ProtoTorch pooling"""
from typing import Callable
import torch
def stratify_with(values: torch.Tensor,
labels: torch.LongTensor,
fn: Callable,
fill_value: float = 0.0) -> (torch.Tensor):
"""Apply an arbitrary stratification strategy on the columns on `values`.
The outputs correspond to sorted labels.
"""
clabels = torch.unique(labels, dim=0, sorted=True)
num_classes = clabels.size()[0]
if values.size()[1] == num_classes:
# skip if stratification is trivial
return values
batch_size = values.size()[0]
winning_values = torch.zeros(num_classes, batch_size, device=labels.device)
filler = torch.full_like(values.T, fill_value=fill_value)
for i, cl in enumerate(clabels):
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
if labels.ndim == 2:
# if the labels are one-hot vectors
matcher = torch.eq(torch.sum(matcher, dim=-1), num_classes)
cdists = torch.where(matcher, values.T, filler).T
winning_values[i] = fn(cdists)
if labels.ndim == 2:
# Transpose to return with `batch_size` first and
# reverse the columns to fix the ordering of the classes
return torch.flip(winning_values.T, dims=(1, ))
return winning_values.T # return with `batch_size` first
def stratified_sum_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise sum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.sum(x, dim=1, keepdim=True).squeeze(),
fill_value=0.0)
return winning_values
def stratified_min_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise minimum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.min(x, dim=1, keepdim=True).values.squeeze(),
fill_value=float("inf"))
return winning_values
def stratified_max_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.max(x, dim=1, keepdim=True).values.squeeze(),
fill_value=-1.0 * float("inf"))
return winning_values
def stratified_prod_pooling(values: torch.Tensor,
labels: torch.LongTensor) -> (torch.Tensor):
"""Group-wise maximum."""
winning_values = stratify_with(
values,
labels,
fn=lambda x: torch.prod(x, dim=1, keepdim=True).squeeze(),
fill_value=1.0)
return winning_values
class StratifiedSumPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_sum_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_sum_pooling(values, labels)
class StratifiedProdPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_prod_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_prod_pooling(values, labels)
class StratifiedMinPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_min_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_min_pooling(values, labels)
class StratifiedMaxPooling(torch.nn.Module):
"""Thin wrapper over the `stratified_max_pooling` function."""
def forward(self, values, labels): # pylint: disable=no-self-use
return stratified_max_pooling(values, labels)

View File

@ -1,7 +1,19 @@
"""ProtoTorch similarity functions.""" """ProtoTorch similarities."""
import torch import torch
from .distances import euclidean_distance
def gaussian(x, variance=1.0):
return torch.exp(-(x * x) / (2 * variance))
def euclidean_similarity(x, y, variance=1.0):
distances = euclidean_distance(x, y)
similarities = gaussian(distances, variance)
return similarities
def cosine_similarity(x, y): def cosine_similarity(x, y):
"""Compute the cosine similarity between :math:`x` and :math:`y`. """Compute the cosine similarity between :math:`x` and :math:`y`.
@ -9,6 +21,7 @@ def cosine_similarity(x, y):
Expected dimension of x is 2. Expected dimension of x is 2.
Expected dimension of y is 2. Expected dimension of y is 2.
""" """
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
norm_x = x.pow(2).sum(1).sqrt() norm_x = x.pow(2).sum(1).sqrt()
norm_y = y.pow(2).sum(1).sqrt() norm_y = y.pow(2).sum(1).sqrt()
norm_mat = norm_x.unsqueeze(-1) @ norm_y.unsqueeze(-1).T norm_mat = norm_x.unsqueeze(-1) @ norm_y.unsqueeze(-1).T

View File

@ -0,0 +1,47 @@
"""ProtoTorch transforms"""
import torch
from torch.nn.parameter import Parameter
from .initializers import (
AbstractLinearTransformInitializer,
EyeLinearTransformInitializer,
)
class LinearTransform(torch.nn.Module):
def __init__(
self,
in_dim: int,
out_dim: int,
initializer:
AbstractLinearTransformInitializer = EyeLinearTransformInitializer()):
super().__init__()
self.set_weights(in_dim, out_dim, initializer)
@property
def weights(self):
return self._weights.detach().cpu()
def _register_weights(self, weights):
self.register_parameter("_weights", Parameter(weights))
def set_weights(
self,
in_dim: int,
out_dim: int,
initializer:
AbstractLinearTransformInitializer = EyeLinearTransformInitializer()):
weights = initializer.generate(in_dim, out_dim)
self._register_weights(weights)
def forward(self, x):
return x @ self._weights
def extra_repr(self):
return f"weights: (shape: {tuple(self._weights.shape)})"
# Aliases
Omega = LinearTransform

View File

@ -1,11 +1,13 @@
"""ProtoTorch datasets.""" """ProtoTorch datasets"""
from .abstract import NumpyDataset from .abstract import CSVDataset, NumpyDataset
from .sklearn import (
Blobs,
Circles,
Iris,
Moons,
Random,
)
from .spiral import Spiral from .spiral import Spiral
from .tecator import Tecator from .tecator import Tecator
from .xor import XOR
__all__ = [
"NumpyDataset",
"Spiral",
"Tecator",
]

View File

@ -1,31 +1,26 @@
"""ProtoTorch abstract dataset classes. """ProtoTorch abstract dataset classes
Based on `torchvision.VisionDataset` and `torchvision.MNIST` Based on `torchvision.VisionDataset` and `torchvision.MNIST`.
For the original code, see: For the original code, see:
https://github.com/pytorch/vision/blob/master/torchvision/datasets/vision.py https://github.com/pytorch/vision/blob/master/torchvision/datasets/vision.py
https://github.com/pytorch/vision/blob/master/torchvision/datasets/mnist.py https://github.com/pytorch/vision/blob/master/torchvision/datasets/mnist.py
""" """
import os import os
import numpy as np
import torch import torch
class NumpyDataset(torch.utils.data.TensorDataset):
"""Create a PyTorch TensorDataset from NumPy arrays."""
def __init__(self, *arrays):
tensors = [torch.Tensor(arr) for arr in arrays]
super().__init__(*tensors)
class Dataset(torch.utils.data.Dataset): class Dataset(torch.utils.data.Dataset):
"""Abstract dataset class to be inherited.""" """Abstract dataset class to be inherited."""
_repr_indent = 2 _repr_indent = 2
def __init__(self, root): def __init__(self, root):
if isinstance(root, torch._six.string_classes): if isinstance(root, str):
root = os.path.expanduser(root) root = os.path.expanduser(root)
self.root = root self.root = root
@ -42,7 +37,7 @@ class ProtoDataset(Dataset):
training_file = "training.pt" training_file = "training.pt"
test_file = "test.pt" test_file = "test.pt"
def __init__(self, root, train=True, download=True, verbose=True): def __init__(self, root="", train=True, download=True, verbose=True):
super().__init__(root) super().__init__(root)
self.train = train # training set or test set self.train = train # training set or test set
self.verbose = verbose self.verbose = verbose
@ -94,3 +89,27 @@ class ProtoDataset(Dataset):
def _download(self): def _download(self):
raise NotImplementedError raise NotImplementedError
class NumpyDataset(torch.utils.data.TensorDataset):
"""Create a PyTorch TensorDataset from NumPy arrays."""
def __init__(self, data, targets):
self.data = torch.Tensor(data)
self.targets = torch.LongTensor(targets)
tensors = [self.data, self.targets]
super().__init__(*tensors)
class CSVDataset(NumpyDataset):
"""Create a Dataset from a CSV file."""
def __init__(self, filepath, target_col=-1, delimiter=',', skip_header=0):
raw = np.genfromtxt(
filepath,
delimiter=delimiter,
skip_header=skip_header,
)
data = np.delete(raw, 1, target_col)
targets = raw[:, target_col]
super().__init__(data, targets)

View File

@ -0,0 +1,165 @@
"""Thin wrappers for a few scikit-learn datasets.
URL:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
"""
from __future__ import annotations
import warnings
from typing import Sequence
from sklearn.datasets import (
load_iris,
make_blobs,
make_circles,
make_classification,
make_moons,
)
from prototorch.datasets.abstract import NumpyDataset
class Iris(NumpyDataset):
"""Iris Dataset by Ronald Fisher introduced in 1936.
The dataset contains four measurements from flowers of three species of iris.
.. list-table:: Iris
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 4
- 3
- 150
- 0
- 0
:param dims: select a subset of dimensions
"""
def __init__(self, dims: Sequence[int] | None = None):
x, y = load_iris(return_X_y=True)
if dims is not None:
x = x[:, dims]
super().__init__(x, y)
class Blobs(NumpyDataset):
"""Generate isotropic Gaussian blobs for clustering.
Read more at
https://scikit-learn.org/stable/datasets/sample_generators.html#sample-generators.
"""
def __init__(
self,
num_samples: int = 300,
num_features: int = 2,
seed: None | int = 0,
):
x, y = make_blobs(
num_samples,
num_features,
centers=None,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)
class Random(NumpyDataset):
"""Generate a random n-class classification problem.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.
Note: n_classes * n_clusters_per_class <= 2**n_informative must satisfy.
"""
def __init__(
self,
num_samples: int = 300,
num_features: int = 2,
num_classes: int = 2,
num_clusters: int = 2,
num_informative: None | int = None,
separation: float = 1.0,
seed: None | int = 0,
):
if not num_informative:
import math
num_informative = math.ceil(math.log2(num_classes * num_clusters))
if num_features < num_informative:
warnings.warn("Generating more features than requested.")
num_features = num_informative
x, y = make_classification(
num_samples,
num_features,
n_informative=num_informative,
n_redundant=0,
n_classes=num_classes,
n_clusters_per_class=num_clusters,
class_sep=separation,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)
class Circles(NumpyDataset):
"""Make a large circle containing a smaller circle in 2D.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
"""
def __init__(
self,
num_samples: int = 300,
noise: float = 0.3,
factor: float = 0.8,
seed: None | int = 0,
):
x, y = make_circles(
num_samples,
noise=noise,
factor=factor,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)
class Moons(NumpyDataset):
"""Make two interleaving half circles.
A simple toy dataset to visualize clustering and classification algorithms.
Read more at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
"""
def __init__(
self,
num_samples: int = 300,
noise: float = 0.3,
seed: None | int = 0,
):
x, y = make_moons(
num_samples,
noise=noise,
random_state=seed,
shuffle=False,
)
super().__init__(x, y)

View File

@ -4,18 +4,23 @@ import numpy as np
import torch import torch
def make_spiral(n_samples=500, noise=0.3): def make_spiral(num_samples=500, noise=0.3):
"""Generates the Spiral Dataset.
For use in Prototorch use `prototorch.datasets.Spiral` instead.
"""
def get_samples(n, delta_t): def get_samples(n, delta_t):
points = [] points = []
for i in range(n): for i in range(n):
r = i / n_samples * 5 r = i / num_samples * 5
t = 1.75 * i / n * 2 * np.pi + delta_t t = 1.75 * i / n * 2 * np.pi + delta_t
x = r * np.sin(t) + np.random.rand(1) * noise x = r * np.sin(t) + np.random.rand(1) * noise
y = r * np.cos(t) + np.random.rand(1) * noise y = r * np.cos(t) + np.random.rand(1) * noise
points.append([x, y]) points.append([x, y])
return points return points
n = n_samples // 2 n = num_samples // 2
positive = get_samples(n=n, delta_t=0) positive = get_samples(n=n, delta_t=0)
negative = get_samples(n=n, delta_t=np.pi) negative = get_samples(n=n, delta_t=np.pi)
x = np.concatenate( x = np.concatenate(
@ -27,7 +32,28 @@ def make_spiral(n_samples=500, noise=0.3):
class Spiral(torch.utils.data.TensorDataset): class Spiral(torch.utils.data.TensorDataset):
"""Spiral dataset for binary classification.""" """Spiral dataset for binary classification.
def __init__(self, n_samples=500, noise=0.3):
x, y = make_spiral(n_samples, noise) This datasets consists of two spirals of two different classes.
.. list-table:: Spiral
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 2
- 2
- num_samples
- 0
- 0
:param num_samples: number of random samples
:param noise: noise added to the spirals
"""
def __init__(self, num_samples: int = 500, noise: float = 0.3):
x, y = make_spiral(num_samples, noise)
super().__init__(torch.Tensor(x), torch.LongTensor(y)) super().__init__(torch.Tensor(x), torch.LongTensor(y))

View File

@ -36,6 +36,7 @@ Description:
are determined by analytic chemistry. are determined by analytic chemistry.
""" """
import logging
import os import os
import numpy as np import numpy as np
@ -47,8 +48,23 @@ from prototorch.datasets.abstract import ProtoDataset
class Tecator(ProtoDataset): class Tecator(ProtoDataset):
""" """
`Tecator Dataset <http://lib.stat.cmu.edu/datasets/tecator>`__ `Tecator Dataset <http://lib.stat.cmu.edu/datasets/tecator>`__ for classification.
for classification.
The dataset contains wavelength measurements of meat.
.. list-table:: Tecator
:header-rows: 1
* - dimensions
- classes
- training size
- validation size
- test size
* - 100
- 2
- 129
- 43
- 43
""" """
_resources = [ _resources = [
@ -66,13 +82,11 @@ class Tecator(ProtoDataset):
if self._check_exists(): if self._check_exists():
return return
if self.verbose: logging.debug("Making directories...")
print("Making directories...")
os.makedirs(self.raw_folder, exist_ok=True) os.makedirs(self.raw_folder, exist_ok=True)
os.makedirs(self.processed_folder, exist_ok=True) os.makedirs(self.processed_folder, exist_ok=True)
if self.verbose: logging.debug("Downloading...")
print("Downloading...")
for fileid, md5 in self._resources: for fileid, md5 in self._resources:
filename = "tecator.npz" filename = "tecator.npz"
download_file_from_google_drive(fileid, download_file_from_google_drive(fileid,
@ -80,19 +94,18 @@ class Tecator(ProtoDataset):
filename=filename, filename=filename,
md5=md5) md5=md5)
if self.verbose: logging.debug("Processing...")
print("Processing...")
with np.load(os.path.join(self.raw_folder, "tecator.npz"), with np.load(os.path.join(self.raw_folder, "tecator.npz"),
allow_pickle=False) as f: allow_pickle=False) as f:
x_train, y_train = f["x_train"], f["y_train"] x_train, y_train = f["x_train"], f["y_train"]
x_test, y_test = f["x_test"], f["y_test"] x_test, y_test = f["x_test"], f["y_test"]
training_set = [ training_set = [
torch.tensor(x_train, dtype=torch.float32), torch.Tensor(x_train),
torch.tensor(y_train), torch.LongTensor(y_train),
] ]
test_set = [ test_set = [
torch.tensor(x_test, dtype=torch.float32), torch.Tensor(x_test),
torch.tensor(y_test), torch.LongTensor(y_test),
] ]
with open(os.path.join(self.processed_folder, self.training_file), with open(os.path.join(self.processed_folder, self.training_file),
@ -102,5 +115,4 @@ class Tecator(ProtoDataset):
"wb") as f: "wb") as f:
torch.save(test_set, f) torch.save(test_set, f)
if self.verbose: logging.debug("Done!")
print("Done!")

View File

@ -0,0 +1,19 @@
"""Exclusive-or (XOR) dataset for binary classification."""
import torch
def make_xor(num_samples=500):
x = torch.rand(num_samples, 2)
y = torch.zeros(num_samples)
y[torch.logical_and(x[:, 0] > 0.5, x[:, 1] < 0.5)] = 1
y[torch.logical_and(x[:, 1] > 0.5, x[:, 0] < 0.5)] = 1
return x, y
class XOR(torch.utils.data.TensorDataset):
"""Exclusive-or (XOR) dataset for binary classification."""
def __init__(self, num_samples: int = 500):
x, y = make_xor(num_samples)
super().__init__(x, y)

View File

@ -1,12 +0,0 @@
"""ProtoTorch functions."""
from .activations import identity, sigmoid_beta, swish_beta
from .competitions import knnc, wtac
__all__ = [
"identity",
"sigmoid_beta",
"swish_beta",
"knnc",
"wtac",
]

View File

@ -1,45 +0,0 @@
"""ProtoTorch competition functions."""
import torch
# @torch.jit.script
def stratified_min(distances, labels):
clabels = torch.unique(labels, dim=0)
nclasses = clabels.size()[0]
if distances.size()[1] == nclasses:
# skip if only one prototype per class
return distances
batch_size = distances.size()[0]
winning_distances = torch.zeros(nclasses, batch_size)
inf = torch.full_like(distances.T, fill_value=float("inf"))
# distances_to_wpluses = torch.where(matcher, distances, inf)
for i, cl in enumerate(clabels):
# cdists = distances.T[labels == cl]
matcher = torch.eq(labels.unsqueeze(dim=1), cl)
if labels.ndim == 2:
# if the labels are one-hot vectors
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
cdists = torch.where(matcher, distances.T, inf).T
winning_distances[i] = torch.min(cdists, dim=1,
keepdim=True).values.squeeze()
if labels.ndim == 2:
# Transpose to return with `batch_size` first and
# reverse the columns to fix the ordering of the classes
return torch.flip(winning_distances.T, dims=(1, ))
return winning_distances.T # return with `batch_size` first
# @torch.jit.script
def wtac(distances, labels):
winning_indices = torch.min(distances, dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels
# @torch.jit.script
def knnc(distances, labels, k):
winning_indices = torch.topk(-distances, k=k.item(), dim=1).indices
winning_labels = labels[winning_indices].squeeze()
return winning_labels

View File

@ -1,265 +0,0 @@
"""ProtoTorch distance functions."""
import numpy as np
import torch
from prototorch.functions.helper import (_check_shapes, _int_and_mixed_shape,
equal_int_shape)
def squared_euclidean_distance(x, y):
r"""Compute the squared Euclidean distance between :math:`\bm x` and :math:`\bm y`.
Compute :math:`{\langle \bm x - \bm y \rangle}_2`
:param `torch.tensor` x: Two dimensional vector
:param `torch.tensor` y: Two dimensional vector
**Alias:**
``prototorch.functions.distances.sed``
"""
expanded_x = x.unsqueeze(dim=1)
batchwise_difference = y - expanded_x
differences_raised = torch.pow(batchwise_difference, 2)
distances = torch.sum(differences_raised, axis=2)
return distances
def euclidean_distance(x, y):
r"""Compute the Euclidean distance between :math:`x` and :math:`y`.
Compute :math:`\sqrt{{\langle \bm x - \bm y \rangle}_2}`
:param `torch.tensor` x: Input Tensor of shape :math:`X \times N`
:param `torch.tensor` y: Input Tensor of shape :math:`Y \times N`
:returns: Distance Tensor of shape :math:`X \times Y`
:rtype: `torch.tensor`
"""
distances_raised = squared_euclidean_distance(x, y)
distances = torch.sqrt(distances_raised)
return distances
def euclidean_distance_v2(x, y):
diff = y - x.unsqueeze(1)
pairwise_distances = (diff @ diff.permute((0, 2, 1))).sqrt()
# Passing `dim1=-2` and `dim2=-1` to `diagonal()` takes the
# batch diagonal. See:
# https://pytorch.org/docs/stable/generated/torch.diagonal.html
distances = torch.diagonal(pairwise_distances, dim1=-2, dim2=-1)
# print(f"{diff.shape=}") # (nx, ny, ndim)
# print(f"{pairwise_distances.shape=}") # (nx, ny, ny)
# print(f"{distances.shape=}") # (nx, ny)
return distances
def lpnorm_distance(x, y, p):
r"""Calculate the lp-norm between :math:`\bm x` and :math:`\bm y`.
Also known as Minkowski distance.
Compute :math:`{\| \bm x - \bm y \|}_p`.
Calls ``torch.cdist``
:param `torch.tensor` x: Two dimensional vector
:param `torch.tensor` y: Two dimensional vector
:param p: p parameter of the lp norm
"""
distances = torch.cdist(x, y, p=p)
return distances
def omega_distance(x, y, omega):
r"""Omega distance.
Compute :math:`{\| \Omega \bm x - \Omega \bm y \|}_p`
:param `torch.tensor` x: Two dimensional vector
:param `torch.tensor` y: Two dimensional vector
:param `torch.tensor` omega: Two dimensional matrix
"""
projected_x = x @ omega
projected_y = y @ omega
distances = squared_euclidean_distance(projected_x, projected_y)
return distances
def lomega_distance(x, y, omegas):
r"""Localized Omega distance.
Compute :math:`{\| \Omega_k \bm x - \Omega_k \bm y_k \|}_p`
:param `torch.tensor` x: Two dimensional vector
:param `torch.tensor` y: Two dimensional vector
:param `torch.tensor` omegas: Three dimensional matrix
"""
projected_x = x @ omegas
projected_y = torch.diagonal(y @ omegas).T
expanded_y = torch.unsqueeze(projected_y, dim=1)
batchwise_difference = expanded_y - projected_x
differences_squared = batchwise_difference**2
distances = torch.sum(differences_squared, dim=2)
distances = distances.permute(1, 0)
return distances
def euclidean_distance_matrix(x, y, squared=False, epsilon=1e-10):
r"""Computes an euclidean distances matrix given two distinct vectors.
last dimension must be the vector dimension!
compute the distance via the identity of the dot product. This avoids the memory overhead due to the subtraction!
- ``x.shape = (number_of_x_vectors, vector_dim)``
- ``y.shape = (number_of_y_vectors, vector_dim)``
output: matrix of distances (number_of_x_vectors, number_of_y_vectors)
"""
for tensor in [x, y]:
if tensor.ndim != 2:
raise ValueError(
"The tensor dimension must be two. You provide: tensor.ndim=" +
str(tensor.ndim) + ".")
if not equal_int_shape([tuple(x.shape)[1]], [tuple(y.shape)[1]]):
raise ValueError(
"The vector shape must be equivalent in both tensors. You provide: tuple(y.shape)[1]="
+ str(tuple(x.shape)[1]) + " and tuple(y.shape)(y)[1]=" +
str(tuple(y.shape)[1]) + ".")
y = torch.transpose(y)
diss = (torch.sum(x**2, axis=1, keepdims=True) - 2 * torch.dot(x, y) +
torch.sum(y**2, axis=0, keepdims=True))
if not squared:
if epsilon == 0:
diss = torch.sqrt(diss)
else:
diss = torch.sqrt(torch.max(diss, epsilon))
return diss
def tangent_distance(signals, protos, subspaces, squared=False, epsilon=1e-10):
r"""Tangent distances based on the tensorflow implementation of Sascha Saralajews
For more info about Tangen distances see
DOI:10.1109/IJCNN.2016.7727534.
The subspaces is always assumed as transposed and must be orthogonal!
For local non sparse signals subspaces must be provided!
- shape(signals): batch x proto_number x channels x dim1 x dim2 x ... x dimN
- shape(protos): proto_number x dim1 x dim2 x ... x dimN
- shape(subspaces): (optional [proto_number]) x prod(dim1 * dim2 * ... * dimN) x prod(projected_atom_shape)
subspace should be orthogonalized
Pytorch implementation of Sascha Saralajew's tensorflow code.
Translation by Christoph Raab
"""
signal_shape, signal_int_shape = _int_and_mixed_shape(signals)
proto_shape, proto_int_shape = _int_and_mixed_shape(protos)
subspace_int_shape = tuple(subspaces.shape)
# check if the shapes are correct
_check_shapes(signal_int_shape, proto_int_shape)
atom_axes = list(range(3, len(signal_int_shape)))
# for sparse signals, we use the memory efficient implementation
if signal_int_shape[1] == 1:
signals = torch.reshape(signals, [-1, np.prod(signal_shape[3:])])
if len(atom_axes) > 1:
protos = torch.reshape(protos, [proto_shape[0], -1])
if subspaces.ndim == 2:
# clean solution without map if the matrix_scope is global
projectors = torch.eye(subspace_int_shape[-2]) - torch.dot(
subspaces, torch.transpose(subspaces))
projected_signals = torch.dot(signals, projectors)
projected_protos = torch.dot(protos, projectors)
diss = euclidean_distance_matrix(projected_signals,
projected_protos,
squared=squared,
epsilon=epsilon)
diss = torch.reshape(
diss, [signal_shape[0], signal_shape[2], proto_shape[0]])
return torch.permute(diss, [0, 2, 1])
else:
# no solution without map possible --> memory efficient but slow!
projectors = torch.eye(subspace_int_shape[-2]) - torch.bmm(
subspaces,
subspaces) # K.batch_dot(subspaces, subspaces, [2, 2])
projected_protos = (protos @ subspaces
).T # K.batch_dot(projectors, protos, [1, 1]))
def projected_norm(projector):
return torch.sum(torch.dot(signals, projector)**2, axis=1)
diss = (torch.transpose(map(projected_norm, projectors)) -
2 * torch.dot(signals, projected_protos) +
torch.sum(projected_protos**2, axis=0, keepdims=True))
if not squared:
if epsilon == 0:
diss = torch.sqrt(diss)
else:
diss = torch.sqrt(torch.max(diss, epsilon))
diss = torch.reshape(
diss, [signal_shape[0], signal_shape[2], proto_shape[0]])
return torch.permute(diss, [0, 2, 1])
else:
signals = signals.permute([0, 2, 1] + atom_axes)
diff = signals - protos
# global tangent space
if subspaces.ndim == 2:
# Scope Projectors
projectors = subspaces #
# Scope: Tangentspace Projections
diff = torch.reshape(
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
projected_diff = diff @ projectors
projected_diff = torch.reshape(
projected_diff,
(signal_shape[0], signal_shape[2], signal_shape[1]) +
signal_shape[3:],
)
diss = torch.norm(projected_diff, 2, dim=-1)
return diss.permute([0, 2, 1])
# local tangent spaces
else:
# Scope: Calculate Projectors
projectors = subspaces
# Scope: Tangentspace Projections
diff = torch.reshape(
diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
diff = diff.permute([1, 0, 2])
projected_diff = torch.bmm(diff, projectors)
projected_diff = torch.reshape(
projected_diff,
(signal_shape[1], signal_shape[0], signal_shape[2]) +
signal_shape[3:],
)
diss = torch.norm(projected_diff, 2, dim=-1)
return diss.permute([1, 0, 2]).squeeze(-1)
# Aliases
sed = squared_euclidean_distance

View File

@ -1,89 +0,0 @@
import torch
def calculate_prototype_accuracy(y_pred, y_true, plabels):
"""Computes the accuracy of a prototype based model.
via Winner-Takes-All rule.
Requirement:
y_pred.shape == y_true.shape
unique(y_pred) in plabels
"""
with torch.no_grad():
idx = torch.argmin(y_pred, axis=1)
return torch.true_divide(torch.sum(y_true == plabels[idx]),
len(y_pred)) * 100
def predict_label(y_pred, plabels):
r""" Predicts labels given a prediction of a prototype based model.
"""
with torch.no_grad():
return plabels[torch.argmin(y_pred, 1)]
def mixed_shape(inputs):
if not torch.is_tensor(inputs):
raise ValueError("Input must be a tensor.")
else:
int_shape = list(inputs.shape)
# sometimes int_shape returns mixed integer types
int_shape = [int(i) if i is not None else i for i in int_shape]
tensor_shape = inputs.shape
for i, s in enumerate(int_shape):
if s is None:
int_shape[i] = tensor_shape[i]
return tuple(int_shape)
def equal_int_shape(shape_1, shape_2):
if not isinstance(shape_1,
(tuple, list)) or not isinstance(shape_2, (tuple, list)):
raise ValueError("Input shapes must list or tuple.")
for shape in [shape_1, shape_2]:
if not all([isinstance(x, int) or x is None for x in shape]):
raise ValueError(
"Input shapes must be list or tuple of int and None values.")
if len(shape_1) != len(shape_2):
return False
else:
for axis, value in enumerate(shape_1):
if value is not None and shape_2[axis] not in {value, None}:
return False
return True
def _check_shapes(signal_int_shape, proto_int_shape):
if len(signal_int_shape) < 4:
raise ValueError(
"The number of signal dimensions must be >=4. You provide: " +
str(len(signal_int_shape)))
if len(proto_int_shape) < 2:
raise ValueError(
"The number of proto dimensions must be >=2. You provide: " +
str(len(proto_int_shape)))
if not equal_int_shape(signal_int_shape[3:], proto_int_shape[1:]):
raise ValueError(
"The atom shape of signals must be equal protos. You provide: signals.shape[3:]="
+ str(signal_int_shape[3:]) + " != protos.shape[1:]=" +
str(proto_int_shape[1:]))
# not a sparse signal
if signal_int_shape[1] != 1:
if not equal_int_shape(signal_int_shape[1:2], proto_int_shape[0:1]):
raise ValueError(
"If the signal is not sparse, the number of prototypes must be equal in signals and "
"protos. You provide: " + str(signal_int_shape[1]) + " != " +
str(proto_int_shape[0]))
return True
def _int_and_mixed_shape(tensor):
shape = mixed_shape(tensor)
int_shape = tuple([i if isinstance(i, int) else None for i in shape])
return shape, int_shape

View File

@ -1,107 +0,0 @@
"""ProtoTorch initialization functions."""
from itertools import chain
import torch
INITIALIZERS = dict()
def register_initializer(function):
"""Add the initializer to the registry."""
INITIALIZERS[function.__name__] = function
return function
def labels_from(distribution, one_hot=True):
"""Takes a distribution tensor and returns a labels tensor."""
nclasses = distribution.shape[0]
llist = [[i] * n for i, n in zip(range(nclasses), distribution)]
# labels = [l for cl in llist for l in cl] # flatten the list of lists
flat_llist = list(chain(*llist)) # flatten label list with itertools.chain
plabels = torch.tensor(flat_llist, requires_grad=False)
if one_hot:
return torch.eye(nclasses)[plabels]
return plabels
@register_initializer
def ones(x_train, y_train, prototype_distribution, one_hot=True):
nprotos = torch.sum(prototype_distribution)
protos = torch.ones(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution, one_hot)
return protos, plabels
@register_initializer
def zeros(x_train, y_train, prototype_distribution, one_hot=True):
nprotos = torch.sum(prototype_distribution)
protos = torch.zeros(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution, one_hot)
return protos, plabels
@register_initializer
def rand(x_train, y_train, prototype_distribution, one_hot=True):
nprotos = torch.sum(prototype_distribution)
protos = torch.rand(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution, one_hot)
return protos, plabels
@register_initializer
def randn(x_train, y_train, prototype_distribution, one_hot=True):
nprotos = torch.sum(prototype_distribution)
protos = torch.randn(nprotos, *x_train.shape[1:])
plabels = labels_from(prototype_distribution, one_hot)
return protos, plabels
@register_initializer
def stratified_mean(x_train, y_train, prototype_distribution, one_hot=True):
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution, one_hot)
for i, label in enumerate(plabels):
matcher = torch.eq(label.unsqueeze(dim=0), y_train)
if one_hot:
nclasses = y_train.size()[1]
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
xl = x_train[matcher]
mean_xl = torch.mean(xl, dim=0)
protos[i] = mean_xl
plabels = labels_from(prototype_distribution, one_hot=one_hot)
return protos, plabels
@register_initializer
def stratified_random(x_train,
y_train,
prototype_distribution,
one_hot=True,
epsilon=1e-7):
nprotos = torch.sum(prototype_distribution)
pdim = x_train.shape[1]
protos = torch.empty(nprotos, pdim)
plabels = labels_from(prototype_distribution, one_hot)
for i, label in enumerate(plabels):
matcher = torch.eq(label.unsqueeze(dim=0), y_train)
if one_hot:
nclasses = y_train.size()[1]
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
xl = x_train[matcher]
rand_index = torch.zeros(1).long().random_(0, xl.shape[0] - 1)
random_xl = xl[rand_index]
protos[i] = random_xl + epsilon
plabels = labels_from(prototype_distribution, one_hot=one_hot)
return protos, plabels
def get_initializer(funcname):
"""Deserialize the initializer."""
if callable(funcname):
return funcname
if funcname in INITIALIZERS:
return INITIALIZERS.get(funcname)
raise NameError(f"Initializer {funcname} was not found.")

View File

@ -1,56 +0,0 @@
"""ProtoTorch loss functions."""
import torch
def _get_matcher(targets, labels):
"""Returns a boolean tensor."""
matcher = torch.eq(targets.unsqueeze(dim=1), labels)
if labels.ndim == 2:
# if the labels are one-hot vectors
nclasses = targets.size()[1]
matcher = torch.eq(torch.sum(matcher, dim=-1), nclasses)
return matcher
def _get_dp_dm(distances, targets, plabels):
"""Returns the d+ and d- values for a batch of distances."""
matcher = _get_matcher(targets, plabels)
not_matcher = torch.bitwise_not(matcher)
inf = torch.full_like(distances, fill_value=float("inf"))
d_matching = torch.where(matcher, distances, inf)
d_unmatching = torch.where(not_matcher, distances, inf)
dp = torch.min(d_matching, dim=1, keepdim=True).values
dm = torch.min(d_unmatching, dim=1, keepdim=True).values
return dp, dm
def glvq_loss(distances, target_labels, prototype_labels):
"""GLVQ loss function with support for one-hot labels."""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = (dp - dm) / (dp + dm)
return mu
def lvq1_loss(distances, target_labels, prototype_labels):
"""LVQ1 loss function with support for one-hot labels.
See Section 4 [Sado&Yamada]
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
"""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = dp
mu[dp > dm] = -dm[dp > dm]
return mu
def lvq21_loss(distances, target_labels, prototype_labels):
"""LVQ2.1 loss function with support for one-hot labels.
See Section 4 [Sado&Yamada]
https://papers.nips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf
"""
dp, dm = _get_dp_dm(distances, target_labels, prototype_labels)
mu = dp - dm
return mu

View File

@ -1,35 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import torch
def orthogonalization(tensors):
r""" Orthogonalization of a given tensor via polar decomposition.
"""
u, _, v = torch.svd(tensors, compute_uv=True)
u_shape = tuple(list(u.shape))
v_shape = tuple(list(v.shape))
# reshape to (num x N x M)
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
out = u @ v.permute([0, 2, 1])
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
return out
def trace_normalization(tensors):
r""" Trace normalization
"""
epsilon = torch.tensor([1e-10], dtype=torch.float64)
# Scope trace_normalization
constant = torch.trace(tensors)
if epsilon != 0:
constant = torch.max(constant, epsilon)
return tensors / constant

View File

@ -1,7 +0,0 @@
"""ProtoTorch modules."""
from .prototypes import Prototypes1D
__all__ = [
"Prototypes1D",
]

View File

@ -1,40 +0,0 @@
"""ProtoTorch losses."""
import torch
from prototorch.functions.activations import get_activation
from prototorch.functions.losses import glvq_loss
class GLVQLoss(torch.nn.Module):
def __init__(self, margin=0.0, squashing="identity", beta=10, **kwargs):
super().__init__(**kwargs)
self.margin = margin
self.squashing = get_activation(squashing)
self.beta = torch.tensor(beta)
def forward(self, outputs, targets):
distances, plabels = outputs
mu = glvq_loss(distances, targets, prototype_labels=plabels)
batch_loss = self.squashing(mu + self.margin, beta=self.beta)
return torch.sum(batch_loss, dim=0)
class NeuralGasEnergy(torch.nn.Module):
def __init__(self, lm):
super().__init__()
self.lm = lm
def forward(self, d):
order = torch.argsort(d, dim=1)
ranks = torch.argsort(order, dim=1)
cost = torch.sum(self._nghood_fn(ranks, self.lm) * d)
return cost, order
def extra_repr(self):
return f"lambda: {self.lm}"
@staticmethod
def _nghood_fn(rankings, lm):
return torch.exp(-rankings / lm)

View File

@ -1,195 +0,0 @@
import torch
from torch import nn
from prototorch.functions.distances import (euclidean_distance_matrix,
tangent_distance)
from prototorch.functions.helper import _check_shapes, _int_and_mixed_shape
from prototorch.functions.normalization import orthogonalization
from prototorch.modules.prototypes import Prototypes1D
class GTLVQ(nn.Module):
r""" Generalized Tangent Learning Vector Quantization
Parameters
----------
num_classes: int
Number of classes of the given classification problem.
subspace_data: torch.tensor of shape (n_batch,feature_dim,feature_dim)
Subspace data for the point approximation, required
prototype_data: torch.tensor of shape (n_init_data,feature_dim) (optional)
prototype data for initalization of the prototypes used in GTLVQ.
subspace_size: int (default=256,optional)
Subspace dimension of the Projectors. Currently only supported
with tagnent_projection_type=global.
tangent_projection_type: string
Specifies the tangent projection type
options: local
local_proj
global
local: computes the tangent distances without emphasizing projected
data. Only distances are available
local_proj: computs tangent distances and returns the projected data
for further use. Be careful: data is repeated by number of prototypes
global: Number of subspaces is set to one and every prototypes
uses the same.
prototypes_per_class: int (default=2,optional)
Number of prototypes per class
feature_dim: int (default=256)
Dimensionality of the feature space specified as integer.
Prototype dimension.
Notes
-----
The GTLVQ [1] is a prototype-based classification learning model. The
GTLVQ uses the Tangent-Distances for a local point approximation
of an assumed data manifold via prototypial representations.
The GTLVQ requires subspace projectors for transforming the data
and prototypes into the affine subspace. Every prototype is
equipped with a specific subpspace and represents a point
approximation of the assumed manifold.
In practice prototypes and data are projected on this manifold
and pairwise euclidean distance computes.
References
----------
.. [1] Saralajew, Sascha; Villmann, Thomas: Transfer learning
in classification based on manifolc. models and its relation
to tangent metric learning. In: 2017 International Joint
Conference on Neural Networks (IJCNN).
Bd. 2017-May : IEEE, 2017, S. 17561765
"""
def __init__(
self,
num_classes,
subspace_data=None,
prototype_data=None,
subspace_size=256,
tangent_projection_type="local",
prototypes_per_class=2,
feature_dim=256,
):
super(GTLVQ, self).__init__()
self.num_protos = num_classes * prototypes_per_class
self.subspace_size = feature_dim if subspace_size is None else subspace_size
self.feature_dim = feature_dim
if subspace_data is None:
raise ValueError("Init Data must be specified!")
self.tpt = tangent_projection_type
with torch.no_grad():
if self.tpt == "local" or self.tpt == "local_proj":
self.init_local_subspace(subspace_data)
elif self.tpt == "global":
self.init_gobal_subspace(subspace_data, subspace_size)
else:
self.subspaces = None
# Hypothesis-Margin-Classifier
self.cls = Prototypes1D(
input_dim=feature_dim,
prototypes_per_class=prototypes_per_class,
nclasses=num_classes,
prototype_initializer="stratified_mean",
data=prototype_data,
)
def forward(self, x):
# Tangent Projection
if self.tpt == "local_proj":
x_conform = (x.unsqueeze(1).repeat_interleave(self.num_protos,
1).unsqueeze(2))
dis, proj_x = self.local_tangent_projection(x_conform)
proj_x = proj_x.reshape(x.shape[0] * self.num_protos,
self.feature_dim)
return proj_x, dis
elif self.tpt == "local":
x_conform = (x.unsqueeze(1).repeat_interleave(self.num_protos,
1).unsqueeze(2))
dis = tangent_distance(x_conform, self.cls.prototypes,
self.subspaces)
elif self.tpt == "gloabl":
dis = self.global_tangent_distances(x)
else:
dis = (x @ self.cls.prototypes.T) / (
torch.norm(x, dim=1, keepdim=True) @ torch.norm(
self.cls.prototypes, dim=1, keepdim=True).T)
return dis
def init_gobal_subspace(self, data, num_subspaces):
_, _, v = torch.svd(data)
subspace = (torch.eye(v.shape[0]) - (v @ v.T)).T
subspaces = subspace[:, :num_subspaces]
self.subspaces = (torch.nn.Parameter(
subspaces).clone().detach().requires_grad_(True))
def init_local_subspace(self, data):
_, _, v = torch.svd(data)
inital_projector = (torch.eye(v.shape[0]) - (v @ v.T)).T
subspaces = inital_projector.unsqueeze(0).repeat_interleave(
self.num_protos, 0)
self.subspaces = (torch.nn.Parameter(
subspaces).clone().detach().requires_grad_(True))
def global_tangent_distances(self, x):
# Tangent Projection
x, projected_prototypes = (
x @ self.subspaces,
self.cls.prototypes @ self.subspaces,
)
# Euclidean Distance
return euclidean_distance_matrix(x, projected_prototypes)
def local_tangent_projection(self, signals):
# Note: subspaces is always assumed as transposed and must be orthogonal!
# shape(signals): batch x proto_number x channels x dim1 x dim2 x ... x dimN
# shape(protos): proto_number x dim1 x dim2 x ... x dimN
# shape(subspaces): (optional [proto_number]) x prod(dim1 * dim2 * ... * dimN) x prod(projected_atom_shape)
# subspace should be orthogonalized
# Origin Source Code
# Origin Author:
protos = self.cls.prototypes
subspaces = self.subspaces
signal_shape, signal_int_shape = _int_and_mixed_shape(signals)
_, proto_int_shape = _int_and_mixed_shape(protos)
# check if the shapes are correct
_check_shapes(signal_int_shape, proto_int_shape)
# Tangent Data Projections
projected_protos = torch.bmm(protos.unsqueeze(1), subspaces).squeeze(1)
data = signals.squeeze(2).permute([1, 0, 2])
projected_data = torch.bmm(data, subspaces)
projected_data = projected_data.permute([1, 0, 2]).unsqueeze(1)
diff = projected_data - projected_protos
projected_diff = torch.reshape(
diff, (signal_shape[1], signal_shape[0], signal_shape[2]) +
signal_shape[3:])
diss = torch.norm(projected_diff, 2, dim=-1)
return diss.permute([1, 0, 2]).squeeze(-1), projected_data.squeeze(1)
def get_parameters(self):
return {
"params": self.cls.prototypes,
}, {
"params": self.subspaces
}
def orthogonalize_subspace(self):
if self.subspaces is not None:
with torch.no_grad():
ortho_subpsaces = (orthogonalization(self.subspaces)
if self.tpt == "global" else
torch.nn.init.orthogonal_(self.subspaces))
self.subspaces.copy_(ortho_subpsaces)

View File

@ -1,137 +0,0 @@
"""ProtoTorch prototype modules."""
import warnings
import torch
from prototorch.functions.initializers import get_initializer
class _Prototypes(torch.nn.Module):
"""Abstract prototypes class."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _validate_prototype_distribution(self):
if 0 in self.prototype_distribution:
warnings.warn("Are you sure about the `0` in "
"`prototype_distribution`?")
def extra_repr(self):
return f"prototypes.shape: {tuple(self.prototypes.shape)}"
def forward(self):
return self.prototypes, self.prototype_labels
class Prototypes1D(_Prototypes):
"""Create a learnable set of one-dimensional prototypes.
TODO Complete this doc-string.
"""
def __init__(
self,
prototypes_per_class=1,
prototype_initializer="ones",
prototype_distribution=None,
data=None,
dtype=torch.float32,
one_hot_labels=False,
**kwargs,
):
warnings.warn(
PendingDeprecationWarning(
"Prototypes1D will be replaced in future versions."))
# Convert tensors to python lists before processing
if prototype_distribution is not None:
if not isinstance(prototype_distribution, list):
prototype_distribution = prototype_distribution.tolist()
if data is None:
if "input_dim" not in kwargs:
raise NameError("`input_dim` required if "
"no `data` is provided.")
if prototype_distribution:
kwargs_nclasses = sum(prototype_distribution)
else:
if "nclasses" not in kwargs:
raise NameError("`prototype_distribution` required if "
"both `data` and `nclasses` are not "
"provided.")
kwargs_nclasses = kwargs.pop("nclasses")
input_dim = kwargs.pop("input_dim")
if prototype_initializer in [
"stratified_mean", "stratified_random"
]:
warnings.warn(
f"`prototype_initializer`: `{prototype_initializer}` "
"requires `data`, but `data` is not provided. "
"Using randomly generated data instead.")
x_train = torch.rand(kwargs_nclasses, input_dim)
y_train = torch.arange(kwargs_nclasses)
if one_hot_labels:
y_train = torch.eye(kwargs_nclasses)[y_train]
data = [x_train, y_train]
x_train, y_train = data
x_train = torch.as_tensor(x_train).type(dtype)
y_train = torch.as_tensor(y_train).type(torch.int)
nclasses = torch.unique(y_train, dim=-1).shape[-1]
if nclasses == 1:
warnings.warn("Are you sure about having one class only?")
if x_train.ndim != 2:
raise ValueError("`data[0].ndim != 2`.")
if y_train.ndim == 2:
if y_train.shape[1] == 1 and one_hot_labels:
raise ValueError("`one_hot_labels` is set to `True` "
"but target labels are not one-hot-encoded.")
if y_train.shape[1] != 1 and not one_hot_labels:
raise ValueError("`one_hot_labels` is set to `False` "
"but target labels in `data` "
"are one-hot-encoded.")
if y_train.ndim == 1 and one_hot_labels:
raise ValueError("`one_hot_labels` is set to `True` "
"but target labels are not one-hot-encoded.")
# Verify input dimension if `input_dim` is provided
if "input_dim" in kwargs:
input_dim = kwargs.pop("input_dim")
if input_dim != x_train.shape[1]:
raise ValueError(f"Provided `input_dim`={input_dim} does "
"not match data dimension "
f"`data[0].shape[1]`={x_train.shape[1]}")
# Verify the number of classes if `nclasses` is provided
if "nclasses" in kwargs:
kwargs_nclasses = kwargs.pop("nclasses")
if kwargs_nclasses != nclasses:
raise ValueError(f"Provided `nclasses={kwargs_nclasses}` does "
"not match data labels "
"`torch.unique(data[1]).shape[0]`"
f"={nclasses}")
super().__init__(**kwargs)
if not prototype_distribution:
prototype_distribution = [prototypes_per_class] * nclasses
with torch.no_grad():
self.prototype_distribution = torch.tensor(prototype_distribution)
self._validate_prototype_distribution()
self.prototype_initializer = get_initializer(prototype_initializer)
prototypes, prototype_labels = self.prototype_initializer(
x_train,
y_train,
prototype_distribution=self.prototype_distribution,
one_hot=one_hot_labels,
)
# Register module parameters
self.prototypes = torch.nn.Parameter(prototypes)
self.prototype_labels = torch.nn.Parameter(
prototype_labels.type(dtype)).requires_grad_(False)

View File

@ -0,0 +1,4 @@
"""ProtoTorch Neural Network Module"""
from .activations import *
from .wrappers import *

View File

@ -1,21 +1,18 @@
"""ProtoTorch activation functions.""" """ProtoTorch activations"""
import torch import torch
ACTIVATIONS = dict() ACTIVATIONS = dict()
# def register_activation(scriptf): def register_activation(fn):
# ACTIVATIONS[scriptf.name] = scriptf
# return scriptf
def register_activation(function):
"""Add the activation function to the registry.""" """Add the activation function to the registry."""
ACTIVATIONS[function.__name__] = function name = fn.__name__
return function ACTIVATIONS[name] = fn
return fn
@register_activation @register_activation
# @torch.jit.script
def identity(x, beta=0.0): def identity(x, beta=0.0):
"""Identity activation function. """Identity activation function.
@ -29,7 +26,6 @@ def identity(x, beta=0.0):
@register_activation @register_activation
# @torch.jit.script
def sigmoid_beta(x, beta=10.0): def sigmoid_beta(x, beta=10.0):
r"""Sigmoid activation function with scaling. r"""Sigmoid activation function with scaling.
@ -44,7 +40,6 @@ def sigmoid_beta(x, beta=10.0):
@register_activation @register_activation
# @torch.jit.script
def swish_beta(x, beta=10.0): def swish_beta(x, beta=10.0):
r"""Swish activation function with scaling. r"""Swish activation function with scaling.
@ -62,6 +57,10 @@ def get_activation(funcname):
"""Deserialize the activation function.""" """Deserialize the activation function."""
if callable(funcname): if callable(funcname):
return funcname return funcname
if funcname in ACTIVATIONS: elif funcname in ACTIVATIONS:
return ACTIVATIONS.get(funcname) return ACTIVATIONS.get(funcname)
raise NameError(f"Activation {funcname} was not found.") else:
emsg = f"Unable to find matching function for `{funcname}` " \
f"in `prototorch.nn.activations`. "
helpmsg = f"Possible values are {list(ACTIVATIONS.keys())}."
raise NameError(emsg + helpmsg)

38
prototorch/nn/wrappers.py Normal file
View File

@ -0,0 +1,38 @@
"""ProtoTorch wrappers."""
import torch
class LambdaLayer(torch.nn.Module):
def __init__(self, fn, name=None):
super().__init__()
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name
class LossLayer(torch.nn.modules.loss._Loss):
def __init__(self,
fn,
name=None,
size_average=None,
reduce=None,
reduction: str = "mean") -> None:
super().__init__(size_average=size_average,
reduce=reduce,
reduction=reduction)
self.fn = fn
self.name = name or fn.__name__ # lambda fns get <lambda>
def forward(self, *args, **kwargs):
return self.fn(*args, **kwargs)
def extra_repr(self):
return self.name

View File

@ -0,0 +1,13 @@
"""ProtoTorch utils module"""
from .colors import (
get_colors,
get_legend_handles,
hex_to_rgb,
rgb_to_hex,
)
from .utils import (
mesh2d,
parse_data_arg,
parse_distribution,
)

View File

@ -1,46 +0,0 @@
"""Easy matplotlib animation. From https://github.com/jwkvam/celluloid."""
from collections import defaultdict
from typing import Dict, List
from matplotlib.animation import ArtistAnimation
from matplotlib.artist import Artist
from matplotlib.figure import Figure
__version__ = "0.2.0"
class Camera:
"""Make animations easier."""
def __init__(self, figure: Figure) -> None:
"""Create camera from matplotlib figure."""
self._figure = figure
# need to keep track off artists for each axis
self._offsets: Dict[str, Dict[int, int]] = {
k: defaultdict(int)
for k in
["collections", "patches", "lines", "texts", "artists", "images"]
}
self._photos: List[List[Artist]] = []
def snap(self) -> List[Artist]:
"""Capture current state of the figure."""
frame_artists: List[Artist] = []
for i, axis in enumerate(self._figure.axes):
if axis.legend_ is not None:
axis.add_artist(axis.legend_)
for name in self._offsets:
new_artists = getattr(axis, name)[self._offsets[name][i]:]
frame_artists += new_artists
self._offsets[name][i] += len(new_artists)
self._photos.append(frame_artists)
return frame_artists
def animate(self, *args, **kwargs) -> ArtistAnimation:
"""Animate the snapshots taken.
Uses matplotlib.animation.ArtistAnimation
Returns
-------
ArtistAnimation
"""
return ArtistAnimation(self._figure, self._photos, *args, **kwargs)

View File

@ -1,78 +1,60 @@
"""ProtoFlow color utilities.""" """ProtoTorch color utilities"""
import matplotlib.lines as mlines import matplotlib.lines as mlines
import torch
from matplotlib import cm from matplotlib import cm
from matplotlib.colors import Normalize, to_hex, to_rgb from matplotlib.colors import (
Normalize,
to_hex,
to_rgb,
)
def color_scheme(n, def hex_to_rgb(hex_values):
cmap="viridis", for v in hex_values:
form="hex", v = v.lstrip('#')
tikz=False, lv = len(v)
zero_indexed=False): c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
"""Return *n* colors from the color scheme. yield c
Arguments:
n (int): number of colors to return
Keyword Arguments: def rgb_to_hex(rgb_values):
cmap (str): Name of a matplotlib `colormap\ for v in rgb_values:
<https://matplotlib.org/3.1.1/gallery/color/colormap_reference.html>`_. c = "%02x%02x%02x" % tuple(v)
form (str): Colorformat (supports "hex" and "rgb"). yield c
tikz (bool): Output as `TikZ <https://github.com/pgf-tikz/pgf>`_
command.
zero_indexed (bool): Use zero indexing for output array.
Returns:
(list): List of colors def get_colors(vmax, vmin=0, cmap="viridis"):
"""
cmap = cm.get_cmap(cmap) cmap = cm.get_cmap(cmap)
colornorm = Normalize(vmin=1, vmax=n) colornorm = Normalize(vmin=vmin, vmax=vmax)
hex_map = dict() colors = dict()
rgb_map = dict() for c in range(vmin, vmax + 1):
for cl in range(1, n + 1): colors[c] = to_hex(cmap(colornorm(c)))
if zero_indexed: return colors
hex_map[cl - 1] = to_hex(cmap(colornorm(cl)))
rgb_map[cl - 1] = to_rgb(cmap(colornorm(cl)))
else:
hex_map[cl] = to_hex(cmap(colornorm(cl)))
rgb_map[cl] = to_rgb(cmap(colornorm(cl)))
if tikz:
for k, v in rgb_map.items():
print(f"\\definecolor{{color-{k}}}{{rgb}}{{{v[0]},{v[1]},{v[2]}}}")
if form == "hex":
return hex_map
elif form == "rgb":
return rgb_map
else:
return hex_map
def get_legend_handles(labels, marker="dots", zero_indexed=False): def get_legend_handles(colors, labels, marker="dots", zero_indexed=False):
"""Return matplotlib legend handles and colors."""
handles = list() handles = list()
n = len(labels) for color, label in zip(colors.values(), labels):
colors = color_scheme(n,
cmap="viridis",
form="hex",
zero_indexed=zero_indexed)
for label, color in zip(labels, colors.values()):
if marker == "dots": if marker == "dots":
handle = mlines.Line2D( handle = mlines.Line2D(
[], xdata=[],
[], ydata=[],
label=label,
color="white", color="white",
markerfacecolor=color, markerfacecolor=color,
marker="o", marker="o",
markersize=10, markersize=10,
markeredgecolor="k", markeredgecolor="k",
label=label,
) )
else: else:
handle = mlines.Line2D([], [], handle = mlines.Line2D(
xdata=[],
ydata=[],
label=label,
color=color, color=color,
marker="", marker="",
markersize=15, markersize=15,
label=label) )
handles.append(handle) handles.append(handle)
return handles, colors return handles

View File

@ -1,243 +1,136 @@
"""Utilities that provide various small functionalities.""" """ProtoTorch utilities"""
import os import warnings
import pickle from typing import (
import sys Dict,
from time import time Iterable,
List,
Optional,
Union,
)
import matplotlib.pyplot as plt
import numpy as np import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
def progressbar(title, value, end, bar_width=20): def generate_mesh(
percent = float(value) / end minima: torch.TensorType,
arrow = "=" * int(round(percent * bar_width) - 1) + ">" maxima: torch.TensorType,
spaces = "." * (bar_width - len(arrow)) border: float = 1.0,
sys.stdout.write("\r{}: [{}] {}%".format(title, arrow + spaces, resolution: int = 100,
int(round(percent * 100)))) device: Optional[torch.device] = None,
sys.stdout.flush() ):
if percent == 1.0: # Apply Border
print() ptp = maxima - minima
shift = border * ptp
minima -= shift
maxima += shift
# Generate Mesh
minima = minima.to(device).unsqueeze(1)
maxima = maxima.to(device).unsqueeze(1)
factors = torch.linspace(0, 1, resolution, device=device)
marginals = factors * maxima + ((1 - factors) * minima)
single_dimensions = torch.meshgrid(*marginals)
mesh_input = torch.stack([dim.ravel() for dim in single_dimensions], dim=1)
return mesh_input, single_dimensions
def prettify_string(inputs, start="", sep=" ", end="\n"): def mesh2d(x=None, border: float = 1.0, resolution: int = 100):
outputs = start + " ".join(inputs.split()) + end if x is not None:
return outputs x_shift = border * np.ptp(x[:, 0])
y_shift = border * np.ptp(x[:, 1])
x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
def pretty_print(inputs): y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
print(prettify_string(inputs))
def writelog(self, *logs, logdir="./logs", logfile="run.txt"):
f = os.path.join(logdir, logfile)
with open(f, "a+") as fh:
for log in logs:
fh.write(log)
fh.write("\n")
def start_tensorboard(self, logdir="./logs"):
cmd = f"tensorboard --logdir={logdir} --port=6006"
os.system(cmd)
def make_directory(save_dir):
if not os.path.exists(save_dir):
print(f"Making directory {save_dir}.")
os.mkdir(save_dir)
def make_gif(filenames, duration, output_file=None):
try:
import imageio
except ModuleNotFoundError as e:
print("Please install Protoflow with [other] extra requirements.")
raise (e)
images = list()
for filename in filenames:
images.append(imageio.imread(filename))
if not output_file:
output_file = f"makegif.gif"
if images:
imageio.mimwrite(output_file, images, duration=duration)
def gif_from_dir(directory,
duration,
prefix="",
output_file=None,
verbose=True):
images = os.listdir(directory)
if verbose:
print(f"Making gif from {len(images)} images under {directory}.")
filenames = list()
# Sort images
images = sorted(
images,
key=lambda img: int(os.path.splitext(img)[0].replace(prefix, "")))
for image in images:
fname = os.path.join(directory, image)
filenames.append(fname)
if not output_file:
output_file = os.path.join(directory, "makegif.gif")
make_gif(filenames=filenames, duration=duration, output_file=output_file)
def accuracy_score(y_true, y_pred):
accuracy = np.sum(y_true == y_pred)
normalized_acc = accuracy / float(len(y_true))
return normalized_acc
def predict_and_score(clf,
x_test,
y_test,
verbose=False,
title="Test accuracy"):
y_pred = clf.predict(x_test)
accuracy = np.sum(y_test == y_pred)
normalized_acc = accuracy / float(len(y_test))
if verbose:
print(f"{title}: {normalized_acc * 100:06.04f}%")
return normalized_acc
def remove_nan_rows(arr):
"""Remove all rows with `nan` values in `arr`."""
mask = np.isnan(arr).any(axis=1)
return arr[~mask]
def remove_nan_cols(arr):
"""Remove all columns with `nan` values in `arr`."""
mask = np.isnan(arr).any(axis=0)
return arr[~mask]
def replace_in(arr, replacement_dict, inplace=False):
"""Replace the keys found in `arr` with the values from
the `replacement_dict`.
"""
if inplace:
new_arr = arr
else: else:
import copy x_min, x_max = -border, border
y_min, y_max = -border, border
new_arr = copy.deepcopy(arr) xx, yy = np.meshgrid(np.linspace(x_min, x_max, resolution),
for k, v in replacement_dict.items(): np.linspace(y_min, y_max, resolution))
new_arr[arr == k] = v mesh = np.c_[xx.ravel(), yy.ravel()]
return new_arr return mesh, xx, yy
def train_test_split(data, train=0.7, val=0.15, shuffle=None, return_xy=False): def distribution_from_list(list_dist: List[int],
"""Split a classification dataset in such a way so as to clabels: Optional[Iterable[int]] = None):
preserve the class distribution in subsamples of the dataset. clabels = clabels or list(range(len(list_dist)))
distribution = dict(zip(clabels, list_dist))
return distribution
def parse_distribution(
user_distribution,
clabels: Optional[Iterable[int]] = None) -> Dict[int, int]:
"""Parse user-provided distribution.
Return a dictionary with integer keys that represent the class labels and
values that denote the number of components/prototypes with that class
label.
The argument `user_distribution` could be any one of a number of allowed
formats. If it is a Python list, it is assumed that there are as many
entries in this list as there are classes, and the value at each index of
this list describes the number of prototypes for that particular class. So,
[1, 1, 1] implies that we have three classes with one prototype per class.
If it is a Python tuple, a shorthand of (num_classes, prototypes_per_class)
is assumed. If it is a Python dictionary, the key-value pairs describe the
class label and the number of prototypes for that class respectively. So,
{0: 2, 1: 2, 2: 2} implies that we have three classes with labels {1, 2,
3}, each equipped with two prototypes. If however, the dictionary contains
the keys "num_classes" and "per_class", they are parsed to use their values
as one might expect.
""" """
if train + val > 1.0: if isinstance(user_distribution, dict):
raise ValueError("Invalid split values for train and val.") if "num_classes" in user_distribution.keys():
Y = data[:, -1] num_classes = int(user_distribution["num_classes"])
labels = set(Y) per_class = int(user_distribution["per_class"])
hist = dict() return distribution_from_list([per_class] * num_classes, clabels)
for l in labels:
data_l = data[Y == l]
nl = len(data_l)
nl_train = int(nl * train)
nl_val = int(nl * val)
nl_test = nl - (nl_train + nl_val)
hist[l] = (nl_train, nl_val, nl_test)
train_data = list()
val_data = list()
test_data = list()
for l, (nl_train, nl_val, nl_test) in hist.items():
data_l = data[Y == l]
if shuffle:
np.random.shuffle(data_l)
train_l = data_l[:nl_train]
val_l = data_l[nl_train:nl_train + nl_val]
test_l = data_l[nl_train + nl_val:nl_train + nl_val + nl_test]
train_data.append(train_l)
val_data.append(val_l)
test_data.append(test_l)
def _squash(data_list):
data = np.array(data_list[0])
for item in data_list[1:]:
data = np.vstack((data, np.array(item)))
return data
train_data = _squash(train_data)
if val_data:
val_data = _squash(val_data)
if test_data:
test_data = _squash(test_data)
if return_xy:
x_train = train_data[:, :-1]
y_train = train_data[:, -1]
x_val = val_data[:, :-1]
y_val = val_data[:, -1]
x_test = test_data[:, :-1]
y_test = test_data[:, -1]
return (x_train, y_train), (x_val, y_val), (x_test, y_test)
return train_data, val_data, test_data
def class_histogram(data, title="Untitled"):
plt.figure(title)
plt.clf()
plt.title(title)
dist, counts = np.unique(data[:, -1], return_counts=True)
plt.bar(dist, counts)
plt.xticks(dist)
print("Call matplotlib.pyplot.show() to see the plot.")
def ntimer(n=10):
"""Wraps a function which wraps another function to time it."""
if n < 1:
raise (Exception(f"Invalid n = {n} given."))
def timer(func):
"""Wraps `func` with a timer and returns the wrapped `func`."""
def wrapper(*args, **kwargs):
rv = None
before = time()
for _ in range(n):
rv = func(*args, **kwargs)
after = time()
elapsed = after - before
print(f"Elapsed: {elapsed*1e3:02.02f} ms")
return rv
return wrapper
return timer
def memoize(verbose=True):
"""Wraps a function which wraps another function that memoizes."""
def memoizer(func):
"""Memoize (cache) return values of `func`.
Wraps `func` and returns the wrapped `func` so that `func`
is executed when the results are not available in the cache.
"""
cache = {}
def wrapper(*args, **kwargs):
t = (pickle.dumps(args), pickle.dumps(kwargs))
if t not in cache:
if verbose:
print(f"Adding NEW rv {func.__name__}{args}{kwargs} "
"to cache.")
cache[t] = func(*args, **kwargs)
else: else:
if verbose: return user_distribution
print(f"Using OLD rv {func.__name__}{args}{kwargs} " elif isinstance(user_distribution, tuple):
"from cache.") assert len(user_distribution) == 2
return cache[t] num_classes, per_class = user_distribution
num_classes, per_class = int(num_classes), int(per_class)
return distribution_from_list([per_class] * num_classes, clabels)
elif isinstance(user_distribution, list):
return distribution_from_list(user_distribution, clabels)
else:
msg = f"`distribution` was not understood." \
f"You have provided: {user_distribution}."
raise ValueError(msg)
return wrapper
return memoizer def parse_data_arg(data_arg: Union[Dataset, DataLoader, list, tuple]):
"""Return data and target as torch tensors."""
if isinstance(data_arg, Dataset):
if hasattr(data_arg, "__len__"):
ds_size = len(data_arg) # type: ignore
loader = DataLoader(data_arg, batch_size=ds_size)
data, targets = next(iter(loader))
else:
emsg = f"Dataset {data_arg} is not sized (`__len__` unimplemented)."
raise TypeError(emsg)
elif isinstance(data_arg, DataLoader):
data = torch.tensor([])
targets = torch.tensor([])
for x, y in data_arg:
data = torch.cat([data, x])
targets = torch.cat([targets, y])
else:
assert len(data_arg) == 2
data, targets = data_arg
if not isinstance(data, torch.Tensor):
wmsg = f"Converting data to {torch.Tensor}..."
warnings.warn(wmsg)
data = torch.Tensor(data)
if not isinstance(targets, torch.LongTensor):
wmsg = f"Converting targets to {torch.LongTensor}..."
warnings.warn(wmsg)
targets = torch.LongTensor(targets)
return data, targets

16
setup.cfg Normal file
View File

@ -0,0 +1,16 @@
[pylint]
disable =
too-many-arguments,
too-few-public-methods,
fixme,
[pycodestyle]
max-line-length = 79
[isort]
multi_line_output = 3
include_trailing_comma = True
force_grid_wrap = 3
use_parentheses = True
line_length = 79

View File

@ -1,10 +1,12 @@
""" """
_____ _ _______ _
| __ \ | | |__ __| | | ######
| |__) | __ ___ | |_ ___ | | ___ _ __ ___| |__ # # ##### #### ##### #### ##### #### ##### #### # #
| ___/ '__/ _ \| __/ _ \| |/ _ \| '__/ __| '_ \ # # # # # # # # # # # # # # # # # #
| | | | | (_) | || (_) | | (_) | | | (__| | | | ###### # # # # # # # # # # # # # ######
|_| |_| \___/ \__\___/|_|\___/|_| \___|_| |_| # ##### # # # # # # # # ##### # # #
# # # # # # # # # # # # # # # # #
# # # #### # #### # #### # # #### # #
ProtoTorch Core Package ProtoTorch Core Package
""" """
@ -13,36 +15,43 @@ from setuptools import find_packages, setup
PROJECT_URL = "https://github.com/si-cim/prototorch" PROJECT_URL = "https://github.com/si-cim/prototorch"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch.git" DOWNLOAD_URL = "https://github.com/si-cim/prototorch.git"
with open("README.md", "r") as fh: with open("README.md", encoding="utf-8") as fh:
long_description = fh.read() long_description = fh.read()
INSTALL_REQUIRES = [ INSTALL_REQUIRES = [
"torch>=1.3.1", "torch>=2.0.0",
"torchvision>=0.5.0", "torchvision",
"numpy>=1.9.1", "numpy",
"scikit-learn",
"matplotlib",
] ]
DATASETS = [ DATASETS = [
"requests", "requests",
"tqdm", "tqdm",
] ]
DEV = ["bumpversion"] DEV = [
"bump2version",
"pre-commit",
]
DOCS = [ DOCS = [
"recommonmark", "recommonmark",
"sphinx", "sphinx",
"sphinx_rtd_theme", "sphinx_rtd_theme",
"sphinxcontrib-katex", "sphinxcontrib-katex",
"sphinx-autodoc-typehints",
] ]
EXAMPLES = [ EXAMPLES = [
"sklearn",
"matplotlib",
"torchinfo", "torchinfo",
] ]
TESTS = ["codecov", "pytest"] TESTS = [
"flake8",
"pytest",
]
ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS ALL = DATASETS + DEV + DOCS + EXAMPLES + TESTS
setup( setup(
name="prototorch", name="prototorch",
version="0.4.2", version="0.7.6",
description="Highly extensible, GPU-supported " description="Highly extensible, GPU-supported "
"Learning Vector Quantization (LVQ) toolbox " "Learning Vector Quantization (LVQ) toolbox "
"built using PyTorch and its nn API.", "built using PyTorch and its nn API.",
@ -53,30 +62,33 @@ setup(
url=PROJECT_URL, url=PROJECT_URL,
download_url=DOWNLOAD_URL, download_url=DOWNLOAD_URL,
license="MIT", license="MIT",
python_requires=">=3.8",
install_requires=INSTALL_REQUIRES, install_requires=INSTALL_REQUIRES,
extras_require={ extras_require={
"docs": DOCS,
"datasets": DATASETS, "datasets": DATASETS,
"dev": DEV,
"docs": DOCS,
"examples": EXAMPLES, "examples": EXAMPLES,
"tests": TESTS, "tests": TESTS,
"all": ALL, "all": ALL,
}, },
classifiers=[ classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Environment :: Console", "Environment :: Console",
"Natural Language :: English",
"Development Status :: 4 - Beta",
"Intended Audience :: Developers", "Intended Audience :: Developers",
"Intended Audience :: Education", "Intended Audience :: Education",
"Intended Audience :: Science/Research", "Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
], ],
packages=find_packages(), packages=find_packages(),
zip_safe=False, zip_safe=False,

777
tests/test_core.py Normal file
View File

@ -0,0 +1,777 @@
"""ProtoTorch core test suite"""
import unittest
import numpy as np
import pytest
import torch
import prototorch as pt
from prototorch.utils import parse_distribution
# Utils
def test_parse_distribution_dict_0():
distribution = {"num_classes": 1, "per_class": 0}
distribution = parse_distribution(distribution)
assert distribution == {0: 0}
def test_parse_distribution_dict_1():
distribution = dict(num_classes=3, per_class=2)
distribution = parse_distribution(distribution)
assert distribution == {0: 2, 1: 2, 2: 2}
def test_parse_distribution_dict_2():
distribution = {0: 1, 2: 2, -1: 3}
distribution = parse_distribution(distribution)
assert distribution == {0: 1, 2: 2, -1: 3}
def test_parse_distribution_tuple():
distribution = (2, 3)
distribution = parse_distribution(distribution)
assert distribution == {0: 3, 1: 3}
def test_parse_distribution_list():
distribution = [1, 1, 0, 2]
distribution = parse_distribution(distribution)
assert distribution == {0: 1, 1: 1, 2: 0, 3: 2}
def test_parse_distribution_custom_labels():
distribution = [1, 1, 0, 2]
clabels = [1, 2, 5, 3]
distribution = parse_distribution(distribution, clabels)
assert distribution == {1: 1, 2: 1, 5: 0, 3: 2}
# Components initializers
def test_literal_comp_generate():
protos = torch.rand(4, 3, 5, 5)
c = pt.initializers.LiteralCompInitializer(protos)
components = c.generate([])
assert torch.allclose(components, protos)
def test_literal_comp_generate_from_list():
protos = [[0, 1], [2, 3], [4, 5]]
c = pt.initializers.LiteralCompInitializer(protos)
with pytest.warns(UserWarning):
components = c.generate([])
assert torch.allclose(components, torch.Tensor(protos))
def test_shape_aware_raises_error():
with pytest.raises(TypeError):
_ = pt.initializers.ShapeAwareCompInitializer(shape=(2, ))
def test_data_aware_comp_generate():
protos = torch.rand(4, 3, 5, 5)
c = pt.initializers.DataAwareCompInitializer(protos)
components = c.generate(num_components="IgnoreMe!")
assert torch.allclose(components, protos)
def test_class_aware_comp_generate():
protos = torch.rand(4, 2, 3, 5, 5)
plabels = torch.tensor([0, 0, 1, 1]).long()
c = pt.initializers.ClassAwareCompInitializer([protos, plabels])
components = c.generate(distribution=[])
assert torch.allclose(components, protos)
def test_zeros_comp_generate():
shape = (3, 5, 5)
c = pt.initializers.ZerosCompInitializer(shape)
components = c.generate(num_components=4)
assert torch.allclose(components, torch.zeros(4, 3, 5, 5))
def test_ones_comp_generate():
c = pt.initializers.OnesCompInitializer(2)
components = c.generate(num_components=3)
assert torch.allclose(components, torch.ones(3, 2))
def test_fill_value_comp_generate():
c = pt.initializers.FillValueCompInitializer(2, 0.0)
components = c.generate(num_components=3)
assert torch.allclose(components, torch.zeros(3, 2))
def test_uniform_comp_generate_min_max_bound():
c = pt.initializers.UniformCompInitializer(2, -1.0, 1.0)
components = c.generate(num_components=1024)
assert components.min() >= -1.0
assert components.max() <= 1.0
def test_random_comp_generate_mean():
c = pt.initializers.RandomNormalCompInitializer(2, -1.0)
components = c.generate(num_components=1024)
assert torch.allclose(components.mean(),
torch.tensor(-1.0),
rtol=1e-05,
atol=1e-01)
def test_comp_generate_0_components():
c = pt.initializers.ZerosCompInitializer(2)
_ = c.generate(num_components=0)
def test_stratified_mean_comp_generate():
# yapf: disable
x = torch.Tensor(
[[0, -1, -2],
[10, 11, 12],
[0, 0, 0],
[2, 2, 2]])
y = torch.LongTensor([0, 0, 1, 1])
desired = torch.Tensor(
[[5.0, 5.0, 5.0],
[1.0, 1.0, 1.0]])
# yapf: enable
c = pt.initializers.StratifiedMeanCompInitializer(data=[x, y])
actual = c.generate([1, 1])
assert torch.allclose(actual, desired)
def test_stratified_selection_comp_generate():
# yapf: disable
x = torch.Tensor(
[[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[1, 1, 1]])
y = torch.LongTensor([0, 1, 0, 1])
desired = torch.Tensor(
[[0, 0, 0],
[1, 1, 1]])
# yapf: enable
c = pt.initializers.StratifiedSelectionCompInitializer(data=[x, y])
actual = c.generate([1, 1])
assert torch.allclose(actual, desired)
# Labels initializers
def test_literal_labels_init():
l = pt.initializers.LiteralLabelsInitializer([0, 0, 1, 2])
with pytest.warns(UserWarning):
labels = l.generate([])
assert torch.allclose(labels, torch.LongTensor([0, 0, 1, 2]))
def test_labels_init_from_list():
l = pt.initializers.LabelsInitializer()
components = l.generate(distribution=[1, 1, 1])
assert torch.allclose(components, torch.LongTensor([0, 1, 2]))
def test_labels_init_from_tuple_legal():
l = pt.initializers.LabelsInitializer()
components = l.generate(distribution=(3, 1))
assert torch.allclose(components, torch.LongTensor([0, 1, 2]))
def test_labels_init_from_tuple_illegal():
l = pt.initializers.LabelsInitializer()
with pytest.raises(AssertionError):
_ = l.generate(distribution=(1, 1, 1))
def test_data_aware_labels_init():
data, targets = [0, 1, 2, 3], [0, 0, 1, 1]
ds = pt.datasets.NumpyDataset(data, targets)
l = pt.initializers.DataAwareLabelsInitializer(ds)
labels = l.generate([])
assert torch.allclose(labels, torch.LongTensor(targets))
# Reasonings initializers
def test_literal_reasonings_init():
r = pt.initializers.LiteralReasoningsInitializer([0, 0, 1, 2])
with pytest.warns(UserWarning):
reasonings = r.generate([])
assert torch.allclose(reasonings, torch.Tensor([0, 0, 1, 2]))
def test_random_reasonings_init():
r = pt.initializers.RandomReasoningsInitializer(0.2, 0.8)
reasonings = r.generate(distribution=[0, 1])
assert torch.numel(reasonings) == 1 * 2 * 2
assert reasonings.min() >= 0.2
assert reasonings.max() <= 0.8
def test_zeros_reasonings_init():
r = pt.initializers.ZerosReasoningsInitializer()
reasonings = r.generate(distribution=[0, 1])
assert torch.allclose(reasonings, torch.zeros(1, 2, 2))
def test_ones_reasonings_init():
r = pt.initializers.ZerosReasoningsInitializer()
reasonings = r.generate(distribution=[1, 2, 3])
assert torch.allclose(reasonings, torch.zeros(6, 3, 2))
def test_pure_positive_reasonings_init_one_per_class():
r = pt.initializers.PurePositiveReasoningsInitializer(
components_first=False)
reasonings = r.generate(distribution=(4, 1))
assert torch.allclose(reasonings[0], torch.eye(4))
def test_pure_positive_reasonings_init_unrepresented_classes():
r = pt.initializers.PurePositiveReasoningsInitializer()
reasonings = r.generate(distribution=[9, 0, 0, 0])
assert reasonings.shape[0] == 9
assert reasonings.shape[1] == 4
assert reasonings.shape[2] == 2
def test_random_reasonings_init_channels_not_first():
r = pt.initializers.RandomReasoningsInitializer(components_first=False)
reasonings = r.generate(distribution=[0, 0, 0, 1])
assert reasonings.shape[0] == 2
assert reasonings.shape[1] == 4
assert reasonings.shape[2] == 1
# Transform initializers
def test_eye_transform_init_square():
t = pt.initializers.EyeLinearTransformInitializer()
I = t.generate(3, 3)
assert torch.allclose(I, torch.eye(3))
def test_eye_transform_init_narrow():
t = pt.initializers.EyeLinearTransformInitializer()
actual = t.generate(3, 2)
desired = torch.Tensor([[1, 0], [0, 1], [0, 0]])
assert torch.allclose(actual, desired)
def test_eye_transform_init_wide():
t = pt.initializers.EyeLinearTransformInitializer()
actual = t.generate(2, 3)
desired = torch.Tensor([[1, 0, 0], [0, 1, 0]])
assert torch.allclose(actual, desired)
# Transforms
def test_linear_transform_default_eye_init():
l = pt.transforms.LinearTransform(2, 4)
actual = l.weights
desired = torch.Tensor([[1, 0, 0, 0], [0, 1, 0, 0]])
assert torch.allclose(actual, desired)
def test_linear_transform_forward():
l = pt.transforms.LinearTransform(4, 2)
actual_weights = l.weights
desired_weights = torch.Tensor([[1, 0], [0, 1], [0, 0], [0, 0]])
assert torch.allclose(actual_weights, desired_weights)
actual_outputs = l(torch.Tensor([[1.1, 2.2, 3.3, 4.4], \
[1.1, 2.2, 3.3, 4.4], \
[5.5, 6.6, 7.7, 8.8]]))
desired_outputs = torch.Tensor([[1.1, 2.2], [1.1, 2.2], [5.5, 6.6]])
assert torch.allclose(actual_outputs, desired_outputs)
def test_linear_transform_zeros_init():
l = pt.transforms.LinearTransform(
in_dim=2,
out_dim=4,
initializer=pt.initializers.ZerosLinearTransformInitializer(),
)
actual = l.weights
desired = torch.zeros(2, 4)
assert torch.allclose(actual, desired)
def test_linear_transform_out_dim_first():
l = pt.transforms.LinearTransform(
in_dim=2,
out_dim=4,
initializer=pt.initializers.OLTI(out_dim_first=True),
)
assert l.weights.shape[0] == 4
assert l.weights.shape[1] == 2
# Components
def test_components_no_initializer():
with pytest.raises(TypeError):
_ = pt.components.Components(3, None)
def test_components_no_num_components():
with pytest.raises(TypeError):
_ = pt.components.Components(initializer=pt.initializers.OCI(2))
def test_components_none_num_components():
with pytest.raises(TypeError):
_ = pt.components.Components(None, initializer=pt.initializers.OCI(2))
def test_components_no_args():
with pytest.raises(TypeError):
_ = pt.components.Components()
def test_components_zeros_init():
c = pt.components.Components(3, pt.initializers.ZCI(2))
assert torch.allclose(c.components, torch.zeros(3, 2))
def test_labeled_components_dict_init():
c = pt.components.LabeledComponents({0: 3}, pt.initializers.OCI(2))
assert torch.allclose(c.components, torch.ones(3, 2))
assert torch.allclose(c.labels, torch.zeros(3, dtype=torch.long))
def test_labeled_components_list_init():
c = pt.components.LabeledComponents([3], pt.initializers.OCI(2))
assert torch.allclose(c.components, torch.ones(3, 2))
assert torch.allclose(c.labels, torch.zeros(3, dtype=torch.long))
def test_labeled_components_tuple_init():
c = pt.components.LabeledComponents({0: 1, 1: 2}, pt.initializers.OCI(2))
assert torch.allclose(c.components, torch.ones(3, 2))
assert torch.allclose(c.labels, torch.LongTensor([0, 1, 1]))
# Labels
def test_standalone_labels_dict_init():
l = pt.components.Labels({0: 3})
assert torch.allclose(l.labels, torch.zeros(3, dtype=torch.long))
def test_standalone_labels_list_init():
l = pt.components.Labels([3])
assert torch.allclose(l.labels, torch.zeros(3, dtype=torch.long))
def test_standalone_labels_tuple_init():
l = pt.components.Labels({0: 1, 1: 2})
assert torch.allclose(l.labels, torch.LongTensor([0, 1, 1]))
# Losses
def test_glvq_loss_int_labels():
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
batch_loss = pt.losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
assert loss_value == -100
def test_glvq_loss_one_hot_labels():
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([[0, 1], [1, 0]])
wl = torch.tensor([1, 0])
targets = torch.stack([wl for _ in range(100)], dim=0)
batch_loss = pt.losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
assert loss_value == -100
def test_glvq_loss_one_hot_unequal():
dlist = [torch.ones(100), torch.zeros(100), torch.zeros(100)]
d = torch.stack(dlist, dim=1)
labels = torch.tensor([[0, 1], [1, 0], [1, 0]])
wl = torch.tensor([1, 0])
targets = torch.stack([wl for _ in range(100)], dim=0)
batch_loss = pt.losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
assert loss_value == -100
# Activations
class TestActivations(unittest.TestCase):
def setUp(self):
self.flist = ["identity", "sigmoid_beta", "swish_beta"]
self.x = torch.randn(1024, 1)
def test_registry(self):
self.assertIsNotNone(pt.nn.ACTIVATIONS)
def test_funcname_deserialization(self):
for funcname in self.flist:
f = pt.nn.get_activation(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
def test_callable_deserialization(self):
def dummy(x, **kwargs):
return x
for f in [dummy, lambda x: x]:
f = pt.nn.get_activation(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ["blubb", "foobar"]:
with self.assertRaises(NameError):
_ = pt.nn.get_activation(funcname)
def test_identity(self):
actual = pt.nn.identity(self.x)
desired = self.x
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_sigmoid_beta1(self):
actual = pt.nn.sigmoid_beta(self.x, beta=1.0)
desired = torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_swish_beta1(self):
actual = pt.nn.swish_beta(self.x, beta=1.0)
desired = self.x * torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x
# Competitions
class TestCompetitions(unittest.TestCase):
def setUp(self):
pass
def test_wtac(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
competition_layer = pt.competitions.WTAC()
actual = competition_layer(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_unequal_dist(self):
d = torch.tensor([[2.0, 3.0, 4.0], [2.0, 3.0, 1.0]])
labels = torch.tensor([0, 1, 1])
competition_layer = pt.competitions.WTAC()
actual = competition_layer(d, labels)
desired = torch.tensor([0, 1])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_one_hot(self):
d = torch.tensor([[1.99, 3.01], [3.0, 2.01]])
labels = torch.tensor([[0, 1], [1, 0]])
competition_layer = pt.competitions.WTAC()
actual = competition_layer(d, labels)
desired = torch.tensor([[0, 1], [1, 0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
competition_layer = pt.competitions.KNNC(k=1)
actual = competition_layer(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
# Pooling
class TestPooling(unittest.TestCase):
def setUp(self):
pass
def test_stratified_min(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
pooling_layer = pt.pooling.StratifiedMinPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
pooling_layer = pt.pooling.StratifiedMinPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_trivial(self):
d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]])
labels = torch.tensor([0, 1, 2])
pooling_layer = pt.pooling.StratifiedMinPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_max(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
pooling_layer = pt.pooling.StratifiedMaxPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_max_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 2, 1, 0])
labels = torch.nn.functional.one_hot(labels, num_classes=3)
pooling_layer = pt.pooling.StratifiedMaxPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[9.0, 3.0, 2.0], [9.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.LongTensor([0, 0, 1, 2])
pooling_layer = pt.pooling.StratifiedSumPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_sum_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
pooling_layer = pt.pooling.StratifiedSumPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[1.0, 2.0, 3.0], [17.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_prod(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0, 9.0], [9.0, 8.0, 0, 1, 7.0]])
labels = torch.tensor([0, 0, 3, 2, 0])
pooling_layer = pt.pooling.StratifiedProdPooling()
actual = pooling_layer(d, labels)
desired = torch.tensor([[0.0, 3.0, 2.0], [504.0, 1.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
# Distances
class TestDistances(unittest.TestCase):
def setUp(self):
self.nx, self.mx = 32, 2048
self.ny, self.my = 8, 2048
self.x = torch.randn(self.nx, self.mx)
self.y = torch.randn(self.ny, self.my)
def test_manhattan(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=1)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=1,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_euclidean(self):
actual = pt.distances.euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=3)
self.assertIsNone(mismatch)
def test_squared_euclidean(self):
actual = pt.distances.squared_euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lpnorm_p0(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=0)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=0,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p2(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=2)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p3(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=3)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=3,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_pinf(self):
actual = pt.distances.lpnorm_distance(self.x, self.y, p=float("inf"))
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=float("inf"),
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_omega_identity(self):
omega = torch.eye(self.mx, self.my)
actual = pt.distances.omega_distance(self.x, self.y, omega=omega)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lomega_identity(self):
omega = torch.eye(self.mx, self.my)
omegas = torch.stack([omega for _ in range(self.ny)], dim=0)
actual = pt.distances.lomega_distance(self.x, self.y, omegas=omegas)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y

View File

@ -1,95 +1,186 @@
"""ProtoTorch datasets test suite.""" """ProtoTorch datasets test suite"""
import os import os
import shutil
import unittest import unittest
import numpy as np
import torch import torch
from prototorch.datasets import abstract, tecator import prototorch as pt
from prototorch.datasets.abstract import Dataset, ProtoDataset
class TestAbstract(unittest.TestCase): class TestAbstract(unittest.TestCase):
def setUp(self):
self.ds = Dataset("./artifacts")
def test_getitem(self): def test_getitem(self):
with self.assertRaises(NotImplementedError): with self.assertRaises(NotImplementedError):
abstract.Dataset("./artifacts")[0] _ = self.ds[0]
def test_len(self): def test_len(self):
with self.assertRaises(NotImplementedError): with self.assertRaises(NotImplementedError):
len(abstract.Dataset("./artifacts")) _ = len(self.ds)
def tearDown(self):
del self.ds
class TestProtoDataset(unittest.TestCase): class TestProtoDataset(unittest.TestCase):
def test_getitem(self):
with self.assertRaises(NotImplementedError):
abstract.ProtoDataset("./artifacts")[0]
def test_download(self): def test_download(self):
with self.assertRaises(NotImplementedError): with self.assertRaises(NotImplementedError):
abstract.ProtoDataset("./artifacts").download() _ = ProtoDataset("./artifacts", download=True)
def test_exists(self):
class TestTecator(unittest.TestCase):
def setUp(self):
self.artifacts_dir = "./artifacts/Tecator"
self._remove_artifacts()
def _remove_artifacts(self):
if os.path.exists(self.artifacts_dir):
shutil.rmtree(self.artifacts_dir)
def test_download_false(self):
rootdir = self.artifacts_dir.rpartition("/")[0]
self._remove_artifacts()
with self.assertRaises(RuntimeError): with self.assertRaises(RuntimeError):
_ = tecator.Tecator(rootdir, download=False) _ = ProtoDataset("./artifacts", download=False)
def test_download_caching(self):
rootdir = self.artifacts_dir.rpartition("/")[0]
_ = tecator.Tecator(rootdir, download=True, verbose=False)
_ = tecator.Tecator(rootdir, download=False, verbose=False)
def test_repr(self): class TestNumpyDataset(unittest.TestCase):
rootdir = self.artifacts_dir.rpartition("/")[0]
train = tecator.Tecator(rootdir, download=True, verbose=True)
self.assertTrue("Split: Train" in train.__repr__())
def test_download_train(self): def test_list_init(self):
rootdir = self.artifacts_dir.rpartition("/")[0] ds = pt.datasets.NumpyDataset([1], [1])
train = tecator.Tecator(root=rootdir, self.assertEqual(len(ds), 1)
train=True,
download=True,
verbose=False)
train = tecator.Tecator(root=rootdir, download=True, verbose=False)
x_train, y_train = train.data, train.targets
self.assertEqual(x_train.shape[0], 144)
self.assertEqual(y_train.shape[0], 144)
self.assertEqual(x_train.shape[1], 100)
def test_download_test(self): def test_numpy_init(self):
rootdir = self.artifacts_dir.rpartition("/")[0] data = np.random.randn(3, 2)
test = tecator.Tecator(root=rootdir, train=False, verbose=False) targets = np.array([0, 1, 2])
x_test, y_test = test.data, test.targets ds = pt.datasets.NumpyDataset(data, targets)
self.assertEqual(x_test.shape[0], 71) self.assertEqual(len(ds), 3)
self.assertEqual(y_test.shape[0], 71)
self.assertEqual(x_test.shape[1], 100)
def test_class_to_idx(self):
rootdir = self.artifacts_dir.rpartition("/")[0]
test = tecator.Tecator(root=rootdir, train=False, verbose=False)
_ = test.class_to_idx
def test_getitem(self): class TestCSVDataset(unittest.TestCase):
rootdir = self.artifacts_dir.rpartition("/")[0]
test = tecator.Tecator(root=rootdir, train=False, verbose=False)
x, y = test[0]
self.assertEqual(x.shape[0], 100)
self.assertIsInstance(y, int)
def test_loadable_with_dataloader(self): def setUp(self):
rootdir = self.artifacts_dir.rpartition("/")[0] data = np.random.rand(100, 4)
test = tecator.Tecator(root=rootdir, train=False, verbose=False) targets = np.random.randint(2, size=(100, 1))
_ = torch.utils.data.DataLoader(test, batch_size=64, shuffle=True) arr = np.hstack([data, targets])
if not os.path.exists("./artifacts"):
os.mkdir("./artifacts")
np.savetxt("./artifacts/test.csv", arr, delimiter=",")
def test_len(self):
ds = pt.datasets.CSVDataset("./artifacts/test.csv")
self.assertEqual(len(ds), 100)
def tearDown(self): def tearDown(self):
pass os.remove("./artifacts/test.csv")
class TestSpiral(unittest.TestCase):
def test_init(self):
ds = pt.datasets.Spiral(num_samples=10)
self.assertEqual(len(ds), 10)
class TestIris(unittest.TestCase):
def setUp(self):
self.ds = pt.datasets.Iris()
def test_size(self):
self.assertEqual(len(self.ds), 150)
def test_dims(self):
self.assertEqual(self.ds.data.shape[1], 4)
def test_dims_selection(self):
ds = pt.datasets.Iris(dims=[0, 1])
self.assertEqual(ds.data.shape[1], 2)
class TestBlobs(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Blobs(num_samples=10)
self.assertEqual(len(ds), 10)
class TestRandom(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Random(num_samples=10)
self.assertEqual(len(ds), 10)
class TestCircles(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Circles(num_samples=10)
self.assertEqual(len(ds), 10)
class TestMoons(unittest.TestCase):
def test_size(self):
ds = pt.datasets.Moons(num_samples=10)
self.assertEqual(len(ds), 10)
# class TestTecator(unittest.TestCase):
# def setUp(self):
# self.artifacts_dir = "./artifacts/Tecator"
# self._remove_artifacts()
# def _remove_artifacts(self):
# if os.path.exists(self.artifacts_dir):
# shutil.rmtree(self.artifacts_dir)
# def test_download_false(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# self._remove_artifacts()
# with self.assertRaises(RuntimeError):
# _ = pt.datasets.Tecator(rootdir, download=False)
# def test_download_caching(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# _ = pt.datasets.Tecator(rootdir, download=True, verbose=False)
# _ = pt.datasets.Tecator(rootdir, download=False, verbose=False)
# def test_repr(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# train = pt.datasets.Tecator(rootdir, download=True, verbose=True)
# self.assertTrue("Split: Train" in train.__repr__())
# def test_download_train(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# train = pt.datasets.Tecator(root=rootdir,
# train=True,
# download=True,
# verbose=False)
# train = pt.datasets.Tecator(root=rootdir, download=True, verbose=False)
# x_train, y_train = train.data, train.targets
# self.assertEqual(x_train.shape[0], 144)
# self.assertEqual(y_train.shape[0], 144)
# self.assertEqual(x_train.shape[1], 100)
# def test_download_test(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# x_test, y_test = test.data, test.targets
# self.assertEqual(x_test.shape[0], 71)
# self.assertEqual(y_test.shape[0], 71)
# self.assertEqual(x_test.shape[1], 100)
# def test_class_to_idx(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# _ = test.class_to_idx
# def test_getitem(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# x, y = test[0]
# self.assertEqual(x.shape[0], 100)
# self.assertIsInstance(y, int)
# def test_loadable_with_dataloader(self):
# rootdir = self.artifacts_dir.rpartition("/")[0]
# test = pt.datasets.Tecator(root=rootdir, train=False, verbose=False)
# _ = torch.utils.data.DataLoader(test, batch_size=64, shuffle=True)
# def tearDown(self):
# self._remove_artifacts()

View File

@ -1,521 +0,0 @@
"""ProtoTorch functions test suite."""
import unittest
import numpy as np
import torch
from prototorch.functions import (activations, competitions, distances,
initializers, losses)
class TestActivations(unittest.TestCase):
def setUp(self):
self.flist = ["identity", "sigmoid_beta", "swish_beta"]
self.x = torch.randn(1024, 1)
def test_registry(self):
self.assertIsNotNone(activations.ACTIVATIONS)
def test_funcname_deserialization(self):
for funcname in self.flist:
f = activations.get_activation(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
# def test_torch_script(self):
# for funcname in self.flist:
# f = activations.get_activation(funcname)
# self.assertIsInstance(f, torch.jit.ScriptFunction)
def test_callable_deserialization(self):
def dummy(x, **kwargs):
return x
for f in [dummy, lambda x: x]:
f = activations.get_activation(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ["blubb", "foobar"]:
with self.assertRaises(NameError):
_ = activations.get_activation(funcname)
def test_identity(self):
actual = activations.identity(self.x)
desired = self.x
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_sigmoid_beta1(self):
actual = activations.sigmoid_beta(self.x, beta=1.0)
desired = torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_swish_beta1(self):
actual = activations.swish_beta(self.x, beta=1.0)
desired = self.x * torch.sigmoid(self.x)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x
class TestCompetitions(unittest.TestCase):
def setUp(self):
pass
def test_wtac(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.wtac(d, labels)
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_unequal_dist(self):
d = torch.tensor([[2.0, 3.0, 4.0], [2.0, 3.0, 1.0]])
labels = torch.tensor([0, 1, 1])
actual = competitions.wtac(d, labels)
desired = torch.tensor([0, 1])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_wtac_one_hot(self):
d = torch.tensor([[1.99, 3.01], [3.0, 2.01]])
labels = torch.tensor([[0, 1], [1, 0]])
actual = competitions.wtac(d, labels)
desired = torch.tensor([[0, 1], [1, 0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
actual = competitions.stratified_min(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_one_hot(self):
d = torch.tensor([[1.0, 0.0, 2.0, 3.0], [9.0, 8.0, 0, 1]])
labels = torch.tensor([0, 0, 1, 2])
labels = torch.eye(3)[labels]
actual = competitions.stratified_min(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_min_simple(self):
d = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0, 1]])
labels = torch.tensor([0, 1, 2])
actual = competitions.stratified_min(d, labels)
desired = torch.tensor([[0.0, 2.0, 3.0], [8.0, 0.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_knnc_k1(self):
d = torch.tensor([[2.0, 3.0, 1.99, 3.01], [2.0, 3.0, 2.01, 3.0]])
labels = torch.tensor([0, 1, 2, 3])
actual = competitions.knnc(d, labels, k=torch.tensor([1]))
desired = torch.tensor([2, 0])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
pass
class TestDistances(unittest.TestCase):
def setUp(self):
self.nx, self.mx = 32, 2048
self.ny, self.my = 8, 2048
self.x = torch.randn(self.nx, self.mx)
self.y = torch.randn(self.ny, self.my)
def test_manhattan(self):
actual = distances.lpnorm_distance(self.x, self.y, p=1)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=1,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_euclidean(self):
actual = distances.euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=3)
self.assertIsNone(mismatch)
def test_squared_euclidean(self):
actual = distances.squared_euclidean_distance(self.x, self.y)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lpnorm_p0(self):
actual = distances.lpnorm_distance(self.x, self.y, p=0)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=0,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p2(self):
actual = distances.lpnorm_distance(self.x, self.y, p=2)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_p3(self):
actual = distances.lpnorm_distance(self.x, self.y, p=3)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=3,
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_lpnorm_pinf(self):
actual = distances.lpnorm_distance(self.x, self.y, p=float("inf"))
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=float("inf"),
keepdim=False,
)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=4)
self.assertIsNone(mismatch)
def test_omega_identity(self):
omega = torch.eye(self.mx, self.my)
actual = distances.omega_distance(self.x, self.y, omega=omega)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def test_lomega_identity(self):
omega = torch.eye(self.mx, self.my)
omegas = torch.stack([omega for _ in range(self.ny)], dim=0)
actual = distances.lomega_distance(self.x, self.y, omegas=omegas)
desired = torch.empty(self.nx, self.ny)
for i in range(self.nx):
for j in range(self.ny):
desired[i][j] = (torch.nn.functional.pairwise_distance(
self.x[i].reshape(1, -1),
self.y[j].reshape(1, -1),
p=2,
keepdim=False,
)**2)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=2)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y
class TestInitializers(unittest.TestCase):
def setUp(self):
self.flist = [
"zeros",
"ones",
"rand",
"randn",
"stratified_mean",
"stratified_random",
]
self.x = torch.tensor(
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
dtype=torch.float32)
self.y = torch.tensor([0, 0, 1, 1])
self.gen = torch.manual_seed(42)
def test_registry(self):
self.assertIsNotNone(initializers.INITIALIZERS)
def test_funcname_deserialization(self):
for funcname in self.flist:
f = initializers.get_initializer(funcname)
iscallable = callable(f)
self.assertTrue(iscallable)
def test_callable_deserialization(self):
def dummy(x):
return x
for f in [dummy, lambda x: x]:
f = initializers.get_initializer(f)
iscallable = callable(f)
self.assertTrue(iscallable)
self.assertEqual(1, f(1))
def test_unknown_deserialization(self):
for funcname in ["blubb", "foobar"]:
with self.assertRaises(NameError):
_ = initializers.get_initializer(funcname)
def test_zeros(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.zeros(self.x, self.y, pdist)
desired = torch.zeros(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_ones(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.ones(self.x, self.y, pdist)
desired = torch.ones(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_rand(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.rand(self.x, self.y, pdist)
desired = torch.rand(2, 3, generator=torch.manual_seed(42))
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_randn(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.randn(self.x, self.y, pdist)
desired = torch.randn(2, 3, generator=torch.manual_seed(42))
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_mean_equal1(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
desired = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_random_equal1(self):
pdist = torch.tensor([1, 1])
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
False)
desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_mean_equal2(self):
pdist = torch.tensor([2, 2])
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
desired = torch.tensor([[5.0, 5.0, 5.0], [5.0, 5.0, 5.0],
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_random_equal2(self):
pdist = torch.tensor([2, 2])
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
False)
desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, -1.0, -2.0],
[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_mean_unequal(self):
pdist = torch.tensor([1, 3])
actual, _ = initializers.stratified_mean(self.x, self.y, pdist, False)
desired = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0],
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_random_unequal(self):
pdist = torch.tensor([1, 3])
actual, _ = initializers.stratified_random(self.x, self.y, pdist,
False)
desired = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0],
[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_mean_unequal_one_hot(self):
pdist = torch.tensor([1, 3])
y = torch.eye(2)[self.y]
desired1 = torch.tensor([[5.0, 5.0, 5.0], [1.0, 1.0, 1.0],
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
actual1, actual2 = initializers.stratified_mean(self.x, y, pdist)
desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]])
mismatch = np.testing.assert_array_almost_equal(actual1,
desired1,
decimal=5)
mismatch = np.testing.assert_array_almost_equal(actual2,
desired2,
decimal=5)
self.assertIsNone(mismatch)
def test_stratified_random_unequal_one_hot(self):
pdist = torch.tensor([1, 3])
y = torch.eye(2)[self.y]
actual1, actual2 = initializers.stratified_random(self.x, y, pdist)
desired1 = torch.tensor([[0.0, -1.0, -2.0], [0.0, 0.0, 0.0],
[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
desired2 = torch.tensor([[1, 0], [0, 1], [0, 1], [0, 1]])
mismatch = np.testing.assert_array_almost_equal(actual1,
desired1,
decimal=5)
mismatch = np.testing.assert_array_almost_equal(actual2,
desired2,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y, self.gen
_ = torch.seed()
class TestLosses(unittest.TestCase):
def setUp(self):
pass
def test_glvq_loss_int_labels(self):
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
batch_loss = losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
self.assertEqual(loss_value, -100)
def test_glvq_loss_one_hot_labels(self):
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([[0, 1], [1, 0]])
wl = torch.tensor([1, 0])
targets = torch.stack([wl for _ in range(100)], dim=0)
batch_loss = losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
self.assertEqual(loss_value, -100)
def test_glvq_loss_one_hot_unequal(self):
dlist = [torch.ones(100), torch.zeros(100), torch.zeros(100)]
d = torch.stack(dlist, dim=1)
labels = torch.tensor([[0, 1], [1, 0], [1, 0]])
wl = torch.tensor([1, 0])
targets = torch.stack([wl for _ in range(100)], dim=0)
batch_loss = losses.glvq_loss(distances=d,
target_labels=targets,
prototype_labels=labels)
loss_value = torch.sum(batch_loss, dim=0)
self.assertEqual(loss_value, -100)
def tearDown(self):
pass

View File

@ -1,298 +0,0 @@
"""ProtoTorch modules test suite."""
import unittest
import numpy as np
import torch
from prototorch.modules import losses, prototypes
class TestPrototypes(unittest.TestCase):
def setUp(self):
self.x = torch.tensor(
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
dtype=torch.float32)
self.y = torch.tensor([0, 0, 1, 1])
self.gen = torch.manual_seed(42)
def test_prototypes1d_init_without_input_dim(self):
with self.assertRaises(NameError):
_ = prototypes.Prototypes1D(nclasses=2)
def test_prototypes1d_init_without_nclasses(self):
with self.assertRaises(NameError):
_ = prototypes.Prototypes1D(input_dim=1)
def test_prototypes1d_init_with_nclasses_1(self):
with self.assertWarns(UserWarning):
_ = prototypes.Prototypes1D(nclasses=1, input_dim=1)
def test_prototypes1d_init_without_pdist(self):
p1 = prototypes.Prototypes1D(
input_dim=6,
nclasses=2,
prototypes_per_class=4,
prototype_initializer="ones",
)
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.ones(8, 6)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_without_data(self):
pdist = [2, 2]
p1 = prototypes.Prototypes1D(input_dim=3,
prototype_distribution=pdist,
prototype_initializer="zeros")
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_proto_init_without_data(self):
with self.assertWarns(UserWarning):
_ = prototypes.Prototypes1D(
input_dim=3,
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=None,
)
def test_prototypes1d_init_torch_pdist(self):
pdist = torch.tensor([2, 2])
p1 = prototypes.Prototypes1D(input_dim=3,
prototype_distribution=pdist,
prototype_initializer="zeros")
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_without_inputdim_with_data(self):
_ = prototypes.Prototypes1D(
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1.0], [0.0]], [1, 0]],
)
def test_prototypes1d_init_with_int_data(self):
_ = prototypes.Prototypes1D(
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1], [0]], [1, 0]],
)
def test_prototypes1d_init_one_hot_without_data(self):
_ = prototypes.Prototypes1D(
input_dim=1,
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=None,
one_hot_labels=True,
)
def test_prototypes1d_init_one_hot_labels_false(self):
"""Test if ValueError is raised when `one_hot_labels` is set to `False`
but the provided `data` has one-hot encoded labels.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=([[0.0], [1.0]], [[0, 1], [1, 0]]),
one_hot_labels=False,
)
def test_prototypes1d_init_1d_y_data_one_hot_labels_true(self):
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
but the provided `data` does not contain one-hot encoded labels.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=([[0.0], [1.0]], [0, 1]),
one_hot_labels=True,
)
def test_prototypes1d_init_one_hot_labels_true(self):
"""Test if ValueError is raised when `one_hot_labels` is set to `True`
but the provided `data` contains 2D targets but
does not contain one-hot encoded labels.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=([[0.0], [1.0]], [[0], [1]]),
one_hot_labels=True,
)
def test_prototypes1d_init_with_int_dtype(self):
with self.assertRaises(RuntimeError):
_ = prototypes.Prototypes1D(
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1], [0]], [1, 0]],
dtype=torch.int32,
)
def test_prototypes1d_inputndim_with_data(self):
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(input_dim=1,
nclasses=1,
prototypes_per_class=1,
data=[[1.0], [1]])
def test_prototypes1d_inputdim_with_data(self):
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=2,
nclasses=2,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1.0], [0.0]], [1, 0]],
)
def test_prototypes1d_nclasses_with_data(self):
"""Test ValueError raise if provided `nclasses` is not the same
as the one computed from the provided `data`.
"""
with self.assertRaises(ValueError):
_ = prototypes.Prototypes1D(
input_dim=1,
nclasses=1,
prototypes_per_class=1,
prototype_initializer="stratified_mean",
data=[[[1.0], [2.0]], [1, 2]],
)
def test_prototypes1d_init_with_ppc(self):
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
prototypes_per_class=2,
prototype_initializer="zeros")
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_with_pdist(self):
p1 = prototypes.Prototypes1D(
data=[self.x, self.y],
prototype_distribution=[6, 9],
prototype_initializer="zeros",
)
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(15, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_func_initializer(self):
def my_initializer(*args, **kwargs):
return torch.full((2, 99), 99.0), torch.tensor([0, 1])
p1 = prototypes.Prototypes1D(
input_dim=99,
nclasses=2,
prototypes_per_class=1,
prototype_initializer=my_initializer,
)
protos = p1.prototypes
actual = protos.detach().numpy()
desired = 99 * torch.ones(2, 99)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_forward(self):
p1 = prototypes.Prototypes1D(data=[self.x, self.y])
protos, _ = p1()
actual = protos.detach().numpy()
desired = torch.ones(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_dist_validate(self):
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
with self.assertWarns(UserWarning):
_ = p1._validate_prototype_distribution()
def test_prototypes1d_validate_extra_repr_not_empty(self):
p1 = prototypes.Prototypes1D(input_dim=0, prototype_distribution=[0])
rep = p1.extra_repr()
self.assertNotEqual(rep, "")
def tearDown(self):
del self.x, self.y, self.gen
_ = torch.seed()
class TestLosses(unittest.TestCase):
def setUp(self):
pass
def test_glvqloss_init(self):
_ = losses.GLVQLoss(0, "swish_beta", beta=20)
def test_glvqloss_forward_1ppc(self):
criterion = losses.GLVQLoss(margin=0,
squashing="sigmoid_beta",
beta=100)
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
outputs = [d, labels]
loss = criterion(outputs, targets)
loss_value = loss.item()
self.assertAlmostEqual(loss_value, 0.0)
def test_glvqloss_forward_2ppc(self):
criterion = losses.GLVQLoss(margin=0,
squashing="sigmoid_beta",
beta=100)
d = torch.stack([
torch.ones(100),
torch.ones(100),
torch.zeros(100),
torch.ones(100)
],
dim=1)
labels = torch.tensor([0, 0, 1, 1])
targets = torch.ones(100)
outputs = [d, labels]
loss = criterion(outputs, targets)
loss_value = loss.item()
self.assertAlmostEqual(loss_value, 0.0)
def tearDown(self):
pass

47
tests/test_utils.py Normal file
View File

@ -0,0 +1,47 @@
"""ProtoTorch utils test suite"""
import numpy as np
import torch
import prototorch as pt
def test_mesh2d_without_input():
mesh, xx, yy = pt.utils.mesh2d(border=2.0, resolution=10)
assert mesh.shape[0] == 100
assert mesh.shape[1] == 2
assert xx.shape[0] == 10
assert xx.shape[1] == 10
assert yy.shape[0] == 10
assert yy.shape[1] == 10
assert np.min(xx) == -2.0
assert np.max(xx) == 2.0
assert np.min(yy) == -2.0
assert np.max(yy) == 2.0
def test_mesh2d_with_torch_input():
x = 10 * torch.rand(5, 2)
mesh, xx, yy = pt.utils.mesh2d(x, border=0.0, resolution=100)
assert mesh.shape[0] == 100 * 100
assert mesh.shape[1] == 2
assert xx.shape[0] == 100
assert xx.shape[1] == 100
assert yy.shape[0] == 100
assert yy.shape[1] == 100
assert np.min(xx) == x[:, 0].min()
assert np.max(xx) == x[:, 0].max()
assert np.min(yy) == x[:, 1].min()
assert np.max(yy) == x[:, 1].max()
def test_hex_to_rgb():
red_rgb = list(pt.utils.hex_to_rgb(["#ff0000"]))[0]
assert red_rgb[0] == 255
assert red_rgb[1] == 0
assert red_rgb[2] == 0
def test_rgb_to_hex():
blue_hex = list(pt.utils.rgb_to_hex([(0, 0, 255)]))[0]
assert blue_hex.lower() == "0000ff"