import numpy as np import svg rgen = np.random.default_rng() # the following functions are taken from Ben Southgate: # https://bsouthga.dev/posts/colour-gradients-with-python def hex_to_RGB(hex): """ "#FFFFFF" -> [255,255,255]""" # Pass 16 to the integer function for change of base return [int(hex[i : i + 2], 16) for i in range(1, 6, 2)] def RGB_to_hex(RGB): """[255,255,255] -> "#FFFFFF" """ # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#" + "".join( ["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB] ) def colour_dict(gradient): """Takes in a list of RGB sub-lists and returns dictionary of colours in RGB and hex form for use in a graphing function defined later on.""" return { "hex": [RGB_to_hex(RGB) for RGB in gradient], "r": [RGB[0] for RGB in gradient], "g": [RGB[1] for RGB in gradient], "b": [RGB[2] for RGB in gradient], } def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10): """returns a gradient list of (n) colours between two hex colours. start_hex and finish_hex should be the full six-digit colour string, inlcuding the number sign ("#FFFFFF")""" # Starting and ending colours in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colours with the starting colour RGB_list = [s] # Calcuate a colour at each evenly spaced value of t from 1 to n for t in range(0, n): # Interpolate RGB vector for colour at the current value of t curr_vector = [ int(s[j] + (float(t) / (n - 1)) * (f[j] - s[j])) for j in range(3) ] # Add it to our list of output colours RGB_list.append(curr_vector) return colour_dict(RGB_list) def rand_hex_colour(num=1): """Generate random hex colours, default is one, returning a string. If num is greater than 1, an array of strings is returned.""" colours = [RGB_to_hex([x * 255 for x in rgen.rand(3)]) for i in range(num)] if num == 1: return colours[0] else: return colours def polylinear_gradient(colours, n): """returns a list of colours forming linear gradients between all sequential pairs of colours. "n" specifies the total number of desired output colours""" # The number of colours per individual linear gradient n_out = int(float(n) / (len(colours) - 1)) # returns dictionary defined by colour_dict() gradient_dict = linear_gradient(colours[0], colours[1], n_out) if len(colours) > 1: for col in range(1, len(colours) - 1): next = linear_gradient(colours[col], colours[col + 1], n_out) for k in ("hex", "r", "g", "b"): # Exclude first point to avoid duplicates gradient_dict[k] += next[k][1:] return gradient_dict class LinearGradientColourMap: def __init__( self, colours: list[str] | None = ["#ff0000", "#ffffff", "#0000ff"], min_value: float | None = 0, max_value: float | None = 1, bins: int = 100, ): self.colours = polylinear_gradient(colours, bins) self.min, self.max = min_value, max_value def __call__(self, v: float): v = max(0, int((v - self.min) / (self.max - self.min) * 100) - 1) if v >= len(self.colours["hex"]): breakpoint() return self.colours["hex"][v] class RandomColourMap: def __init__(self, random_state: int | list[int] | None = [2, 3, 4, 5, 6]): self.rgen = np.random.default_rng([2, 3, 4, 5, 6]) def __call__(self, v: float): return RGB_to_hex([x * 255 for x in self.rgen.random(3)]) def colourbar( cmap, min_value: float | None = 0, max_value: float | None = 1, height=100, width=10, resolution=256, ): items = [ svg.Rect(fill=cmap(v), x=0, y=i, width=width, height=1, stroke="none") for i, v in enumerate(np.linspace(min_value, max_value, resolution)) ] return svg.G(elements=items, transform=[svg.Scale(1, height / resolution)]) if __name__ == "__main__": m, n = 20, 20 width = 20 height = 20 gap = 1 text = False total_width = (gap + width) * n + gap total_height = (gap + height) * m + gap filename = "matrix.svg" matrix = rgen.random(size=(m, n)) colours = ["#f5d72a", "#ffffff", "#2182af"] # colours = ["#ff0000", "#00ff00", "#0000ff"] cmap = LinearGradientColourMap(colours, matrix.min(), matrix.max()) # cmap = RandomColourMap() items = [] items.append(svg.Style(text=".mono { font: monospace; text-align: center;}")) items.append(svg.Style(text=".small { font-size: 25%; }")) for i, y in enumerate(range(gap, total_height, gap + height)): for j, x in enumerate(range(gap, total_width, gap + width)): items.append( svg.Rect( x=x, y=y, width=width, height=height, stroke="transparent", fill=cmap(matrix[i, j]), ) ) if text: items.append( svg.Text( x=x + width / 5, y=y + 3 * height / 4, textLength=width / 2, lengthAdjust="spacingAndGlyphs", class_=["mono"], text=f"{matrix[i, j]:.02f}", ) ) items.append(colourbar(cmap, matrix.min(), matrix.max(), height=100)) content = svg.SVG(width=total_width, height=total_height, elements=items) with open(filename, "w") as f: f.write(str(content))